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Abstract— The dynamics of exploration vs exploitation deci-
sions are explored in the context of robotic search problems.
Building on prior work on robotic search together with our
own work on reactive control laws for potential field mapping,
we propose a new set of search protocols for teams of sensor-
enabled mobile robots. The focus is on collaborative strategies
for the search of potential fields that are possibly time varying.
We pose the problem of quickly finding regions where the
potential achieves or exceeds a certain threshold. The search
protocol has two distinct components. In an “exploration
phase”, agents execute either a randomized or structured
search, seeking places where the field achieves or exceeds the
prescribed threshold. Once a threshold point is reached, the
“exploitation” component is initialized and the agents deploy so
as to rapidly map the evolving isoline associated with the given
value of the field. Conservative strategies will emphasize refining
the detailed knowledge of the field in a small neighborhood
of the isoline, while aggressive strategies will emphasize wide-
ranging exploration of neighboring territory. The main decision
problem under study involves finding the optimally aggressive
exploration strategy. Additionally, the problem of the allocation
of the agents between “exploration” and “exploitation” is
considered. A performance metric is developed to compare the
proposed methods with standard approaches such as random
search and distributed raster scans.

I. INTRODUCTION

In various forms, studies of optimal search strategies have
a long history. Formal search methods have been developed
and incorporated into standard texts and monographs in
engineering and computer science under subject headings
such as heuristic search, branch-and-bound search, depth-
first search, and so forth. Recently, a great deal of research
has been focused on algorithms for distributed exploration
by multiple autonomous vehicles [1], [2], [3]. The goal
is to develop distributed control laws which are verifiably
correct while allowing the closed-loop behavior of the system
to depend on only local loop-closure and asynchronous
operation of each vehicle. The present paper is part of a
larger study of the dynamics of decision making in teams
of agents that may include both humans and autonomous
robots. A central focus is on operational decisions regarding
whether to emphasize breadth or depth and how each agent’s
decisions affect the overall performance of the team.

Several aspects of this research set it apart from much of
the literature to date dealing with robotic search. An impor-
tant point is that we are studying decisions that are localized
in both space and time. Each agent in the team problems
we study will operate based on information acquired both
from on-board sensors as well as from communication with
other agents on the team. Agents will also change behavior
depending on how they perceive they are contributing to the
goals of the search.
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Binary decisions are made by all levels of life forms
– from bacteria that undergo rolling or tumbling motions
based on chemotaxis [4] to humans where a growing body
of literature seeks to understand the dependence of simple
decisions on the neurodynamics of the brain [5]. Similarly
in our problem formulation, a key decision that each agent
must take at each time step is whether to examine an area
or object of interest more closely or to go off to search
unexplored territory. This is the so called “exploration”
versus “exploitation” strategy trade-off. We shall study this
choice using an information based utility metric. Although,
inspired by the classical Shanon information theory, our
present treatment of information is aimed at the specifics
of the robotic search.

With the notion of function complexity developed in Sec.
II, we are able to define the information content of an
unknown environment in terms of what is known about
its structure. We show how in this context a conceptual
analog of mutual information can be applied to quantify the
dynamics and the performance of the search process. Sec. III
establishes the ability of an agent to discern between high
and low information yield as a basis of the exploration versus
exploitation decision.

We test our approach in a problem that has been a subject
of extensive research in the last few years, a search of
potential fields [6], [7], [3]. Building on our previous work
on a reactive control law for level sets mapping [8], we are
able to develop simple search strategies that enable a team of
robotic agents to identify areas in which the field intensity
exceeds a predefined threshold. Sec. IV shows the results
of the explore-exploit strategy, and demonstrates the benefits
of using our information metric to evaluate different search
strategies.

II. MATHEMATICAL MODELS FOR INFORMATION-BASED
SEARCH

We assume that for the problems being studied an un-
known environment can be abstracted by a time dependent
map f : Rm × (0, τ ] → Rn, on some compact and simply-
connected domain X ⊂ Rm, which is the area of interest.
Although, in the current work we will look at scalar potential
fields on the plane, that is m = 2 and n = 1, the notions
developed in this paper can be easily extended to the general
setup.

In a search process, a sensor-enabled agent accumulates
information about the unknown environment by collecting
multiple measurements in the domain of interest. The com-
mon thread in the search strategies being investigated is that
members of a team of search agents must make decisions
about where and at what level of detail to conduct the
search. Assuming that the agents have some incentive to
minimize time-to-complete, formal methods are needed to
assess speed-versus-accuracy trade-offs. Our goal then is to
define metrics in terms of which it is possible to make
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statements about how fast a particular search strategy is
yielding new information.

A. The complexity of functions
To develop the information based approach to the search

problem, we start by defining the concept of function com-
plexity. We can think of a function f : X → Y as
a communication channel that provides information in the
range Y about the structure of the domain X . We can then
think of the complexity of f as some measure of how well
f “informs” Y about X .

Suppose X admits a measure µ which is nonsingular
with respect to Lebesgue measure and µ(X) <∞. Suppose
further that ∆ = {δj : 1 ≤ j ≤ m} is a finite partition of Y .
Then, the domain X can be partitioned into the connected
components of {f−1(δj)}, that is:

V(∆) = cc{f−1(δj) : 1 ≤ j ≤ m}

where for any set S ⊂ R2, cc{S} denotes the set of
connected components of S.

The resulting domain partition expressed as V(∆) = {Vi :
1 ≤ i ≤ n}, has cardinality satisfying n ≥ m. Through its
structure, we define the complexity of f with respect to ∆
as

C(f,∆) = H(V) := −
n∑
j=1

µ(Vi)
µ(X)

log2

µ(Vi)
µ(X)

,

where H(V) is defined as the entropy of the domain partition.
Defined in this way, the entropy of the domain partition,

H(V), resembles Shannon’s information theoretic definition
of entropy. To pursue the analogy, H(V) resembles the
entropy of a random process which has as events the cells
in the partition whose probability of occurrence is equal to
the normalized Lebesgue measure.

The properties of the function complexity are a direct
consequence of this analogy and are as follows:

1) If Y contains a single element (i.e. if f is a constant),
then C(f,∆) = 0.

2) If all elements Vi in the domain partition have identical
measure µ(Vi), then C(f,∆) = log2 n.

3) If µ(Vi) 6= µ(Vj) for some pair of cells Vi, Vj ∈ V ,
then C(f,∆) < log2 n.

It is less straightforward to quantify the complexity of f
if either Y or the measure of X are infinite. These cases can
be treated by making problem-specific assumptions, but a
detailed discussion is beyond the scope of this paper. Instead
we show how the notion of complexity applies to scalar
potential fields. There, given a range partition ∆, the domain
will be partitioned into the connected components of the
level sets. For example, if S(r), S : R2 → R is a particular
potential function bounded by Ssup = sup{S(r : r ∈ X)}
and Sinf = inf{S(r) : r ∈ X)}, we can chose a range
partition {sj}, where sj = Sinf + jδ, j ∈ [0,m] and
δ = (Ssup−Sinf )/m. The associated domain partition than
has cells

Vi ∈ cc{sj−1 ≤ S(r) ≤ sj : r ∈ X}.

With this example, the symbolic similarity with notions of
entropy in information theory is apparent. One can think of
the potential surface as conveying a message wherein small
segments of different mean potential value constitute the

letters used to encode the message. With this analogy in
mind, the complexity can be thought of as the entropy of
the message. A flat potential field will have zero complexity
for all choices of partition coarseness ∆.

B. Mutual information
We assume that in the search process, the range of the

potential function abstracting the unknown environment has
a constant, predefined partition ∆ of its range. Then, from
the viewpoint of the agents conducting the search, for any
time, there will exist two separate perspectives of the state
of the domain. Unknown to the searchers, there exists an
objective perspective expressing ground truth. This perspec-
tive can be thought as a reconstructed contour map of the
potential given no measurement noise and infinite amount of
sensor information. There also exists a subjective perspective
representing the accumulated information by the searchers,
that is a collection of mapped level sets.

Both of these perspectives can depend on time. The
objective perspectives, we denote by Vok = {V oj : j ∈ Lok}.
Given that the range partition is predefined and constant, the
index set Lok and its associated cells will depend on time
only if the potential function also depends on time, that is
the potential function is S(r, t), S : R2 × (0, τ ]→ R.

The objective perspective, Vsk = {V sj : j ∈ Lsk}, on the
other hand, will evolve as the search yields more information.
For example, given no information in the beginning, we can
assume that there is a time t1 such that for all 0 ≤ t ≤ t1,
the index set Lt = {0}, where the set V s0 is the whole space
and Lt1 = {0, i1}, when the first cell is mapped.

With more information successively added, the ability of
an observer to deduce the state of the objective perspective
from the state of the subjective perspective is increased.
In other words, as the search progresses the subjective
perspective should in some sense converge to the objective
perspective. In this context, to quantify the properties of
the search process, we need to establish a metric of how
close the two perspectives are. This metric should capture the
information gathering aspects of the process as well. That is
to say, that the metric should be able to express the distance
between the perspectives as function of both the acquired
information and the total information content of the unknown
environment.

As established above, the function complexity is well
equipped to capture the information content of the unknown
environment (a scalar potential function in our case) with
respect to its chosen range partition ∆. Therefore, given
that there is no prior knowledge about the environment, the
entropy of the objective perspective will characterize how far
away the two perspectives are in the beginning of the search
process,.

We define the joint entropy between the two perspectives
as

H(Vok ,Vsk) = −
∑
i∈Ls

k

∑
j∈Lo

k

µ
(
V si ∩ V oj

)
µ(X)

log2

(
µ
(
V si ∩ V oj

)
µ(X)

)
.

We note again that there are obvious similarities between the
so defined perspectives joint entropy and the more classical
notion of the joint entropy of two random variables in

information theory. In this case, the
µ(V s

i ∩V
o

j )
µ(X) elements are
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analogous to the joint probabilities of occurrence between
the events V si and V oj , where in reality they correspond to
the cross section between respectively a believed shape of a
particular level set and an actual level set.

The joint entropy has the following properties:

H(Vok ,Vsk) ≤ H(Vok) +H(Vsk) (1)

and

H(Vok ,Vsk) = H(Vok) = H(Vsk), if Vok ≡ Vsk ,

where these properties can be proved as a direct consequence
of the analogy with information theory. (See [9] for the
properties of the random variables based joint entropy.)

Note, that (1) becomes equality when the two perspec-
tives, in some sense, maximally differ. From a probability
point of view, this is equivalent to the two variables being
independent.

The joint entropy finally allows us to define as a conver-
gence metric the perspectives mutual information given by:

I(Vok ;Vsk) = H(Vok) +H(Vsk)−H(Vok ,Vsk). (2)

Given that the search process starts with no prior infor-
mation, the subjective perspective as discussed above has a
single element V0 = X , and it can be confirmed by (2) that
in this case the mutual information is equal to 0. As Vs
converges to Vo, on the other hand, the mutual information
becomes I(Vok ;Vsk) = H(Vok) = H(Vsk).

We will further show how the perspectives mutual infor-
mation evolves under the search process and demonstrate its
applicability in evaluating the efficiency of a given search
strategy.

III. SEARCH DECISIONS AND THE INFORMATION FLOW

The search process will have two clearly distinguished
components. At any instant of time a search agent should
decide between two clear choices: whether it should collect
information from a particular area; or whether it should
explore the space in search of other parts of the domain
with richer information content. This problem is known as
the exploration vs exploitation paradigm, since the decision
concerns whether the individual should exploit its current
state or explore the space for better possibilities. In the
context of potential field search, exploitation is equivalent
to the mapping of the level sets within a certain area.
Exploration, on the other hand, is the behavior of moving
from the mapping of the level sets in one area to their
mapping in another.

In our work we want to investigate strategies which bal-
ance exploration and exploitation based on the information
yield of a particular area. High information yield will force
the search agent to engage with exploitation. Boredom or
the lack of information, on the other hand, will trigger
exploration.

We first start by considering a static environment, that is
S(r, t) = S(r). In an exploitation mode, the robotic agent
generates a map of the connected components of a certain
level set. These connected components as cells are then
submitted to a cumulative list that updates the subjective
perspective. Lets tk−1 and tk be two consecutive update
times of the subjective perspective, that is to say that tk−1

and tk correspond to times at which a given cell map is

completed. Moreover, we assume that each time a new
structure is mapped the index set Lsk is increased with one
element and that all mapping is done with infinite precision.
The information gained between the two updates of the
subjective perspective is given by:

∆I+
k = I(Vo,Vsk)− I(Vo,Vsk−1)

= H(Vsk)−H(Vsk−1)−H(Vo,Vsk) +H(Vo,Vsk−1).

However, the assumption that cells are mapped with infinite
precision allows us to calculate the information gain without
any knowledge of the objective perspective as:

∆I+
k = I(Vsk ,Vsk)− I(Vsk ,Vsk−1)

= H(Vsk ,Vsk−1)−H(Vsk−1). (3)

One can think of ∆I+ as the information inflow of the
search process originating from the search party. Under this
inflow the mutual information will evolve in time as:

Ik+1 = Ik + ∆I+
k ,

where we have defined Ik as

Ik := I(Vok ,Vsk).

The evolution of the mutual information is not so straight-
forward to describe, however, when the search is conducted
in time dependent environments. In this case, the search
agent can map a particular structure {Vok}j of the envi-
ronment at time tk, but at time tk+1, its shape could have
changed or even the whole structure could have disappeared.
Therefore, during the search process there will not just be
accumulation of information but also dissipation due to the
changes of the underlying environment, S(r, t). Thus we
need to express the dynamics of the mutual information as
the balance between the inflow and the outflow of informa-
tion or in other words:

Ik+1 = Ik + ∆I+
k −∆I−k .

In this general case, we define the information inflow and
the information outflow—respectively ∆I+

k and ∆I−k —as

∆I+
k = I(Vok ,Vsk)− I(Vok ,Vsk−1) (4)

∆I−k = I(Vok−1,Vsk−1)− I(Vok ,Vsk−1). (5)

Note that according to these definitions the information
inflow is the difference between the mutual information
immediately before and after the subjective perspective is up-
dated, where the information outflow is the total information
lost in the period between the two updates of the subjective
perspective. Given a static environment, that is Vok−1 ≡ Vok ,
there is no information dissipation and ∆I−k = 0. At the
other extreme, rapid changes in the objective perspective
lead to the complete dissipation of the previously acquired
information. In other words, the range of ∆I−k obeys

0 ≤ ∆I−k ≤ Ik−1. (6)

When the environment is static, we can explicitly evaluate
the utility of exploiting a given region by evaluating the
information inflow through (3). For the time dependent
environment, however, the relationship between the evolution
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of the subjective perspective and the information inflow is not
exact and becomes:

∆I+
k ≤ H(Vsk ,Vsk−1)−H(Vsk−1).

(See the appendix for proof of this inequality.)
We define the bound ck := H(Vsk ,Vsk−1) − H(Vsk−1) as

the information capacity of the current action. Given that it
takes ∆T units of time between the time an agent initiates its
exploitation phase and the time it produces a map of a cell,
we can think of ck/∆T as the information rate originating
from this agent. In what follows, we will give an example of
a simple threshold search strategy, in which an autonomous
agent decides whether to be engaged in exploitation based
on the value of this quantity. As the information rate drops,
boredom will trigger exploration. We note that more elabo-
rate strategies closer to actual human behavior are possible,
in which the robot takes into account both short and long
term utility (information rates in the presented setup) similar
to the models shown in [5]. However, though simplistic, the
threshold strategy presented in the next section will illustrate
the benefits of the information based approach to the search
problem, and will validate a framework against which human
decision making can be investigated

IV. APPLYING INFORMATION-BASED CRITERIA IN
POTENTIAL FIELD SEARCH

Potential fields can abstract the spatial distribution of
such properties as temperature, radioactivity, contaminant
concentration and etc. The challenge in monitoring and
mapping such fields is that they can be sensed only locally
and thus to accumulate information a search agent must move
throughout the domain of interest. A standard technique to
prescribe trajectories for sensing is the raster scan. Although
universally applicable, the raster scan is generally not the
most efficient technique. A mobile sensor moving on a raster
scan trajectory will spend its time uniformly in the search
domain, but if the information content of the environment
is not uniformly distributed much of this time will be
wasted. This motivates the development of strategies that,
on one hand, provide the user with accurate descriptions of
some “interesting” environmental features and, on the other,
parsimoniously allocate resources for this type of information
acquisition.

An example, in which the raster scan is not the most
efficient tool for mapping, is the identification of areas in
which the potential field exceeds a predefined threshold. In
what follows, we demonstrate the ability of our information
metric to capture the inefficiency of the raster scan technique
compared with a simple exploration vs exploitation approach
to problem.

A. Modeling consideration
We will consider a potential field consisting of a collection

of uniform radial sources. The sources are arranged on two
concentric circles, and time dependence of the potential field
is achieved through the rotation of the sources around the
origin with constant turning rate (Fig. 1).

Given that the scalar potential field is defined as S(r, t),
and the domain of interest is r ∈ D ⊂ R2, we partition the
range based on the threshold Sd as (−∞, Sd] and [Sd,∞).
This leads to the partition of the domain into cells

V oi ∈ cc{r ∈ D|S(r, t) ≥ Sd}, i ≥ 1,

Fig. 1. The potential function of the example problem, and the resulting
domain partition, j ∈ [0, 9]. Time dependence is achieved through the
rotation of the sources around the origin with constant turning rate.

and
V o0 = {r ∈ D|S(r, t) ≤ Sd},

where we have implicitly assumed that the sets V oi , i ≥ 1 are
simply connected. It follows that the objective perspective,
Vok , is the collection of these cells for a given time t = tk.

The subjective perspective, Vsk = {V sj : j ∈ Lsk}, on the
other hand, evolves as follows: there exist a time t1 such
that for all 0 ≤ t < t1, the index set Lst = {0}, where the
set V s0 is the whole space; then for t = t1, the first region
exceeding the threshold potential is mapped and the index
set becomes Lst1 = {0, i1}. For every consecutive update tk,
k ≥ 2, there are two possibilities; either a new structure is
discovered and a new element is added to Lsk or the map
of a particular structure V si is replaced with a more recent
update.

B. Exploration and exploitation in terms of motion primitives
The agents conducting the potential field search are gov-

erned by a library of possible feedback control laws. We
call these control laws motion primitives and they constitute
the building blocks for higher level behaviors such as ex-
ploration and exploitation. These behaviors can be formally
described by symbolic control languages, and therefore the
notation that we will further use is consistent with the motion
description languages MDL (See [10]).

We assume that the search team consists of identical
physical plants:

ṙi = f(ri, u) (7)

where ri ∈ R2 is the position of the ith agent in the plane
and the control law u is a particular motion primitive.

Either of the components of the search process can be
described through assigning the robots pairs of motion prim-
itives and trigger functions, where the trigger functions are
responsible for interrupting the given motion. The pair of a
motion primitive and a trigger, that is {ξ,u}, is called an
atom, where the interrupt ξ : Rk → {0, 1} maps the data
from the k sensors of a given agent into a boolean number.
In other words, {ξ,u} is treated as execute u as long as
ξ = 1.

In general, a given exploration or exploitation behavior can
be described as a sequence of atoms b = a1a2...an, which
will lead the robot to execute consecutively each one of
these atoms until its respective interrupt function is activated.
However, in the case we are currently investigating these
behaviors will consist of single atoms.

We will use two possible motion primitives:
uRandomSearch which will lead a search agent to conduct
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random motion through the domain of interest, and
uIsoFollow, which will lead the robot to track the boundary
of an element V oj with j ≥ 1. The random search will
be achieved through motions in straight lines followed by
bouncing off the walls of the search domain. The isoline
following control, on the other hand, is the same as the one
described in our previous work [8].

There are two interrupt functions defined as:

ξFound =
{

1 S(r, t) < Sd
0 else

, (8)

which can interrupt a motion primitive, when a region where
the potential exceeds the given threshold value is discovered,
and the interrupt

ξmapped =
{

1 mapping a boundary
0 boundary mapped

, (9)

which interrupts the mapping of a boundary after its map is
completed. (It is assumed that each robotic agent maintains
a knowledge of the isoline contour it has followed, and it
knows when is retracing previously explored points.)

Based on these interrupts, we can specify the two behav-
iors as:

aexplore = (ξFound, uRandomSearch) (10)

that is the robot randomly traverses the domain of interest
until it reaches a region where the potential exceeds the
threshold and

aexploit = (ξMapped, uIsoFollow), (11)

which makes the robot complete a map of a given isoline.
The strategy we will use is as follows. The robots are

initialized with an exploration behavior. When aExplore is
interrupted the robot automatically switches to aExploit and
maps the discovered region. Once the map is completed
the ξMapped interrupt triggers an update of the subjective
perspective. Then, through (15) the robot can calculate
the information capacity of its exploitation behavior and it
can decide whether to continue the exploitation or begin
exploring based on the criteria

aexplore if
ck

∆Tk
< θ (12)

aexploit else (13)

where ∆Tk is the time it has taken the robot to complete the
map of the given structure and θ is a predefined threshold
characterizing the search strategy. While we are assuming
that isoline following is done with infinite precision, there
will be some tendency for the agent to continue to exploit
(i.e. retrace) the isoline due to the time variance of the field.

C. Results
All the simulations that follow are for the vehicles moving

with constant speed of 1.5 units per unit time. The domain
is a square with dimension 500 by 500 units and the radius
of the cell V oj≥1 is 20 units (see Fig. 1).

By varying the threshold θ, we can achieve different search
strategies. There exist values for the threshold, θ ≤ θmin, for
which once the robot finds a given structure, it keeps exploit-
ing it indefinitely, that is the search strategy can be described
by the infinite sequence aExploreaExploitaExploitaExploit....

On the other extreme, if θ ≥ θmax the agent will continu-
ously alternate between exploration, and exploitation and the
sequence describing the search strategy is

aExploreaExploitaExploreaExploit... (14)

Given a static environment, once a structure is mapped
there is no information that can be gained by repeated
mapping, therefore independent of the chosen value for the
threshold, θ, the search strategy is represented by (14). Fig.
2 shows the evolution of the normalized mutual information
defined as Ik/H(Vok), under a search conducted by 10
vehicles on raster scan trajectories in case the potential field
is static. Two pixel sizes were used and one can clearly
observe the speed verses accuracy trade-off. (Smaller pixel
size corresponds to more time to complete the search but
better accuracy of the resulting map.)

Fig. 2. The mutual information as function of time for two different cell
sizes - 6×6 and 12×12, where the total size of the space is 500×500. The
scans are compared for the time steps required to complete the 12 raster
scan given that the vehicles move with speed 1.5units/per-time-step.

Fig. 3 compares the information acquisition for the
exploration-exploitation strategy and the raster scan. It
clearly establishes the raster scan as both slower and less
accurate than the proposed search strategy.

Fig. 3. The mutual information as function of time for search conducted
by a raster scan and an exploration-exploitation decisions, given a static
environment.

The information metric also illuminates the value of
adding vehicles to the search team. Fig. 4 shows how
the mutual information evolves under teams with different
number of vehicles. It can be observed that after a certain
point there is no significant benefit of assigning additional
resources to the search process.

In the case of a dynamic environment, we can investigate
the evolution of the mutual information under a range
of threshold values θ. Fig. 5 shows the evolution of the
information metric under θ < θmin, θmin < θ < θmax
and θ > θmax. It can be observed that different boredom
thresholds will lead to different steady state values of mutual
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Fig. 4. The mutual information as function of time for search conducted
by a motion primitives with different number of vehicles given a static
environment

information. In fact, there will exist an optimal value for θ,
which is established experimentally by Fig. 6.

Fig. 5. The evolution of the mutual information under three different
strategies - pure exploitation, pure exploration and balanced version between
them, given dynamic environment.

Fig. 6. The steady-state mutual information as function of the threshold.

V. CONCLUSIONS AND CONTINUING RESEARCH

This paper has reported preliminary results on search
strategies for teams of cooperating autonomous agents. Dis-
tinctive features of the strategies are: 1. they are information-
seeking, and 2. they require on-the-fly decisions by each
agent regarding wether to pursue depth (= an exploitation
strategy) or breadth (= an exploration strategy) at each
stage of the search. In order to discuss information-seeking
search strategies, we have defined information metrics in
Sections II and III. In Section IV, we have reported a crude
comparison of raster-scan search with a hybrid breadth/depth
search in which each agent employs a deterministic rule
for switching between breadth and depth focused strategies.
While the scope of this research on information-seeking
search strategies is limited to the decision dynamics of teams
of autonomous robots, an interesting extension to study the
effects of human decision-making in terms of breadth versus
depth could be pursued.
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APPENDIX

Theorem 1: The information inflow defined by (4) satis-
fies

∆I+k ≤ H(Vsk ,Vsk−1)−H(Vsk−1) := H(Vsk |Vsk−1). (15)
The proof that follows is based on existing identities from

the Shanon information theory. (See [9] for a reference of
such identities.) The equivalence between these identities and
the identities governing our definitions of mutual information
and entropy will be establish elsewhere.

Proof: Substituting (2) into the definition of the infor-
mation inflow, (4), yields

∆I+
k = H(Vsk)−H(Vsk−1)−H(Vok ,Vsk) +H(Vok ,Vsk−1). (16)

On the other hand, the chain rule of entropies states:

H(Vok ,Vsk ,Vsk−1) = H(Vsk−1|Vsk ,Vok) +H(Vok ,Vsk).

Through this equation, we can express H(Vok ,Vsk) and
substitute the resulting expression into (16) which yields

∆I+
k = H(Vs

k)−H(Vs
k−1)−

−
„

H(Vo
k ,Vs

k ,Vs
k−1)−H(Vo

k ,Vs
k−1)−H(Vs

k−1|Vs
k ,Vo

k)

«
.

Now, we note that

H(Vok ,Vsk ,Vsk−1)−H(Vok ,Vsk−1) ≥ 0

and
H(Vsk−1|Vsk ,Vok) ≤ H(Vsk−1|Vsk)

with both becoming equalities for Vok ≡ Vsk . Then, it follows
that:

∆I+
k ≤ H(Vsk)−H(Vsk−1) +H(Vsk−1|Vsk) = (17)

= H(Vsk ,Vsk−1)−H(Vsk−1), (18)

which concludes the proof.
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