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Abstract— Recently, Linear Temporal Logic (LTL) has been
employed as a tool for formal specification in dynamical control
systems. With this formal approach, control systems can be
designed to provably accomplish a large class of complex
tasks specified via LTL. For this purpose, language generating
Buchi automata with finite abstractions of dynamical systems
have been used in the literature. In this paper, we take a
mathematical programming-based approach to control of a
broad class of discrete-time dynamical systems, called Mixed
Logic Dynamical (MLD) systems, with LTL specifications.
MLDs include discontinuous and hybrid piecewise discrete-
time linear systems. We apply these tools for model checking
and optimal control of MLD systems with LTL specifications.
Our algorithms exploit Mixed Integer Linear Programming
(MILP) as well as, in the appropriate setting, Mixed Integer
Quadratic Programming (MIQP) techniques. Our solution
approach introduces a general technique useful in representing
LTL constraints as mixed-integer linear constraints.

I. INTRODUCTION

A recent trend in control theory is to address several
different complex properties using high level languages like
Linear Temporal Logic (LTL) and design controllers to
satisfy such high-level specifications [9], [10], [16]. LTL was
introduced in the seminal paper by Pnueli [13] to reason
about temporal properties of computer programs. Notable
related references include [12] and [4]. Recently, LTL model
checking techniques have been extended to controllable lin-
ear systems [15] and similar techniques have led to design of
control systems which satisfy by construction quite complex
properties given as an LTL specification [9], [10], [16]. A
traditional approach in the literature is to construct two
automata or finite-state machines, one to accept the language
formed by all inputs that satisfy the specifications, and the
other to process the language formed by all inputs that
corresponds to executions of the computer program. This is
typical in model checking and software verification, where
checking if a computer program satisfies a specification is
equivalent to checking whether the “execution” language is
included in the “specification” language [5], [4].

In this paper, we propose a class of algorithms that can
be used for LTL model checking, satisfiability problems, and
optimal control for Mixed Logic Dynamical (MLD) systems,
which include discontinuous and hybrid piecewise discrete-
time linear systems. For this purpose, we introduce a class
of algorithms that employ mixed integer programming tech-
niques known as Mixed Integer Linear Programing (MILP)
and Mixed Integer Quadratic Programming (MIQP). MILP
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has been successfully applied to the satisfiability problem
for propositional logic in [3], [6] while MIQP has been
employed for model predictive and optimal of a broad class
of systems [2], [17]. They rely on a general technique capable
of representing LTL specifications as mixed-integer linear
constraints, which has applicability to other problems, like
those in [7], [8]. We show that, under a finite horizon
assumption, model checking of MLD systems satisfying LTL
specifications is decidable. Decidability of a model check-
ing algorithm for linear systems with LTL specifications
was recently shown in [11], also under a finite horizon
assumption. The algorithm in [11] uses a model checker,
called LTLC, developed by the authors. Our algorithms can
be implemented using off-the-shelf numerical optimization
solvers and are applicable to general MLD systems with LTL
specifications. To the best of our knowledge, there are no
previous results on MILP-based LTL model checking.

The paper is organized as follows. Section II presents
MLD systems and the LTL Language and outlines the
problem formulation. In Section IV-A, the problem definition
is given. Section IV is devoted to the MILP-based algorithm
where Section IV-D gives an illustrative example.

A. Notation

We denote the set of discrete time instances starting
from the initial time t = 0 and extending to T as T =
{0, 1, . . . , T} ⊂ Z. When the time instances extend to infin-
ity, we use T ∞, i.e., T ∞ = {0, 1, . . . , T, . . . }. We write ρ in
bold to refer to all of the values that the variable ρ takes on
T , i.e., ρ is equivalent to the sequence ρ(0), ρ(1), . . . , ρ(T ).

II. MIXED LOGIC DYNAMICAL SYSTEMS WITH LINEAR
TEMPORAL LOGIC SPECIFICATIONS

A. Mixed Logical Dynamical Systems

Mixed Logical Dynamical (MLD) systems are discrete-
time systems involving continuous and discrete-valued states,
constraints, nonlinearities, logic statements, etc. Following
[2], an MLD system is given by

x+ = Atx+B1tu+B2tδ +B3tz
y = Ctx+D1tu+D2tδ +D3tz

subject to E2tδ + E3tz ≤ E1tu+ E4tx+ E5t,
(1)

where x = [x′c x′l]
′
, xc ∈ Rnc , xl ∈ {0, 1}nl is the

state vector, y = [y′c y′l]
′
, yc ∈ Rpc , yl ∈ {0, 1}pl is

the output vector, u = [u′c u′l]
′
, uc ∈ Rmc , ul ∈ {0, 1}ml

is the input vector, δ ∈ {0, 1}rl is the vector of discrete
auxiliary variables, z ∈ Rrc is the vector of continuous
auxiliary variables, and, for each t ∈ T , At, B1t, B2t, B3t,
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Ct, D1t, D2t, D3t, E1t, E2t, E3t, E4t, and E5t are the system
matrices. The subindex c denotes the continuous-valued
components while l denotes the discrete-valued ones. Above,
x+ denotes x(t+ 1).

Notice that integer variables can be used to model not only
the logical facts in the system, but also several nonlineari-
ties, like piecewise linear functions, disjunctive constraints,
saturation, and many others [2], [17].

Throughout this paper, we assume well posedness of MLD
systems as in [2] (see Definition 1 therein) which implies that
for each initial condition, solutions and outputs are unique.

B. Linear Temporal Logic

1) Preliminary Definitions: Below, we refer to the MLD
system variables used in evaluating the value of a logic
statement as system variables.

Definition II.1 (Atomic Propositions) An atomic proposi-
tion is a statement on the system variables γ that is either
True (1 or >) or False (0 or ⊥) for some given value of
the systems variables.

An atomic proposition is associated to a function π, mapping
the domain Γ of the system variables into {0, 1}. The set of
atomic propositions will be denoted with Π.

Definition II.2 (Interpretation, State) An interpretation of
the system variables γ is a mapping that assigns a value to
each variable in the domain Γ. Accordingly, a system state
is an interpretation of the system variables γ that assigns
unique values to all propositions in Π.

Any interpretation of the system variables γ can be a system
state. Notice that different values of γ can correspond to
the very same system state. However, it is forbidden for a
system state to represent two different values of an atomic
proposition. If a system state si assigns a proposition p value
True then it is denoted as si  p, otherwise we denote it
by si 1 p. Standard notation is to use s[p] to indicate the
value of atomic proposition p at system state s.

Definition II.3 (Transition System) A transition system is
a tuple T S = (Q,Q0,;,Π,�) where Q is a set of system
states, Q0 ⊆ Q is a set of initial system states, ;⊆ Q×Q is
a transition relation, Π is a set of atomic propositions, and
�: Q→ 2Πis a labeling function.

Intuitively, the transition system identifies a relation between
the system states. This relation defines the behavior of the
system by posing a constraint on the system states that are
reachable from a given system state q ∈ Q. However, since
the state space of the system is generally very large, the
atomic propositions are used as an abstraction of the large
system state space and high level conditions are posed on
the atomic propositions using languages like LTL. For this
purpose, the transition system labels each state s with the
atomic propositions that are true at s. More precisely, a
transition system assigns a proposition the value True at

a given state si if and only if p ∈� (si); the proposition is
assigned the value False otherwise.

Definition II.4 (Run) For a given run σ of a transition
system T S is an infinite sequence of states σ = (s0, s1, . . . )
such that si ∈ Q for all i ∈ {1, 2, . . . }, s0 ∈ Q0, and
(si, si+1) ∈; for all i ∈ {0, 1, 2, . . . }.

Definition II.5 (Evolution) The evolution of an atomic
proposition p ∈ Π in a given run σ = (s0, s1, . . . ) on
a transition system T S is defined as the infinite sequence
π = (s0[p], s1[p], . . . ).

2) LTL Syntax: The syntax of LTL language can be
defined recursively as follows. Every atomic proposition
p ∈ Π is an LTL formula and if φ and ψ are formulae
then so are ¬φ, φ ∨ ψ, #φ and φUψ, i.e., in BNF,

φ ::= p | ¬φ | φ ∨ φ | #φ | φUφ (2)

where φ is a formula, ¬, ∨, #, and U are the negation,
disjunction, next, and until operators, respectively.

One can also define operators other than the ones that
are used for constructing the grammar. Given the operators
negation and disjunction, the operators conjunction (∧),
implication (⇒), and equivalency (⇔) can be defined as
φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2), φ1 ⇒ φ2 = ¬φ1 ∨ φ2, and
φ1 ⇔ φ2 = (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1), respectively. Finally,
the operators eventually (3) and always (2) can be defined
as 3φ = >Uφ and 2φ = ¬3¬φ, respectively.

3) LTL Semantics: Given a transition system T S , if a run
σ on T S satisfies a formula φ at some state sj , this will be
denoted by (σ, j) � φ.

Let p be an atomic proposition, φ and ψ be any two
formulae in LTL, then the semantics of LTL are defined as

(σ, j) � p iff sj  p; (3)
(σ, j) � ¬φ iff (σ, j) 2 φ; (4)

(σ, j) � p ∨ q iff (σ, j) � p or (σ, j) � q; (5)
(σ, j) � #p iff (σ, j + 1) � p; (6)

(σ, j) � pUq iff ∃k ≥ j such that (σ, k) � q, (7)
and for all i, j ≤ i < k : (σ, k) � p.

Even though the above completely define the semantics, the
following operators are used for convenience:

(σ, j) � p ∧ q iff sj  p and sj  q; (8)
(σ, j) � 2p iff (σ, k) � p for all k ≥ j; (9)
(σ, j) � 3p iff ∃k ≥ j such that (σ, k) � p. (10)

Given a transition system T S and a run σ on T S , σ is
said to satisfy an LTL formula φ if and only if (σ, 0) � φ.

Definition II.6 (LTL Formula) An LTL formula on Π is a
sentence that consists of atomic propositions and operators
of LTL and obeys the grammar of LTL given by (2).
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Notice that every formula φ is a proposition for which
an evolution can be computed and denoted as πφ =
(s0[φ], s1[φ], . . . ), for a given run σ = (s0, s1, . . . ).

Definition II.7 (LTL Subformula) Given an LTL formula
φ, a subformula of φ is any LTL formula which is a strict
subsentence of φ that obeys the grammar of LTL.

Note that the formula φ is not a subformula of itself. Also
note that an atomic proposition has no subformula.

Definition II.8 (Height of an LTL Formula) The height
of an LTL formula φ is defined to be the largest number
n such that: (i) ψ1 is a subformula of φ; (ii) ψk is a
subformula of ψk−1 for all k ∈ {2, . . . , n}.

C. Incorporating LTL specifications in MLD systems

We start by introducing several definitions that take a
connective role between MLD systems, as in Section II-
A, and the transition system in LTL language described in
Section II-B. The following definition specifies the state of
the transition system at a given time.

Definition II.9 (Valuation Function) For a given run σ =
(s1, s2, . . . ), a valuation function s is a mapping from the
set of time instances (T or T ∞) to the set of states Q of the
transition system such that s(t) = si.

The valuation function is also used to denote the value of
an atomic proposition p ∈ Π at a given time t. We use
the shorthand notation s(t)[p] to denote the value of the
proposition p at time t.

Definition II.10 (Time Evolution of a Proposition)
Given a proposition p ∈ Π, its time evolution is given by

Pp = (P 0
p , P

1
p , . . . , P

T
p ) = (s(0)[p], s(1)[p], . . . , s(T )[p])

Similarly, we will use this notation for a general formula φ,
in which case we write Pφ to denote its time evolution.

Then, an MLD system, given as in (1), with an LTL
specification given by the formula φ with set of atomic
propositions Π = {p1, . . . , pm} can be written as

x(t+ 1) = Atx(t) +B1tu(t) +B2tδ(t) +B3tz(t),∀t ∈ T ;
y(t) = Ctx(t) +D1tu(t) +D2tδ(t) +D3tz(t),∀t ∈ T ;

subject to
E2tδ(t) + E3tz(t) ≤ E1tu(t) + E4tx(t) + E5t,∀t ∈ T ;
Ppi ∈ Fp(x,u, δ, z), ∀p ∈ Π;
Pφ ∈ Gφ(Pp1 , . . . ,Ppm);
P 0
φ = 1;

where the first constraint corresponds to the MLD constraint,
the second one constrains the atomic propositions according
to their definitions, the third one constrains the time evolution
of the proposition φ according to the time evolutions of the
atomic propositions, and the fourth one enforces that φ holds
True at the initial time. Along with the last condition, the
constraint sets Fp, p ∈ Π, and Gφ enforce that the given
formula is satisfied.

III. MODEL CHECKING AND OPTIMAL CONTROL OF
MLD SYSTEMS WITH LTL SPECIFICATIONS

In this section, we define two problems for MLD systems
with LTL specifications. As in [11], we impose the following
finite time horizon property: every run of the transition
system is such that the evolution of every atomic proposition
in the given set Π reaches a final value in finite time and
remains constant for all future time, i.e., for some T ′ ∈ Z,
each pi ∈ Π is such that s(t)[pi] = s(T ′)[pi] for all t > T ′.
That is, for each given LTL specification φ, we enforce the
specification ## . . .#2pss ∧ φ, which we denote by ψFH ,
where the next operator # appears T ′ times and pss is an
atomic proposition that is True if and only if x(t) = x(t−1)
and False otherwise.

Problem III.1 (Model Checking for MLDs with LTL)
Given an MLD system as in (1), an LTL formula φ defined
on Π, determine whether or not there exist a control input
u and an initial condition x(0) for which the time evolution
of the atomic propositions in Π satisfies the LTL formula
ψFH ∧φ while the dynamics given by (1) hold for all t ∈ T .

Problem III.1 is equivalent to checking the emptiness of
the initial condition and control input pair on finite horizon:

I := {(x(0),u) :
x(t+ 1) = Atx(t) +B1tu(t) +B2tδ(t) +B3tz(t), ∀t ∈ T ;
E2tδ(t) + E3tz(t) ≤ E1tu(t) + E4tx(t) + E5t, ∀t ∈ T ;
Ppi ∈ Fp(x,u, δ, z), ∀p ∈ Π;
Pφ ∈ Gφ(Pp1 , . . . ,Ppm); P 0

φ = 1.}

It answers the question of whether or not a given formula is
satisfiable by the given MLD system.

Let f(x,u) define the cost function.

Problem III.2 (Optimal Control of MLDs with LTL)
Given an MLD system as in (1), an LTL formula φ defined
on Π, and an initial condition x(0), find a control law
u such that the resulting time evolution of the atomic
propositions in Π satisfy the LTL formula ψFH ∧ φ and
the convex cost function f(x,u) is minimized while the
dynamics given by (1) hold for all t ∈ T .

Hence the problem is to solve,

minimize f(x,u)
subject to

x(t+ 1) = Atx(t) +B1tu(t) +B2tδ(t) +B3tz(t), ∀t ∈ T ;
E2tδ(t) + E3tz(t) ≤ E1tu(t) + E4tx(t) + E5t, ∀t ∈ T ;
Ppi ∈ Fp(x,u, δ, z), ∀p ∈ Π;
Pφ ∈ Gφ(P1, . . . ,Pm); P 0

φ = 1.

Notice that Problems III.1 and III.2 are quite similar
to each other, and can be thought as a feasibility and
optimization problem, respectively, for the same set of con-
straints. In other words, Problem III.2 seeks the solution with
minimum cost among all feasible solutions for Problem III.1.
To provide solutions to the problems, our approach is to
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represent the constraint sets Fp and Gφ as mixed-integer
linear constraints. In this case, Problem III.1 reduces to
checking the emptiness of a finite set of linear constraints
of continuous and discrete-valued variables, i.e., a MILP
feasibility problem, whereas Problem III.2 becomes an MIQP
given that f is convex quadratic.

IV. A NUMERICALLY TRACTABLE SOLUTION VIA
MILP/MIQP FORMULATION

A. Formulation of Atomic Propositions

This section is devoted to formulation of atomic proposi-
tions in a MILP framework. Examples of atomic propositions
for MLD systems are presented and the corresponding con-
straint sets Fp are constructed. These sets are defined such
that when Pp ∈ Fp holds then s(t)[p] = True if P tp = 1
and s(t)[p] = False if P tp = 0. We impose the following
restriction on these constraint sets.

Assumption IV.1 For each p ∈ Π, the set Fp(x,u, δ, z)
consists of a finite set of linear constraints over the variables
x, u, δ, and z possibly together with some other slack
variables.

All the propositions we introduce throughout this section sat-
isfy Assumption IV.1. Perhaps the most plausible proposition
is the one that indicates whether the state vector of the MLD
system is in a given polyhedral subset of the state space or
not. Let us define a polyhedral set as the intersection of a
finite number of halfspaces. A halfspace is defined as

H = {x ∈ Rn : a′x ≤ 1}, (11)

where a ∈ Rn is the vector normal to the hyperplane that
separates the state space in two halfspaces and one of them is
given by (11). We say that a halfspace is defined by a if a is
a vector normal to this halfspace. Let Hi, i ∈ {1, 2, . . . , k},
be halfspaces defined by ai ∈ Rn; and let θti ∈ {0, 1} for all
t ∈ T be binary variables indicating that the state belongs
to Hi, by assuming the value 1. Then, θti should satisfy

θti ≤ 1 + 1
M (1− a′x); θti ≥ 1

M (1− a′x) + ε; (12)

where M is a large enough constant and ε is a small number.
Then, along with 0 ≤ P t ≤ 1, the variables P t ∈ R for
t ∈ T should satisfy

P t ≤ θti i ∈ {1, . . . , k} , t ∈ T ;
P t ≥ 1 + (

∑n
i=1 θ

t
i − k) t ∈ T . (13)

Notice that P t = 1 if and only if the state vector is in the
polyhedral set ∩iHi and P t = 0 otherwise (with precision
ε on the bounday), and also that the set Fp is the set of Pi
satisfying (12) and (13).

B. Formulation of LTL Sentences

Given a formula φ, whose time evolution is given by Pφ =
(P 0
φ , . . . , P

T
φ ), the formula φ = ¬p with only one negation

operator, where p is an atomic proposition, the set Gφ can
be taken to be

Gφ(Pp) =
{
Pφ : P tφ = (1− P tp), t ∈ T

}
.

For all the other operators we present the corresponding
constraints on Pφ for the sake of brevity.

Binary conjunction was defined in (8). In the general case
of conjunction of pi for i = 1, . . . , k, i.e., φ =

∧k
i=1 pi, can

be modeled with one slack variable satisfying

P tφ ≤ P tpi , i ∈ {1, . . . , k} , t ∈ T ;
P tφ ≥

∑k
i=1 P

t
pi − (k − 1), t ∈ T .

Similar discussion applies for the binary disjunction de-
fined by (5), where the constraints for φ =

∨k
i=1 pi are

P tφ ≤
∑k
i=1 P

t
i , t ∈ T ;

P tφ ≥ P ti , i ∈ {1, . . . , k} , t ∈ T .

Consider the formula φ = #p, which was defined by
(6).The corresponding constraints are

P tφ = P t+1
p , t ∈ {0, . . . , T − 1} ; PTφ = PTp .

In the case of the formula φ = 3p with an eventually
operator defined by (10), the corresponding constraints are

P tφ ≤
∑T
τ=t P

τ
p t ∈ T ;

P tφ ≥ P τp τ ∈ {t, . . . , T} , t ∈ T .

In the case of the formula φ = 2p with an always operator
as defined in (9), the corresponding constraints are

P tφ ≤ P τp τ ∈ {t, . . . , T} , t ∈ T ;
P tφ ≥

∑T
τ=t P

τ
p − (T − t) t ∈ T .

For the until operator we define extra slack variables in
order to make the constraints linear in terms of the variables.
For the formula φ = pUq, the corresponding constraints are

αtj ≥ P jq +
∑j
τ=t P

τ
p − (j − t+ 1) j ∈ {t+ 1, . . . , T} ,

t ∈ {0, . . . , T − 1} ;
αtj ≤ P jq j ∈ {t+ 1, . . . , T} , t ∈ {0, . . . , T − 1} ;
αtj ≤ P τp τ ∈ {t, . . . , j} , j ∈ {t+ 1, . . . , T} ,

t ∈ {0, . . . , T − 1} ;
αtt = P tq t ∈ T ;
P tφ ≤

∑T
j=t αtj t ∈ T ;

P tφ ≥ αtj t ∈ T , j ∈ {t, . . . , T} ,

where αtj are defined for each t ∈ T , j ∈ {t, . . . , T}.
The algorithm for constructing sets Gφ for formulae of

finite arbitrary height is presented in Algorithm 1. This
algorithm decomposes a formula φ into formulae of height
one recursively to build Gφ. Since we consider formulae of
finite height, the algorithm terminates in finite time. Note
that the constraint set Gφ is composed of a finite collection
of inequalities that are linear in the decision variables and
the number of constraints is polynomial in the number of
operators in the formula φ. Moreover, all the intermediate
slack variables introduced to represent the subformulae of φ
and φ itself are continuous (not binary) variables. This makes
the solution method computationally more tractable.

Theorem IV.2 (Completeness of Algorithm 1) Given a
set of atomic propositions Π = {p1, . . . , pm} and an
LTL formula φ, let σ = (s0, s1, . . . , sT , sT , . . . ) such that
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Algorithm 1: Computation of set Gφ
1 k ← 1, Gφ = ∅.
2 while there exists a subformula ϕ of formula φ of
height one do

3 Define the variables P tψk
for all t ∈ {1, . . . , T}.

4 Construct the set Gϕ for ϕ which has only one
operator.

5 Add the constraints Pψk ∈ Gϕ into the set Gφ.
6 Update the formula φ by substituting the slack

proposition ψk instead of ϕ in the formula φ.
7 k ← k + 1.
8 end while

s(t)[pi] = True if P tpi = 1 and s(t)[pi] = False if P tpi = 0
if P tpi = 0 for all pi ∈ Π and for all t ∈ T . Let, also, Pφ
be such that Pφ ∈ Gφ(Pp1 , . . . ,Ppm) holds. Then, for any
t ∈ T , (σ, t) � φ if and only if P tφ = 1.

C. Model Checking using MILP Feasibility

Given a set of atomic propositions Π and an LTL formula
defined on Π, the problem of determining the existence of
a run σ for which (σ, 0) � ψFH ∧ φ holds can be posed
as a mixed integer linear feasibility check. This is possible
by constructing the sets Fpi for all pi ∈ Π using similar
methods to the ones presented in Section IV-A and Gφ using
Algorithm 1. Then, it is left to check whether the set I is
empty or not. Any feasible solution in this set is indeed an
execution of the MLD system satisfying the LTL formula φ.

Theorem IV.3 (Decidability) Suppose Assumption IV.1
holds. Then, given an LTL formula φ defined on Π, solving
Problem III.1 is decidable.

MILP feasibility checks are in general NP-complete, but
effective algorithms exists for such purposes mainly relying
on branch and bound methods [14]. Moreover, several off-
the-shelf commercial optimization solvers are able to handle
this problem for fairly large state space dimensions. For the
examples given in this section, we employ the commercial
solver CPLEX [1].

D. An illustrative example

Let us consider the following discrete-time discontinuous
system with input and state constraints.

x1(t+ 1) =

{
x1(t) + x3(t) + 0.5u1(t) if x1(t) ≥ 1
x1(t) + 0.5x3(t) + 0.5u1(t) if x1(t) < 1,

x2(t+ 1) = x2(t) + x4(t) + 0.5u2(t),
x3(t+ 1) = x3(t) + u1(t),
x4(t+ 1) = x4(t) + u2(t),
y1(t) = x1(t), y2(t) = x2(t),

with |u1| ≤ 1, |u2| ≤ 1, |x3| ≤ 1, and |x4| ≤ 1.
This system corresponds to the discretization of a

planar system with decoupled, double integrator dynam-
ics in each orthogonal direction, which is typical in
robotic systems. Let us consider three atomic propo-
sitions all of which correspond to a region in the
state space. Let R1 be the region which is the convex
hull of {(1.5, 10.5), (2.5, 10.5), (1.5, 12.5), (2.5, 12.5)} in
the two dimensional x1 − x2 plane. Similarly, let R2

and R3 be the rectangular regions which are the con-
vex hulls of (1.2, 1.5), (1.3, 1.5), (1.2, 2.5), (1.3, 2.5) and
(0.5, 5), (6, 5), (0.5, 7.5), (6, 7.5) respectively. Let us denote
the statement that indicates that the dynamical system is in
region R1 by p1 and let us also define p2 and p3 in the same
way for R2 and R3. The LTL specification we require to be
true in this example is that both R1 and R2 will eventually
be reached and R3 will always be avoided. This specification
can be written as the following LTL formula

φ = (3p1) ∧ (3p2) ∧ (2¬p3) .

Let us first construct the corresponding MLD system con-
sidering the definitions presented in Section II-A. Consider
the piecewise linear function (14). Following the method in
[2], let us define a binary variable δ(t) which will be zero if
x1(t) ≥ 1 and one if x1(t) < 1. Hence δ(t) has to satisfy

δ(t) ≤ 1− (1/M)(x1(t)− 1), t ∈ T ;
δ(t) ≥ −(1/M)(x1(t)− 1), t ∈ T ;

where M is a big enough number. Let us define another slack
variable z(t) which will be equal to δ(t)x3(t). This equality
can be obtained using the following linear constraints [2]

z(t) ≤Mδ(t), z(t) ≥Mδ(t), t ∈ T ;
z(t) ≤ x3(t) +M(1− δ(t)), t ∈ T ;
z(t) ≥ x3(t)−M(1− δ(t)), t ∈ T .

Then, the dynamics for the state x1 of the system with the
variable z become

x1(t+ 1) = x1(t)− 0.5z(t) + x3(t) + 0.5u1(t)

with |u1| ≤ 1, |u2| ≤ 1, |x3| ≤ 1, and |x4| ≤ 1.
Next step is to construct the constraints corresponding to

the atomic propositions, i.e., the sets F1, F2, and F3. These
sets are the same as the ones defined in Section IV-A, we
will omit rewriting them here.

Let us introduce the binary variable vectors Pp1 , Pp2 ,
and Pp3 and employ Algorithm 1 to construct the set
G(Pp1 ,Pp2 ,Pp3). In the first iteration we start with the one
of the subformulae with only one operator, say ϕ = 3p1. Let
us denote it as ψ1. Theset of linear constraints is as follows

P tψ1
≤
∑T
τ=t P

τ
p1 t ∈ T ;

P tψ1
≥ P τp1 τ ∈ {t, . . . , T} , t ∈ T . (14)

Now substituting ψ1 into the formula φ we have φ = ψ1 ∧
(3p2)∧ (2¬p3). Now we continue with another subformula
of height one. Let us pick ϕ = 3p2 and denote it as ψ2.
Then the resulting linear constraints will be

P tψ2
≤
∑T
τ=t P

τ
p2 t ∈ T ;

P tψ2
≥ P τp2 τ ∈ {t, . . . , T} , t ∈ T . (15)

Then after the second iteration the formula becomes φ =
ψ1 ∧ψ2 ∧ (2¬p3). For the third iteration let us consider the
height one subformula ϕ = ¬p3 which will be denoted by
ψ3. Then the linear constraints for this subformula is

P tφ3
≤ P τp3 τ ∈ {t, . . . , T} , t ∈ T ;

P tψ3
≥
∑T
τ=t P

τ
p3 − (T − t) t ∈ T . (16)
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Refining the formula we have φ = ψ1 ∧ψ2 ∧ (2ψ3). For the
fourth iteration of the algorithm we consider the only height
one formula ϕ = 2ψ3 which will be denoted by ψ4. In this
case the linear constraints are

P tψ4
= (1− P tp), t ∈ T . (17)

Then the formula becomes φ = ψ1 ∧ ψ2 ∧ ψ4 after further
refinement. The final height one formula is the φ itself which
leads to the following linear constraints

P tφ ≤ P tψi , i = 1, 2, 4, t ∈ T ;
P tφ ≥

∑
i∈{1,2,4} P

t
ψi
− (3− 1), t ∈ T (18)

Note that P tρ ∈ R, 0 ≤ P tρ ≤ 1, for ρ = ψ1, ψ2, ψ3, ψ4, φ.
Notice that the Equations (14)-(18) defines the constraint
Pφ ∈ G(Pp1 ,Pp2 ,Pp3). Now a final constraint is to assert
that the formula φ is true at the initial time, i.e. P 0

φ = 1.
Our model checking algorithm was executed on a com-

puter with two 2.66 GHz processors and 4GB RAM. The
computation time to find a feasible solution was less than
one second. Figure 1 depicts the resulting solution from
x1(0) = x2(0) = 0, which was further imposed as a
constraint. The solution reaches the R2 first and then reaches
R1 while tightly avoiding R3. Now, we add the cost function
f(x,u) =

∑T
t=1

(
u2

1(t) + u2
2(t)

)
penalizing control effort.

To solve the resulting MIQP problem, we employed AMPL-
CPLEX. The resulting optimal solution satisfying the LTL
specification is shown in Figure 2. Compared with the
solution in Figure 1, the optimal solution has a smaller
overshoot to the left when avoiding R3.
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Fig. 1. Feasible solution generated by the model checker. Regions R1

and R2 are shown in green where as the region R3 is shown in red. The
discrete-time trajectory of the MLD systems is shown by (blue) dots.

To solve the resulting MIQP problem, we have employed
AMPL-CPLEX. The resulting optimal control strategy is
shown in Figure 2.

V. CONCLUSIONS

This paper presented novel MILP/MIQP based joint model
checking and control design for MLD systems with LTL
specifications. The algorithms presented are easily imple-
mentable using off-the-shelf MILP/MIQP solvers. We have
shown that the model checking problem for MLD systems
with LTL specifications considered is decidable. By means
of an example, we illustrated the applicability of our results.
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Fig. 2. Optimal control strategy in y1 − y2 plane. Dots correspond to the
trajectory of the discrete-time MLD system.
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