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Abstract— Network reconstruction, i.e. obtaining network
structure from input-output information, is a central theme
in systems biology. A variety of approaches aim to obtaining
structural information from available data. Previous work has
introduced dynamical structure functions as a tool for posing
and solving the network reconstruction problem. Even for
linear time invariant systems, reconstruction requires specific
additional information not generated in the typical system
identification process. This paper demonstrates that such extra
information can be obtained through a limited sequence of sys-
tem identification experiments on structurally modified systems,
analogous to gene silencing and overexpression experiments.
In the absence of such extra information, we discuss whether
combined assumptions of network sparsity and minimality
contribute to the recovery of the network dynamical structure.
We provide sufficient conditions for a transfer function to have
a completely decoupled minimal realization, and demonstrate
that every transfer function is arbitrarily close to one that
admits a perfectly decoupled minimal realization. This indicates
that the assumptions of sparsity and minimality alone do not
lend insight into the network structure.

I. INTRODUCTION

One of the fundamental issues in the identification of dy-
namical systems is that of accurately determining a system’s
structure; that is, the presence or absence of causal rela-
tionships between any two variables in a system. Structure
identification has generated especially high interest among
biologists studying biochemical networks. Frequently, even
a simple understanding of the causal dependencies between
variables can lead to valuable scientific progress. For exam-
ple, the knowledge of whether one species affects another can
be useful in designing a drug to inhibit a certain, undesired
reaction while leaving other reactions unaffected.

Different approaches to the reconstruction problem favor
different types of data, such as chemical concentration data
(steady-state or time-series measurements) or quantified sys-
tem parameters (such as rate constants or molecular weights).
It is of interest to know whether certain types of data
about a system are more useful than others for network
reconstruction. Results reported in [1] and [2] showed that
network reconstruction techniques involving perturbations to
network parameters have much higher predictive accuracy
than those which rely solely on data obtained from changes
to initial concentration levels. Given a nonlinear system of
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differential equations ẋ = f(x), the authors in [1] propose a
method to find a best fit for the elements of the Jacobian
of f(·), F = {∂fi/∂xj}, from time-series data obtained
by perturbing parameters such as temperature or pH of the
chemical solution. A nonzero element Fij represents a causal
dependency of xi on xj ; the magnitude and sign of Fij
represent the strength and nature (activation or inhibition)
of this dependency.

Other algorithms common in the literature utilize prob-
abilistic methods such as Dynamic Bayesian Networks, or
information-theoretic techniques ([3], [4], [5]) to find the
best possible fit–within a pre-defined family of possible
models–to input-output data. Some of these methods use data
from perturbation experiments, similar to the ones described
above, while others (e.g. ARACNe, [5]) only require that
data contain considerable “phenotypic variations of a given
cell type.” To maintain computational tractability, algorithms
involving Dynamic Bayesian Networks typically assume a
system is discrete-time. As a result, they do not accurately
describe the continuous reaction environment of biochemical
systems.

In the absence of data obtained from perturbations to
structural parameters, other approaches such as [6] and [7]
attempt to reconstruct biochemical networks by assuming
that the network exhibits a sparse connection topology. Such
methods can involve fitting a chemical network to time-series
data in a way that the 1-norm of the reaction rates for the
system is minimized [6], or setting a limit on the number of
states that can influence any given state. Another assumption
often used is that all states in the system are measured [7].
In this paper we examine the utility of such assumptions in
reconstructing the network.

Many of the properties common to most biological
networks–large numbers of system variables, high noise and
inaccuracy levels in data sets, nonlinearities–pose special
challenges to network reconstruction. In [8], [9] we have
shown that even with the assumption of linearity, time-
invariance, absence of noise and continuous measurement
for all time (basically enabling perfect identification of
the transfer function) the causal interconnection structure
between the measured states cannot be reconstructed. In
particular, in [8] we introduced the notion of dynamical
structure function as a representation of a linear, time-
invariant (LTI) system that captures the network structural
information at the resolution of the observed variables. When
the transfer function associated with a particular network is
given, the results of [8], [9] allow us to precisely characterize
the necessary additional information required to recover the
associated network structure (either dynamic or Boolean).
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Acquisition of this necessary information instead requires
several independent structural perturbations to a system and
observation of the dynamic behavior of each such modi-
fied system. We describe how structural modifications to a
network, such as the commonly available biological experi-
ments gene silencing (or knockout) and overexpression, can
successfully yield a network’s dynamical structure. We also
explore the implications of coupling assumptions of system
minimality and sparsity on dynamical structure identification.

In Section II, we review some important theoretical prop-
erties of dynamical structure developed in [8], [9]. Section III
shows that the information necessary to obtain a system’s dy-
namical structure can be found by performing experiments on
a set of well-defined structural modifications to the original
system such as gene silencing and gene overexpression. In
the absence of such experiments, we show in Section IV that,
without such information, reconstruction of the full system
dynamics between observable network components is not
possible, even under a combined minimality and sparsity
assumption. Section V concludes giving future direction.

II. DYNAMICAL STRUCTURE

Our work in [8], [9] introduced several important concepts
related to dynamical structure, which we summarize here. We
consider an LTI system of form

[
ẏ
ẋh

]
=

[
A11 A12

A21 A22

] [
y
xh

]
+
[
B1

B2

]
u

y =
[
I 0

] [ y
xh

] (1)

where x = [ y′ x′h ]′ ∈ Rn is the full state vector, y ∈
Rp is a partial measurement of the state, xh are the n − p
“hidden” states, and u ∈ Rm is the control input. Taking
the Laplace transforms of the signals in (1) and solving for
Xh gives Xh = (sI −A22)−1

A21Y + (sI −A22)−1
B2U .

Substituting into the Laplace transform of the first equation
of (1) then yields sY = WY + V U , where W = A11 +
A12 (sI −A22)−1

A21 and V = A12 (sI −A22)−1
B2 +B1.

Let D be the matrix composed of the diagonal elements of
W . We equivalently obtain, (sI −D)Y = (W −D)Y +
V U . Note that W −D is a matrix with zeros on its diagonal,
and that D is a diagonal matrix of proper rational functions.
We thus have

Y = QY + PU (2)

where

Q = (sI −D)−1 (W −D) and P = (sI −D)−1
V (3)

Definition 2.1: Given the system (1), we define the dy-
namical structure function of the system to be (Q,P ), where
Q and P are the internal structure and control structure,
respectively, and given as in (3).

Lemma 2.2: The dynamical structure function (Q,P ) of
any system of the form given in (1) exists and is unique. It
is related to the transfer function, G, of the system by

G = (I −Q)−1
P. (4)

The advantages of working with the matrix pair (Q,P ) as
opposed to (W,V ) are described in [8], [9]. The dynamical
structure function is invariant to any change of coordinates
(and corresponding change of structure) involving only the
hidden states; such information is suppressed in this descrip-
tion of the system. We conclude from this and Lemma 2.2
that the dynamical structure function of a system contains
more information than the transfer function, and less infor-
mation than the state-space representation.

Theorem 2.3 (Reconstruction from G): Given any p ×m
transfer function G, with p > 1 and no other information
about the system, dynamical or Boolean reconstruction is
not possible. Moreover, for any internal structure Q there is
a dynamical structure function (Q,P ) consistent with G.

In particular, this shows that the use of criteria such
as sparsity or decoupledness to guide our selection of a
proposal internal structure Q can be misleading. If one were
to optimize for decoupledness, for example, a dynamical
structure (0, G) could always be found, regardless of the
actual underlying network structure. Thus, if we are to use
such criteria, they must be firmly justified a priori.

Theorem 2.4 (Partial Structure Information): Given a p×
m transfer function G, dynamical structure reconstruction
is possible from partial structure information if and only if
p− 1 elements in each column of

[
Q P

]′
are known that

uniquely specify the component of (Q,P ) in the nullspace
of
[
G′ I

]
.

Theorem 2.4 identifies exactly what information about a
system, beyond knowledge of its transfer function, must be
obtained to perform network dynamical structure reconstruc-
tion without appeal to a priori assumptions like sparsity or
parsimony, etc. This enables the design of experiments target-
ing precisely the extra information needed for reconstruction
(see Corollary 2.5). In particular when p = m and G is
full rank, we observe that imposing P to be diagonal, i.e.
having each input control a measured state independently, is
sufficient for reconstruction.

Corollary 2.5: If m = p, G is full rank, and there is
no prior information about the internal structure Q of the
system, then the dynamical structure can be reconstructed
if each input controls a measured state independently, i.e.
without loss of generality, the inputs can be numbered in
such an order that P is diagonal. Moreover, H = G−1 then
characterizes the dynamical structure as follows

Qij = −Hij

Hii
and Pii =

1
Hii

.

A special case of this corollary in [10] considers steady-
state or quasi-steady-state data, which means all transfer
functions G,Q and P are evaluated at s = 0. The drawbacks
of working with steady-state measurements are seen when
transfer functions have zeros at s = 0 and thus lack
dynamical predictability, while the advantage is that such
methods require much less data. In this paper, we provide
a framework which precisely characterizes the amount of
information required for reverse engineering the dynamical
structure of interconnected LTI dynamical systems, i.e. the
recovery of both the internal and control dynamic structure.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA05.5

174



III. NETWORK RECONSTRUCTION BY STRUCTURAL
MODIFICATIONS

Knowledge of a network’s dynamical structure allows
recovery not only of the network topology (presence or
absence of connections representing the causal relationships
between the network’s components) but also of the dynamics
of the network’s constitutive systems. Since a given transfer
function admits several realizations, input-output data, which
allow transfer function identification, do not provide enough
information to deduce a system’s dynamical structure.

It follows from Theorem 2.4 and Corollary 2.5 that deter-
mination of the dynamical structure of a system with hidden
states cannot be done by merely considering control input
modifications. It instead necessitates structural modifications
to the system. There are many ways to interact with the
system to yield its dynamical structure; we present two
such experiments based on gene silencing and inducible
overexpression. Examples of such system modifications have
special relevance in the field of systems biology.

In particular, we will consider two different types of mea-
surements typically available to biologists, i.e. measurements
of messenger RNA (mRNA) concentrations (as done by
microarray techniques) and of protein concentrations.

A. Gene silencing

Perturbing the system with RNA interference (RNAi) is
a relatively easy way to directly interact with a specific
gene. RNAi is a structural perturbation mechanism that
either inhibits gene expression at the stage of translation
or hinders the transcription of specific genes. This leads
to gene silencing, a term generally used to describe the
“switching off” of a gene by a mechanism other than genetic
modification. Gene silencing is a type of experiment that
is readily available to biologists and obviously can be seen
as making a modification to the structure of the biological
system.

We first assume that our network has p observed states
(mRNA concentrations which we can measure). We model
gene silencing by RNAi as an “operator” that adds additional
state variables and inputs to the system. The additional
states z represent the RNAi molecule and the complex
resulting from the binding of the RNAi and corresponding
mRNA. Silencing an mRNA results in temporarily driving
its concentration to zero. For the purpose of illustrating
the methodology, we consider a simplified model where
all differential equations remain the same except for the
measured state yi and the added hidden state dynamics z.
This simplified model is given by

ẏi = ai

[
y
xh

]
+ āiz

ż = Āiz +
[
b̄i
0

]
ui

where ai corresponds to the ith row of A, and Āi, āi and b̄i
characterize the dynamics of the added states z, and ui is the
input. Over time, silencing reduces the concentration of the

ith mRNA to zero (consequently eliminating the associated
protein from the network).

Performing a silencing experiment on xi and measuring
the dynamical behavior of this modified system yields a
transfer function gi, where gi is a column vector. The control
structure function pi for this particular experiment is a
column vector of the form pi = [0, ..., pii, ..., 0]′, i.e. all
entries are zero except the ith entry. We know this because
the control input ui affects the new hidden states z, which in
turn only directly affect the measured state yi (this may, in
turn, then affect other measured states). Thus, there is only
one unknown in pi.

Data obtained from similar silencing experiments on each
of the p measured states gives us a transfer function G =
[g1 g2 · · · gp] and a diagonal P = diag(p11, p22, ..., ppp).
We know that the p − 1 nondiagonal terms on each row of
P are zero; thus, the conditions of Theorem 2.4 are satisfied
and, as a result, we can solve for the dynamical structure.
The number of independent RNAi experiments required to
reconstruct the network is exactly p.

Measuring protein concentrations rather than mRNA re-
quires our corresponding simplified model to be a little
different, taking into account the dynamical effects of gene
silencing on protein concentration levels. However, by a
similar argument, we can still choose the corresponding
control structure P to be a diagonal matrix. In particular, the
measured states do not directly depend on the new hidden
states, but rather on the control input. The measured proteins
in turn affect the mRNA concentrations (which are hidden
states in this situation). Bringing the mRNA concentrations
to zero will eventually lead the associated protein to degrade
and approach zero. It follows that p of these experiments
will also enable dynamical structure reconstruction.

B. Inducible overexpression
As a second set of structural perturbation experiments we

consider inducible overexpression. Overexpression of a gene
may be constitutive or inducible, through introduction of
a transgene into the host which is specifically designed to
increase the abundance of the desired transcript. Inducible
overexpression uses a chemical to activate the inserted trans-
gene, temporarily driving the concentration of a particular
measured state to a large value.

The target specificity of these methods allows us to control
a gene’s expression without directly affecting other genes
in the network. Putting these modifications in terms of a
general network, overexpression of a state makes the effects
of other states on the overexpressed state negligible, while
preserving the effects of the overexpressed state on other
states. These experiments can affect the system slightly or
severely depending on which state is modified (Figure 1).

We can posit a simple model of inducible overexpression
in a similar way to the above model of gene silencing. In
this case, z is a single molecule representing a promoter
for gene i. The concentration of mRNA corresponding to yi
will then increase to a high value, affecting other measured
concentrations. This results in a pi that, as before, has
only one nonzero entry. In a similar way, we can show
that inducibly overexpressing all measured states leads to
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Fig. 1. A sample network (i) with four observed states and one input, and
the resulting network when x2 is silenced (ii) or overexpressed (iii). Grey
arrows represent inhibited connections or states while thick arrows show
connections that have been strengthened.

a diagonal P and allows us to reconstruct the dynamical
structure of the network. As before, a similar argument
follows if protein concentrations are measured instead of
mRNA.

IV. DECOUPLED STRUCTURES AND NETWORK SPARSITY

In the absence of extra information obtained from such
experiments as silencing and overexpression, we investigate
whether the use of a combined sparsity and minimality
assumption can contribute to the recovery of the network
dynamical structure. In particular, we are interested in deter-
mining whether the use of a sparsity assumption about the
control or internal structure can contribute to the recovery
of its dynamical structure. Sparsity has been considered
as a natural assumption in the literature, mainly on the
basis that many biochemical networks exhibit relatively few
connections among system states.

Since the control structure P may reflect the introduction
of artificial stimuli to the system, its structure conveys no
information about the causal relationships between internal
components of the network under consideration. In particular,
a sparsest network structure implies as few as possible
internal causal relationships between the components of the
network. Thus a sparsest realization should be understood
as a sparsest internal structure, Q, consistent with the input-
output dynamics given by G. We learned in Theorem 2.3
that any transfer function G admits a perfectly sparse, or
decoupled internal structure (Q = 0). As a consequence,
sparsity alone cannot be used to recover dynamical structure.

However, these decoupled structures with Q = 0 are
not always realizable with a minimal system. The question
thus remains whether imposition of a sparsest structure,
realizable by a minimal system, may offer some insight about
the dynamical structure of the system responsible for the
measured data. We introduce some terminology from [11]:

Definition 4.1 (Characteristic polynomial): The charac-
teristic polynomial of a proper rational transfer function
matrix G is the least common multiple of the denominators
of all minors of G, where a minor of a matrix A is the
determinant of some square submatrix of A.

Definition 4.2 (Smith-McMillan degree ): The Smith-
McMillan degree of G, or δ(G), is the degree of the
characteristic polynomial of G.

Theorem 4.3 (Minimal realization): A LTI realization of
G, (A,B,C,D), is minimal if and only if dimA = δ(G).

The requirement that dimA = δ(G) is equivalent to
the condition that the realization is both controllable and
observable. Since we are only considering systems with
the form shown in (1) we assume that D = 0 and C =[
I 0

]
, and refer to a system as (A,B). Note that given any

minimal realization (Ā, B̄, C̄), there always exists a change
of coordinates leading to an equivalent minimal realization
(A,B,C) with a matrix C =

[
I 0

]
provided that C̄ has

full row rank.
We will use these results in the next few proofs. The

following assumptions hold for the remainder of the section:
A1: Q is a matrix of strictly proper rational transfer func-

tions, of size p × p, such that all diagonal elements of
Q are 0.

A2: P is a matrix of strictly proper rational transfer func-
tions, of size p×m.

A3: D is a p×p diagonal matrix of proper rational functions.
A pair (Q,P ) satisfying assumptions (A1) and (A2) is called
a dynamical structure.

Definition 4.4: A realization (A,B) is (Q,P )-minimal if
the dynamical structure of (A,B) is (Q,P ) and if there
is no pair (Â, B̂), with dim(Â) < dim(A), such that the
dynamical structure of (Â, B̂) is (Q,P ).

Lemma 4.5: Given Q, P , and D satisfying assumptions
(A1), (A2) and (A3) respectively, there exists a realization
(A,B) of

[
W V

]
=
[
(sI −D)Q+D (sI −D)P

]
sat-

isfying
W = A11 +A12(sI −A22)−1A21 (5)

V = B1 +A12(sI −A22)−1B2 (6)

with the partitioning A11, A12, A21, and A22 as defined
in (1).

Proof: Since P and Q are strictly proper and D is
proper, W and V are proper. As a consequence, a realization
of the matrix transfer function

[
W V

]
can always be

obtained. Let (Â, B̂, Ĉ, D̂) be such a realization:[
W V

]
= D̂ + Ĉ(sI − Â)−1B̂

Now set A22 = Â and A12 = Ĉ and consider the partitioning[
A21 B2

]
= B̂ and

[
A11 B1

]
= D̂. We then obtain[

W V
]

= D̂ + Ĉ(sI − Â)−1B̂

=
[
A11 B1

]
+A12(sI −A22)−1

[
A21 B2

]
Finding a realization (A,B) which is (Q,P )-minimal

amounts to choosing a D (not necessarily unique) that will
minimize the Smith-McMillan degree of the transfer function
matrix

[
(sI −D)Q+D (sI −D)P

]
. This is easily seen

since the Smith-McMillan degree of this latter matrix transfer
function corresponds to the number of hidden states in the
realization (A,B) (the dimension of A22) obtained through
the construction given in the proof of Lemma 4.5. This
may or may not correspond to a minimal realization of
G. In Example 4.9 we consider a transfer function whose
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Smith-McMillan degree is three but for which no third-order
realization has a decoupled dynamical structure (0, G).

Lemma 4.6: Given P and D satisfying assumptions (A2)
and (A3) respectively, if all denominators of D are relatively
prime to all the elements in P , the transfer function matrices
(sI −D)P and H = [D (sI −D)P ] have the same Smith-
McMillan degree.

Proof: We will prove that the characteristic polynomials
of H and (sI−D)P are equal, by showing that the denom-
inator of any minor of one matrix divides the characteristic
polynomial of the other. First, any minor of (sI −D)P is a
minor of H , and so divides the characteristic polynomial of
H .

Now let us consider any r × r minor x of H . If all r
columns of H come from columns of (sI − D)P , x is a
minor of (sI − D)P . Suppose that m < r columns come
from columns of (sI − D)P (meaning the other r − m
columns are columns of D). All columns of D contain at
most one nonzero element, so x is either 0 or the product of
r−m elements of D and an m×m minor x′ of (sI−D)P
(or 1, if m = 0). Since the denominator of each element
in D is unique to its row, and is found in all elements in
the corresponding row of (sI − D)P , each of the r − m
denominators from D divide the characteristic polynomial
of (sI − D)P and are relatively prime to x′, which also
divides the characteristic polynomial of (sI − D)P . Thus
their product, x, divides the characteristic polynomial of
(sI −D)P .

Recalling our objective, we want to characterize those
systems which admit a minimal realization for the perfectly
decoupled structure, (0, G). For these systems, the dynamical
structure (0, G) is the sparsest minimal structure in the sense
of Q. The next theorem provides conditions on G yielding
a completely decoupled minimal realization.

Theorem 4.7 (Decoupled minimal realization): If each
row of a p × m transfer function matrix G contains an
element with a pole that is unique in its column, then G has
a minimal realization whose dynamical structure is equal to
(0, G). For a single-input system (m = 1), the condition is
necessary as well as sufficient.

Proof: (⇒) Denote by δ(G) the degree of G (which
is the minimal order of a realization of G). Suppose each
row in G has a pole which is unique in its column; we’ll
call them α1 ∈ C, α2 ∈ C, · · · , αp ∈ C. We will construct
a diagonal transfer matrix D(s), by setting dii = s− pi(s)

qi(s)
,

where pi(s) is the minimal real-valued polynomial (of degree
δi ∈ {1, 2}) for αi, and qi(s) is a polynomial of degree δi−1
with normalized leading coefficient, that shares no roots with
other elements in G. (If αi is real, this makes dii = αi.) D
is a diagonal matrix of proper rational functions, as desired,
and (sI −D)ii = pi(s)

qi(s)
.

Multiplying P on the left by (sI −D) removes from the
ith row δi poles unique to that row of P , replacing them with
δi − 1 poles which do not cancel and are unique to the ith
row of (sI −D)P . As a result, δ((sI −D)P ) = δ(P )− p.
By Lemma 4.6, the degree of the transfer function matrix
(sI − D)P is equal to the degree of

[
D (sI −D)P

]
. It

follows by Lemma 4.5 that there exists a realization (A,B)

of G where A22 is a (n− p)× (n− p) matrix (where n =
δ(G)), which means that A is n×n. Thus (A,B) is a minimal
realization of G where Q = 0.

(⇐) Let G be single-input (i.e. G is a column vector
of transfer functions) and that some element in G (without
loss of generality, the pth element) does not contain a
unique pole. Suppose there exists a minimal realization
A,B,C =

[
Ip 0

]
so that Q = 0, then A11 is diagonal, as

is A12A
n
22A21 for all values of n. It follows by induction

that for any power Am of A, the submatrix Am11 is also
diagonal. We now consider the transfer function Ḡ consisting
of the first p − 1 elements of G. Ḡ has the same degree as
G, so the system A,B, C̄ is a minimal realization of Ḡ.
However, the pth column of C̄Ak is uniformly zero (since
the first p − 1 elements of the pth column of Ak are zero
for all k, and C̄ =

[
Ip−1 0

]
) so the pth column of the

observability matrix is also uniformly zero. Since (A,B, C̄)
is not observable, it is not a minimal realization of Ḡ,
yielding a contradiction.

We have characterized a class of transfer functions which
always have a decoupled minimal realization. We investigate
whether this lends insight into the actual dynamical structure.
A few examples illustrate this result.

Example 4.8: Consider the dynamical structure

Q = 0;P = G1 =
[ 1
s+1
2

s2+2

]
Following Lemma 4.5, choose D to give us a desired
(sI −D):

D =
[
−1 0
0 − 2

s

]
; (sI −D) =

[
s+ 1 0

0 s2+2
s

]
[
W V

]
=
[
D (sI −D)P

]
=
[
−1 0 1
0 − 2

s
2
s

]
This transfer function has a minimal realization

(Ā, B̄, C̄, D̄) =
(

[0],
[
0 −1 1

]
,

[
0
2

]
,

[
−1 0 1
0 0 0

])
which gives us our minimal realization of (Q,P ):

(A,B) =

−1 0 0
0 0 2
0 −1 0

 ,
1

0
1


This is also a minimal realization of G, which can be seen
from Theorem 4.3 since δ(G) = 3. This is consistent with
Theorem 4.7 as all elements of G contain a unique pole in
their column.

Example 4.9: The transfer function G2 =

[
1

(s+1)2(s+2)
1

(s+1)(s+2)

]
does not admit a completely decoupled minimal realization
since neither row contains a unique pole in its column, thus
violating Theorem 4.7. We can see this as follows:
G2 has a minimal realization of form (A,B) = −1 1 0

0 −2 1
0 0 −1

 ,
0

0
1
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All possible minimal realizations of G2 with desired form
C can be found by performing a change of coordinates on
the hidden state xh, x∗h = T1y + T2xh, with T2 invertible:
In this case we set T1 =

[
t0 t1

]
and T2 = [t2], giving us

(Ā, B̄) =0@24 −1 1 0
− t0

t2
−2− t1

t2

1
t2

−t0 − (t1−t2)t0
t2

t0 − 2t1 − (t1−t2)t1
t2

t1−t2
t2

35 ,

"
0
0
t2

#1A
We see that the term a12 always equals one. This implies

by equation (5) that W is a 2×2 matrix whose term w12 6= 0
since w12 is the sum of a12 and a strictly proper rational
function. By equation (3), the corresponding term q12 of
Q is also always nonzero. Therefore, given any minimal
realization of G2, y2 directly affects y1.

As stated in Theorem 2.3, we note that the dynamical
structure (Q = 0, P = G) is consistent with any transfer
function, and thus with the one in Example 4.9. Nevertheless,
no third order realization of G is able to generate the
decoupled dynamical structure (0, G), so such a realization
must be of order greater than three.

The fact that any transfer function with a pole unique in
its column on every row admits a completely decoupled real-
ization implies that the existence of a completely decoupled
minimal realization for a stable transfer function (biological
systems are stable systems) does not yield much extra infor-
mation about the system. Indeed, any stable transfer function
is arbitrarily close to one that admits a decoupled minimal
realization, as is summarized in the following theorem.

Theorem 4.10: Given the H∞ norm on the set G of strictly
proper, rational, stable p × m transfer functions, and any
ε > 0, for each G ∈ G there exists a Ĝ ∈ G so that each row
of Ĝ has a pole that is unique in its column and ||Ĝ−G|| < ε.

Proof: For each i, select αi to be a pole in the
ith row of G with minimal real-valued polynomial pi(s).
Choose γ to be the norm of the diagonal matrix with
terms ( 1

p1(s)
, · · · , 1

pp(s) ). Then let δ = ε
2γ‖G‖ . There exist

δ1, · · · , δp so the following hold: (1) δi

pi(s)−δi
is stable for

each i, (2) no zero of the polynomials pi(s)− δi is a zero or
root of any other element of G, (3) the diagonal matrix with
terms ( 1

p1(s)−δ1 , · · · ,
1

pp(s)−δp
) has norm less than 2γ. Define

the diagonal matrix J where jii = pi(s)
pi(s)−δi

. Let Ĝ = JG.
Each row of Ĝ has as unique poles the zeroes of pi(s)− δi:

‖Ĝ−G‖ = ‖(J − I)G‖ ≤ ‖J − I‖‖G‖ < 2δγ‖G‖ = ε

Since the observed dynamics of any biological system
are always susceptible to some measurement noise, we
can never get an exact picture of the dynamic behavior
(e.g. transfer function) of a system. Furthermore, since any
observed transfer function is arbitrarily close to one that
has a decoupled minimal realization, assumptions of sparsity
and minimality do not appear to give us any additional
insight into the true underlying dynamical structure of the
network under consideration. This suggests that performing
experiments similar to those mentioned in Section III may be
necessary to elucidate structure; heuristics such as sparsity
and minimality alone are not good enough.

V. CONCLUSION

We have shown in this paper that one can yield sufficient
information for completely reconstructing the dynamical
structure of a given LTI network by using a sufficient number
of measured structural perturbations to the original system.
We showed that such structural perturbation measurement
can be realized using readily available experiments such
as silencing and inducible overexpression of states in gene
regulatory networks. This result corroborates other findings
in [1], [2] which show that such perturbation experiments
provide better inference of system structure than methods
which only analyze the behavior of a system resulting
from perturbations of its steady state. We also discussed
the concepts of minimality and sparsity, and showed that
such assumptions do not provide substantial information
for accurately recovering dynamical structure, even when
considered in combination in a linear system setting with
no internal or external noise.

We are currently implementing algorithms derived from
the methods described in Section III. In future work, we plan
to extensively compare the results given by these techniques
with those obtained using several other popular methods of
predicting biological networks. Overdetermining the network
with multiple measurements and best-fit techniques enables a
regression fit for the dynamical structure that can make these
algorithms robust to parameter and measurement noise; this
is also an important topic for future analysis.
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[13] B. Bamieh, L. Giarré, ”On Discovering Low Order Models in
Biochemical Reaction Kinetics,” Proceedings of the 2007 American
Control Conference, pp. 2702-2707, 2007.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA05.5

178


