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Abstract— In this contribution we investigate the problem of
simultaneous observer based sensor diagnosis and speed esti-
mation of Unmanned Aerial Vehicle (UAV). The main features
lie in the use of a useful bank of reduced order observers
to detect and isolate faulty sensors and in the same time to
provide unbiased speed estimation of UAV from accelerometers.
From a structural analysis, we provide all trajectories for which
faults would be detected and estimated. The theoretical result
is summarized into the stability analysis, established through
the Lyapunov approach and Barbalat lemma. The existence
condition is expressed in terms of physical variables of the UAV.
Performances and easiness of implementation of the proposed
technique are shown through a quadrotor UAV.

I. INTRODUCTION

UAV and more particularly mini-UAV must be as light as
possible for technological reasons but also for low cost and
low energy consumption. In fact, the weight of the drone can
reduce its performances considerably. It is therefore rather
natural to use a state estimator to replace possibly one or
several sensors. Observers are usually used to estimate the
non measured state components for output feedback control
or to generate residual signals for fault diagnosis. During
the last decade, tremendous research activities focused on
structural, modelling and control design for UAV (see for
example [1], [13], [15]). However, very few results were
established for the state estimation. Among the recent works
on this subject, we mention the work of [1], the authors
propose a velocities estimator for a tracking control of
an under-actuated quadrotor UAV using only linear and
angular positions. In [2] and [3], sliding-mode observers
based control are proposed to estimate the effect of external
perturbations using measurement of positions and yaw angle.
Observer-based control for visual servo control of UAV has
been proposed for example in [4] using image provided by a
camera for the estimation of the velocity. Extended Kalman
Filter is used in [8] to estimate the state of a moving object
detected by a UAV. The disadvantage of this method is
its only local convergence. All the results cited above are
obtained using linear and angular positions.

In [9], the authors propose a nice technique to estimate the
speed of a quadrotor UAV from acceleration measurements,
provided by Inertial Measurement Units. The approach is
based on an adaptive observer technique using cascade
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nonlinear filters that leads, unfortunately, to a high order ob-
server and therefore, the computational requirements increase
considerably for on-line control purpose. More precisely, the
observer is composed with two matrix differential equations
in cascade with two nonlinear filters. In [12] a simple
time-varying reduced-order observer has been presented to
estimate the linear velocity of an UAV using full or partial
acceleration measurements.

For the use of observers in fault diagnosis, we can mention
for example [5], in which two cascaded sliding mode ob-
servers are proposed first to estimate the disturbances (effect
of wind) and second to reconstruct actuators faults. In [6],
a linear input decoupled functional observer is proposed to
estimate actuators failures of UAV. The proposed method is
based on the linearization of the model around an operating
point. A variable structure observer is performed in [7]
for actuator bias reconstruction of UAV without using a
linearization. In [18], Piercy used detection filter residuals
for the detection and identification of sensor failures for
discrete time linear systems. The simultaneous multiplicative
actuator and sensor fault estimation using linear observer
and adaptive rules for the fault estimation is related in [11].
The analytical redundancy approach has been applied to the
sensor failures detection and identification for F8 aircraft and
the robot navigation problem in [14] and [16] respectivelly.

In [19] and [20] the authors proposed simultaneous state
and sensor fault estimation for nonlinear and bilinear sys-
tems. Motivated by the previous works, our approach is based
on simultaneous state and sensor fault estimation through
a straightforward bank of reduced-order time-varying ob-
servers without using the singular state-space framework.
Asymptotic stability conditions that are reduced to simple
and checkable one are provided.

II. UAV MODELLING

Several works deal with the quadrotor modelling (see for
example [13] and [15]). In this section we recall a sketch
of modelling as well as the notations are introduced. In
order to model the four-rotor rotorcraft dynamics two frames
are defined i .e. Ri(O,

−→
E 1,
−→
E 2,
−→
E 3) is an inertial frame

attached to the earth andRb(G,−→e 1,
−→e 2,
−→e 3) is a body fixed

frame attached to its center of mass (see fig. 1).
In order to obtain the body fixed frameRb from the inertial

one Ri three rotations are used: the Cardan angles [17]. The
first one sequentially rotates about ~E3 axis (Ψ yaw) resulting
in an intermediate second frame ( ~E′1, ~E

′
2,
~E′3 = ~E3), then

about ~E′2 axis (θ pitch) resulting an intermediate third frame
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Fig. 1. Quadrotor model

( ~E′′1 = ~e1, ~E
′′
2 = ~E′2,

~E′′3 ) and finally a rotation around ~e1

(Φ roll) leads to the body fixed frame (see fig. 2).
Now let XRi

and XRb
be the coordinates of a three

dimensional vector X projected onto the inertial frame Ri
and the body frame Rb respectively and R be the matrix
attitude composed by the three rotations Φ, θ and ψ. Then
XRi

and XRb
are related by the following relation

XRi
= RXRb

or XRb
= RTXRi

with

R =

 cθcΨ sΦsθcΨ − cΦsΨ cΦsθcΨ + sΦsΨ

cθsΨ sΦsθsΨ + cΦcΨ cΦsθsΨ − sΦcΨ
−sθ sΦcθ cΦcθ

 (1)

where c. = cos(.) and s. = sin(.). Then, from the angles
choice, the vector of angular velocity ~ω can be written as

~ω = Ψ̇ ~E3 + θ̇ ~E′2 + Φ̇~e1 (2)
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Fig. 2. Cardan angles

Thanks to relation (2) and by projecting all vectors onto
the body frame, the time derivative of the Cardan angles
are related to the angular velocity −→ω = (p, q, r)T by the
following relation

Φ̇ = p+ q tan θ sin Φ + r tan θ cos Φ
θ̇ = q cos Φ− r sin Φ

ψ̇ = q
sin Φ
cos θ

+ r
cos Φ
cos θ

(3)

The UAV dynamical model can be deduced from the
rotation dynamic Newton-Euler law (4) and the translation
dynamic Newton-Euler law (5)(

dI−→ω
dt

)
Rb

+−→ω ∧ (I−→ω ) =
−→
M (4)

m

(
d−→v G

dt

)
Rb

+−→ω ∧ (m−→v G) =
−→
F (5)

where I is the inertia matrix and −→ω = (p, q, r)T is the
angular velocity both expressed in the body fixed frame.−→
M represents the torque derived from the differential rotors
thrusts. m is the vehicle mass, −→v G = (u, v, w)T is the center
of mass velocity with respect to the inertial frame Ri and
projected onto the body fixed frame.

−→
F is the sum of the

four rotor thrust
−→
T = −T−→e 3 and the gravity

−→
P = mg

−→
E 3.

In order to express the gravity with respect to the body fixed
frame, the attitude matrix R must be used (eq. (1)).

From the rotation dynamic Newton-Euler law (4) the
dynamics of the angular velocity projected onto Rb is given
by 

ṗ = −Izz − Iyy
Ixx

qr +
τΦ
Ixx

q̇ = −Ixx − Izz
Iyy

pr +
τθ
Iyy

ṙ = −Iyy − Ixx
Izz

pq +
τψ
Izz

(6)

where Ixx , Iyy and Izz are the inertia matrix terms expressed
in the principal inertia axis, τΦ , τθ and τψ represent the
control torques due to the differential rotors thrusts. Using
the center of mass dynamics equation (5) and the attitude
matrix (1), the translation dynamics with respect to the body
frame is

u̇ = −qw + rv − g sin θ
v̇ = −ru+ pw + g sin Φ cos θ

ẇ = −pv + qu+ g cos Φ cos θ − T

m

(7)

where T is the total thrust which represents a control input.
The dynamical model of the four-rotor rotorcraft is then
given by equations (3), (6) and (7).

III. PROBLEM STATEMENT
Since the UAV is equiped only with an Inertial Measure-

ment Unit it is assumed that the measured variables are the
Cardan angles η = (Φ , θ , ψ)T , the angular velocity −→ω and
the acceleration of the center of mass (u̇, v̇, ẇ)T given by
the sensors embedded in the four-rotor rotorcraft. The states
of equations (6) and (3) are then measured.
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The aim of this contribution is the synthesis of a bank
of observers or state and sensor fault observer and residual
generator (SFORG) whose tasks consist
• in estimating the angular velocity of the quadrotor,
• in generating residuals to detect the accelerometers

faults,
• and in locating and reconstructing these faults.
Each SFORG is based on the model (7) (thus of dimension

three) and uses two measurements of acceleration for the
speed estimation and the residual generation. If the sensors
measuring these two accelerations are free fault, then the
residues provided by this SFORG are null and the state
estimation errors is asymptotically stable. Then the third
acceleration measurement is used to reconstruct the fault
sensor. In the case of one or two sensors are faulty, the
residues of this SFORG are different from zero and the
estimation errors are not asymptotically stable.

Let x = (u, v, w)T be the angular velocity to be estimated.
We consider the model of system (7). Taking into account
the measured variables, the system (7) can be rewritten as

ẋ(t) = A(t)x(t) + b(t)
y(t) = ẋ(t) + f(t) (8)

with

A(t) =

 0 r −q
−r 0 p
q −p 0


and

b(t) =

 −g sin θ
g sin Φ cos θ

g cos Φ cos θ − T
m


where f(t) =

[
f1(t) f2(t) f3(t)

]T
is the time-varying

fault vector. We assume that at every time t, only one
sensor is faulty. In this paper, we consider only additive
time varying faults occuring abruptly or incipiently. The class
of considered faults includes bias, drifts and possibly the
variations of the sensor gain (see [19] and [21]).

IV. OBSERVER DESIGN

The proposed state and sensor fault observer and residual
generator (SFORG) has the following form for i = 1, 2, 3

(Oi)


˙̂xi(t) = Ni(t)x̂i(t) +Mi(t)b(t) +Ki(t)Y i(t)
f̂i(t) = Y

i
(t)− Ci(t) ˙̂xi(t)

ri(t) = Qi(t) ˙̂xi(t) + Pi(t)Y i(t)
(9)

with

Y i(t) = Ciy(t) = Ciẋ+ f
i
(t)

Y
i
(t) = Ciy(t) = Ciẋ+ fi(t)

and f
1
(t) =

[
f2(t) f3(t)

]T
, f

2
(t) =

[
f1(t) f3(t)

]T
and

f
3
(t) =

[
f1(t) f2(t)

]T

C1 =
[
0 1 0
0 0 1

]
C1 =

[
1 0 0

]
,

C2 =
[
1 0 0
0 0 1

]
C2 =

[
0 1 0

]
,

C3 =
[
1 0 0
0 1 0

]
C3 =

[
0 0 1

]
,

where x̂i(t), f̂i(t) are the estimates of the state x(t) and
component of the sensor fault vector fi(t) respectively and
ri(t) is the ith residual.

Assumption 1: −→ω (t), −̇→ω (t), and −̈→ω (t) are bounded.

Remark 1: It is easy to see that if assumption (1) is
fullfilled then matrices A, Ȧ and Ä are bounded. �

Assumption 2: At least one component of the vector −→ω ∧
−̇→ω does not go to zero at infinity .

Remark 2: Let ~ω = ω~u with ‖~u‖ = 1. Then ~̇u · ~u = 0
and ~̇ω ∧ ~ω = ω2~u ∧ ~̇u. If follows that the assumption 2
means that ~̇u 6= 0, that is the direction of ~ω is varying. �

Lemma 1: Assume that the previous assumptions hold and
the matrices Ni(t), Mi(t), Ki(t), Qi and Pi are chosen as

Ki(t) = Li + γiA
T (t)CTi (10a)

Ni(t) = A(t)−Ki(t)CiA(t) (10b)
Mi(t) = I −Ki(t)Ci (10c)

Qi = −βiCi (10d)
Pi = βiI (10e)

with

L1(t) =

−q/p −r/p
1 0
0 1

 , (11a)

L2(t) =

 1 0
−p/q −r/q

0 1

 , (11b)

L3(t) =

 1 0
0 1
−p/r −q/r

 (11c)

where γi and βi are strictly positive tuning parameters then
the following statements hold.

1) If f
i
(t) ≡ 0 then the dynamics of the observation error

εi = x − x̂i is asymptoticaly stable at the origin and
ri(t)→ 0 and f̂i(t)→ fi(t) as t→∞.

2) If f
i
(t) 6= 0 i.e. fj(t) 6= 0 for j 6= i and fj(t) 6= σ̇j

with σ solution of σ̇(t) = A(t)σ(t) then ri(t) 6= 0 and
ri(t) 6→ 0 (σj is the jth component of σ). �
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Proof: Using equations (8) and (9) the observation error
εi = x − x̂i dynamics, the ith residual ri(t) and the sensor
fault estimation error εif (t) = fi(t)− f̂i(t) can be written as

ε̇i(t) = Niε
i(t) + (A−Ni −KiCiA)x(t) (12)

+ (I −Mi −KiCi)b(t)−
(
Li + γiA

TCTi
)
f
i
(t)

ri(t) = Pi

(
Ciε̇

i(t) + f
i
(t)
)

(13)

εif (t) = −Ciε̇i(t) (14)

It is easy to see that the unbiasedness conditions

A−Ni −KiCiA = 0
I −Mi −KiCi = 0

are satisfied if matrices Ni(t), Mi(t) and Ki(t) are chosen
as in (10).

Using the expression of Ki(t), one obtains

Ni(t) = A(t)− Li(t)CiA(t)− γiAT (t)CTi CiA(t) (15)

Now, choosing Li as in (11) yields A(t)−Li(t)CiA(t) = 0
and finally the observation error becomes

ε̇i(t) = −γiAT (t)CTi CiA(t)εi(t)−
(
Li + γiA

TCTi
)
f
i
(t)
(16)

In what follows, the proof is made in two steps. In the first
step, we show that if f

i
(t) ≡ 0 then the observation error

εi = x− x̂i dynamics is asymptoticaly stable, the ith residual
ri(t) and the sensor fault estimation error εif (t) converge to
0.

First consider the case f
i
(t) ≡ 0. Then the observation

error becomes

ε̇i(t) = −γiAT (t)CTi CiA(t)εi(t) (17)

Consider the following Lyapunov function candidate
V (εi) = εiT εi. The time derivative of V along the obser-
vation error dynamics (16) leads to

V̇ = −2γi‖CiAεi‖2 ≤ 0 (18)

Since V (εi(t)) is positive definite and non-increasing,
V (εi(t)) converges asymptotically to some limit value i .e.
V (εi(t)) → l as t → ∞ where l is finite. Then εi(t) is
bounded.

Now, we use Barbalat’s lemma in order to prove that
V̇ (t) → 0. The time derivative of V̇ along equation (16)
gives

V̈ (εi(t)) = 4γ2
i ε
iTATCTi CiAA

TCTi CiAε
i (19)

− 4γiεiT ȦTCTi CiAε
i.

Since εi(t) , A(t) , Ȧ(t) are bounded then V̈ is bounded,
which implies that V̇ (εi(t)) is uniformly continuous. Now
using Barbalat’s lemma it follows that V̇ (εi(t)) → 0 as
t → ∞. Then, from relation (18) CiA(t)εi(t) → 0 as
t→∞.

In the following, we have to prove that εi(t) → 0 as
t → ∞ by using again the Babalat’s lemma. To this end,

we compute the time derivatives of the function ϕ(t) =
CiA(t)εi(t). A simple calculation gives

ϕ̇(t) = (CiȦ− γiCiAATCTi CiA)εi

It is easy to show that if Assumption (1) holds and if
εi(t) is bounded, then ϕ̈(t) is bounded which implies that
ϕ̇(t) is uniformly continuous. Since ϕ(t) → 0 and ϕ̇(t) is
uniformly continuous it follows from Barbalat’s lemma that
ϕ̇(t) = (CiȦ − γCiAATCTi CiA)εi → 0 as t → ∞. Now
since ϕ̇(t)→ 0 and CiAεi → 0 then CiȦεi → 0.

Now, without loss of generality set i = 1 then the two
conditions CiAεi → 0 and CiȦεi → 0 can be written as{

r(t)ε12(t)− q(t)ε13(t) → 0
−r(t)ε11(t) + p(t)ε13(t) → 0 (20)

and {
ṙ(t)ε12(t)− q̇(t)ε13(t) → 0
−ṙ(t)ε11(t) + ṗ(t)ε13(t) → 0 (21)

where εij is the jth component of the observation error εi.
Using the first relations from (20) and (21) it is easy to see
that (q(t)ṙ(t)−q̇(t)r(t))ε13(t)→ 0. Suppose that the function
q(t)ṙ(t)−q̇(t)r(t) (the first component of vector−→ω ∧−̇→ω ) does
not go to zero at the inifinity, then ε13 → 0. If r(t)→ 0, then
ṙ(t)→ 0 as ṙ(t) is uniformly continuous which contradicts
assumption (2) since q(t)ṙ(t)− q̇(t)r(t) does not go to zero
at the infinity. Notice that in the last expression q and q̇ are
bounded. Using ε13(t)→ 0, from relation (20), it is obvious
that ε11(t) → 0 and ε12(t) → 0. The same reasoning can be
used with the second component of the vector −→ω ∧−̇→ω which
proves the asymptotical stability of the observation error. The
same approach can be easily applied for the SFORG O2 and
O3. Now using relation (16), the residual and the sensor fault
observation error can be written as

ri(t) = −βiγiCiAT (t)CTi CiA(t)εi(t) (22)
εif (t) = γiCiA

T (t)CTi CiA(t)εi(t) (23)

Thanks to relations (22) and (23), it is easy to see that if
f
i
(t) ≡ 0 then εif → 0 and ri → 0 since εi → 0. This ends

the first step of the proof.
Now consider the case f

i
(t) 6= 0 or equivalently at least

one of fj 6= 0 for j 6= i. First, one can see that εi(t) 6→ 0
and the residual can be written as

ri(t) = Si(t)εi(t) + Ti(t)f
i
(t) (24)

with Si = −γiβiCiAT (t)CTi CiA(t) and Ti = −βiCi(Li +
γiA

T (t)CTi ) + βiI = −βiγiCiAT (t)CTi which lead to

S1 = −γ1β1p

[
−q p 0
−r 0 p

]
, S2 = −γ2β2q

[
q −p 0
0 −r q

]
,

S3 = −γ3β3r

[
r 0 −p
0 r −q

]
, T1 = −γ1β1

[
0 −p
p 0

]
, T2 =

−γ2β2

[
0 q
−q 0

]
and T3 = −γ3β3

[
0 −r
r 0

]
. Assume that

there exist
(
f
i

p(t) 6= 0, εip(t)
)

such that ri(t) = Si(t)εip(t)+

Ti(t)f
i

p(t) = 0 then

f
i

p(t) = −T−1
i (t)Si(t)εip(t) (25)
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Inserting (25) in (16) yields

ε̇ip(t) = A(t)εip(t) (26)

By developing relation (25) for i = 1 to 3 we can
characterize all the non detectable sensor failures fpk which
verify

fpk = σ̇k

such that σ is solution of (26) and σk is the kth component
of σ. More precisely, if there exist fj(t) 6= 0 for j 6= i
and fj(t) 6= σ̇j with σ solution of σ̇(t) = A(t)σ(t) then
ri(t) 6= 0 and ri(t) 6→ 0. This ends the proof.

Remark 3: The possibility that a sensor fault is of the
form fpk = σ̇k with σ solution of σ̇(t) = A(t)σ(t) is rather
not very probable. We can thus detect, isolate and identify
the majority of time varying sensor fault. �

Remark 4: In the case of a single sensor failure fi, the
observer (Oi) gives an estimation of the state and the fault
and the residual ri vanishes to 0. In addition the other
residuals are different from zero. �

Remark 5: Our approach can detect, isolate, identify and
estimate the fault in the case of single sensor failure. In case
where two or three sensors are failing, we can only detect
the presence of failure because all the residues are different
from and do not converge to zero. �

V. NUMERICAL SIMULATION

In this section, we applied our approach to design a bank
of state and sensor fault observer and residual generator for
an UAV. The simulations are performed with the following
parameters ([9]) m = 2.5 kg, Ixx = 224931 10−7 kg.m2,
Iyy = 222611 10−7 kg.m2 and Izz = 325130 10−7 kg.m2.

We assume that the sensor fault signals are f1(t) ≡ 0,
f2(t) ≡ 0 and f3(t) = H(t − 2.5) (0.6 + sin(20πt+ 1))
where H(.) is the Heaviside function.

The following figures represent the state observation errors
(fig. 3 to fig. 5) for the SFORG O2 and O3, the residual
signals r2(t) and r3(t) (fig. 6 and fig. 7) and the sensor fault
signal f3(t) and its estimation f̂3(t) (fig. 8).
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Fig. 3. Observation errors ε2
1(t) and ε3

1(t).
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Fig. 4. Observation errors ε2
2(t) and ε3

2(t).
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Fig. 5. Observation errors ε2
3(t) and ε3

3(t).
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Fig. 6. Residual signals r2(t).
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Fig. 7. Residual signals r3(t).

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

20

25

time [s]

 

Fig. 8. Sensor fault signal f3(t) and its estimation f̂3(t).

One can see that all the observation errors (fig. 3 to fig.
5) of the SFORG O3 (solid lines) are asymptotically stable
contrary to those given by the SFORG O2 (dashed lines).
It can be noticed that the residual signals r3(t) (fig. 7) are
asymptotically stable while r2(t) (fig. 6) are sensitive to the
sensor fault signal f3(t). Finally, it is shown in fig. 8 that
the reconstruction of the sensor fault signal is satisfactory.

VI. CONCLUSION

In this note we addressed the problem of speed estimation
of UAV under a sensor diagnosis procedure. This is based
on a bank of reduced order estimators to simultaneously
isolate/ estimate faults as well as the speed of the UAV from
accelerometers. The main contributions concern the stability
analysis of the observation errors and the fact of highlighting
all trajectories of faults which can be detected. Simulation
results show effectiveness of the proposed approach.
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