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Abstract— This paper introduces a new, unsupervised method
for sorting and tracking the non-stationary spike signals of
individual neurons in multi-unit extracellular recordings. While
this method may be applied to a variety of problems that arise
in the field of neural interfaces, its development is motivated by
a new class of autonomous neural recording devices. The core of
the proposed strategy relies upon an extension of a traditional
expectation–maximization (EM) mixture model optimization to
incorporate clustering results from the preceding recording
interval in a Bayesian manner. Explicit filtering equations
for the case of a Gaussian mixture are derived. Techniques
using prior data to seed the EM iterations and to select
the appropriate model class are also developed. As a natural
byproduct of the sorting method, current and prior signal
clusters can be matched over time in order to track persisting
neurons. Applications of this signal classification method to
recordings from macaque parietal cortex show that it provides
significantly more consistent clustering and tracking results
than traditional methods.

I. INTRODUCTION

The need to reliably identify and track the activities of a
particular neuron in multi-unit extracellular recordings is a
common problem in basic electrophysiological studies and
engineered neural interfaces. Much of what we know about
brain function has been provided by extracellular neural
recordings, which are obtained by positioning the tip of an
electrode near a neuron to detect and localize in time the
occurrence of the neuron’s action potentials or spikes, which
are the basis for neural communication and information
processing. The electrode tip may happen to be within the
“listening sphere” of multiple neurons, however, causing the
spiking activity of several neurons to be recorded on a single
electrode. In general, the interpretation of all extracellular
recordings requires a process to associate the experimental
data with the activity of individual neurons over the duration
of the recording, commonly referred to as “spike sorting”
(see [1] for a review). We address here the challenge of
autonomously classifying these spikes according to their
generating neuron and tracking the identities of the neurons
over time, even as their signal characteristics may change.

While this problem is similar in many respects to conven-
tional multi-target tracking problems, there are significant
differences that motivate our work. As described below,
the measurement and identification processes involve the
sequential clustering of noisy data over time; in effect, the
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neuron “target” may be observed only through the population
of spikes it generates during every sampling interval. Since
the success of the tracking solution in this case is highly
dependent upon the quality and consistency of the clustering
process, the work in this paper may be interpreted as a
clustering-based version of tracking and data association
filters.

Although our solution may be applied to a variety of
applications, it is particularly motivated by related work in
which the authors have developed a set of control algorithms
(and a novel miniature “robotic” multi-electrode recording
device) that autonomously move electrodes to find individual
neurons, optimize their signal quality, and then maintain
the signal over time in the presence of tissue migration
and mechanical shocks [2]–[5]. This algorithm implements a
form of extremum-seeking control. In the control algorithm’s
main loop, the electrode’s signal is sampled for an interval
of, say, T = 10 seconds. The neuronal spikes must then be
identified from this voltage trace sample and sorted according
to their generating neurons. The algorithm selects the neuron
whose signals have the highest average signal-to-noise ratio
(SNR)—the “dominant” neuron—and determines what elec-
trode movement, if any, is needed to increase signal quality.
The performance of this algorithm crucially depends upon
accurate spike clustering and neuron tracking, as incorrect
clustering will corrupt the SNR observations and effective
data association is required to monitor a neuron’s SNR
over time. Moreover, the amplitude, phase, and numbers of
neuronal signals will vary due to the electrode’s movement,
complicating the challenge.

The process of sampling data across sequential intervals
is a key distinguishing element of our problem statement,
and it also arises in other neural interface applications. For
example, during the training phase of many brain-machine
interfaces, signals from multi-electrode arrays implanted in
cortex are sampled during repetitive execution of a task,
which typically lasts a relatively short duration (e.g. T =∼ 5
seconds). In order to properly estimate the tuning properties
of the neurons sampled by the array, the signal sources must
be sorted on each electrode and matched, or tracked, across
each repetition of the task execution. More generally, in
multi-unit recordings gathered during basic scientific studies,
it can be useful to divide lengthy recordings into short
time windows for spike sorting and analysis, as the data
are apt to be effectively stationary over these intervals but
non-stationary over longer periods due to electrode drift
(and other causes). Here again, the resulting neurons must
be matched across analysis intervals. Often these tasks are
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achieved manually, but because of our motivating inter-
est in autonomous microdrives and neural interfaces, we
require unsupervised methods applicable to single-channel
electrodes in online recording — or at least in small, real-
time batches.

Because of its importance and difficulty, unsupervised
spike sorting has received great attention. Many traditional
clustering procedures have been adapted to classify neural
waveforms, including hierarchical [6], k-means [7], neural
networks [8], superparamagnetic [9], and template matching
[10]. The optimization of a (typically Gaussian) mixture
model has been shown to be a particularly effective, and often
superior, approach [1], [11], [12]. However, most of these
techniques are designed for offline processing of large data
sets. When the recording process requires repeated sampling
and clustering over time, our experience has shown that
the inconsistency of the output of conventional clustering
methods prevents accurate tracking of the neurons’ identities
across sampling intervals.

To increase the consistency of clustering results over
short successive time windows, we have created a model-
based clustering technique that incorporates the available
information over time, using the clustering results of the data
set sampled during interval k−1 to improve the clustering of
the subsequent set of data sampled during interval k, etc. Our
proposed approach can be interpreted as a data association
and tracking filter that operates on processes that generate
clusters of measurements. This procedure is designed to
succeed even in low firing rates (few samples per cluster),
low signal-to-noise ratio, poor cluster separability, and non-
stationary waveforms. Bar-Hillel et al. [12] are, to our
knowledge, the only others to include neighboring clustering
results for such a purpose, and the only others to address the
novel problem of joint clustering and tracking procedures,
but present a non-causal, computationally-intensive method
designed for offline processing and hence not applicable to
the real-time applications that motivate our work.

Section II reviews a classical maximum likelihood (ML)
clustering method based on expectation–maximization (EM)
over a Gaussian Mixture model, so that our subsequent exten-
sions to this method can be more clearly delineated. Section
III details our proposed method for sequential clustering
based on Bayesian parameter estimation and model selection,
while Section IV discusses how neurons are tracked based
on the output of the clustering process. Applications of this
method to neural recordings in macaque parietal cortex are
presented in Section V and discussed in Section VI, where
we provide characterizations of our method and comparisons
to other clustering techniques.

II. ML OPTIMIZATION OF MIXTURE MODELS VIA EM

The spike sorting task has traditionally been posed as
a clustering problem, due to the poor SNR of recorded
neural signals and the variability in the shapes of the spike
waveforms. While it is strongly believed that the timing of
the spikes, and not their waveform shapes, carries infor-
mation, the recorded spike waveforms of disparate neurons

differ sufficiently to allow separation based on waveform
characteristics. To prepare for clustering, first all action
potential waveforms (possibly from different neurons) are
detected and extracted from the sampling interval. Next,
these waveforms are projected onto a d-dimensional feature
space in which each spike is represented as a point.

The classical clustering technique of maximum likelihood
(ML) optimization of a mixture model [13], [14] has been the
basis for several spike sorting algorithms [1]. The underlying
assumption of the mixture model approach is that each mix-
ture component represents a neuron, which produces samples
(spike features) according to a probability distribution. For
example, if the ith spike waveform (in feature space) yi ∈ Rd

was generated by the gth neuron (belongs to component, or
cluster, Cg), then it is governed by the probability density
p
(
yi | i ∈ Cg, θg

)
= fg

(
yi | θg

)
. If we assume a Gaussian

(normal) PDF, then the parameters of the distribution are its
mean and covariance matrix, i.e., θg = {µg,Σg}.

Including all N data points in the recording interval and
all mixture components g = 1, ..., Gm, the mixture likelihood
is

LM (Θm) = p
(
Y |Θm,Mm

)
=

N∏
i=1

Gm∑
g=1

πgfg

(
yi |θg

)
, (1)

where Y = {yi}Ni=1 is the set of all observations; Mm

is the mth model class under consideration in the current
recording interval, which dictates the model order Gm (i.e.,
the number of individual neurons contributing to the extra-
cellular signal), the form of the gth probability density fg

(typically Gaussian), and the form of the model parameters
Θm, which include θg and πg; and πg is the mixture weight
of component Cg (the prior probability that an observed spike
belongs to component Cg).

The EM algorithm [15] is typically applied to estimate
the mixture parameters by log-likelihood maximization, To
apply this technique, we view our data Y as “incomplete”
and augment it by Z, the set of membership variables zi =
(zi1, ..., ziGm

),

zig =

{
1 if spike waveform yi belongs to cluster Cg
0 otherwise

.

Incorporating Z one can derive the corresponding complete-
data log-likelihood

p
(
Y,Z |Θm,Mm

)
=

N∑
i=1

Gm∑
g=1

zig log
[
πgfg

(
yi |θg

)]
. (2)

EM iterates between an E-step to calculate the conditional
expectation ẑig = E[zig | yi, Θ̂m] ∈ [0, 1] using the current
parameter estimates, and an M-step to find the parameter
estimates Θ̂m that maximize (2) given ẑig . This iteration
guarantees (under weak conditions) a non-decreasing LM

(1) and is continued until a convergence threshold. Note that
EM implicitly assigns data points to the appropriate mixture
component via ẑig , thereby effecting the clustering of the
spike waveforms. However, this approach uses only data
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Fig. 1. Structure of the algorithm. Before clustering takes place, 1) the electrode signal is recorded for a brief sampling interval; 2) neuronal spike
waveforms are detected in this voltage trace and aligned by their minimum; and 3) spikes are projected onto an appropriate feature space, such as a
2-dimensional PCA basis. 4) Next, these data points are clustered using EM mixture model optimization, over several possible model classes. 5) Finally,
neurons are tracked by associating the clusters from the current interval to the previous interval. This entire process is repeated for every sampling interval.

sampled during a single interval, and does not incorporate
any data or clustering results from prior sampling intervals.

III. MAP CLUSTERING FOR NEURON TRACKING

Fig. 1 outlines the general flow of the spike sorting
process, with particular attention to the clustering step. Recall
that some preprocessing steps are required to detect and
extract spikes and then project them to a feature space.
We use a 2-dimensional principal component (PCA) basis,
a common convention in the neuroscience community, al-
though our technique may be applied in any feature space.
In the clustering block, EM iterations must be initialized
by “seed clusters,” or an initial guess (see Sect. III-D).
Also, the EM algorithm assumes that the model class —
most importantly, the number of clusters Gm — is assumed
known a priori, but this is not feasible for spike sorting and
many other applications. We employ a typical workaround
of running EM for several different model classes Mm,
m = 1, ..., M̄ , varying Gm among them, and then evaluating
the results of each model to select the best.

Our primary technical innovations in this procedure lie
in four parts. First, we convert the EM algorithm to MAP
optimization (rather than ML) of a mixture model to enable
improved clustering and tracking over sequential intervals.
Although MAP optimization via EM has previously been
proposed for generic clustering cases (for example [14]), we
explicitly derive a mixture prior appropriate to our applica-
tion and the resulting EM adjustments. Second, our method
uses the prior clusters to provide appropriate seed clusters,
thereby increasing the chances of avoiding poor local optima
in the EM process. Similarly, the model selection procedure
incorporates information from the preceding results while
still admitting changes in the number of recorded neurons.
Finally, this solution inherently provides a simple tracking
method to estimate whether clusters in consecutive recording
intervals can be associated to the same neuron.

Let us now incorporate the sequential nature of the data
sampling process, establishing the Bayesian framework for
MAP parameter estimation (determining model parameter
estimates Θ̂m and thus cluster membership Z) and model
selection (determining the most appropriate number of clus-
ters, Ĝ). Let Y k = {yi}Ni=1 be all spike samples in the
kth sampling interval and Y 1:k = {Y 1, ..., Y k} denote data

from the 1st through the kth intervals. The MAP parameter
estimates can be naturally derived from Bayes’ Rule:

p
(
Θk

m | Y 1:k,Mm

)
∝p
(
Y k |Θk

m,Mm

)︸ ︷︷ ︸
likelihood, Eq. (1)

p
(
Θk

m |Y 1:k−1,Mm

)︸ ︷︷ ︸
prior, Sect. III-B

where we have removed the unnecessary conditioning on
Y 1:k−1 in the likelihood, and Θk

m denotes the mixture model
parameters of the mth model of the kth sampling interval.

A. Model Classes

While many model classes are possible within the frame-
work used in this paper, we focus here on model classes that
yielded the best results for neuronal signals in a PCA basis.
Since the number of neurons contributing to a recorded signal
is not known a priori and can change during the recording
session, the model classes must allow for the presence of
different possible numbers of neurons, Gm = 1, ..., Gmax,
in the recorded signal (we typically use Gmax = 5). We
choose a Gaussian distribution, whose PDF is denoted fN , to
account for the variability in each neuron’s signals. We also
use a parsimonious shared-volume model of the covariance
matrices Σg (see [16]), finding it often provides better results
than the traditional fully variable model, but this is not a
requirement of our approach. Commonly, non-spike events
are included in the data Y k and must be identified as outliers.
A uniform “background” distribution f0 = 1

V is added to the
mixture model in order to capture these points, where V is
the volume of the measurement space. Thus, the mixture
likelihood (1) can be rewritten as a sum from g = 0, ..., Gm

where the zeroth component is the outlier distribution. The
set of independent parameters for the Gaussian mixture
model is Θk

m = {µk
g ,Σ

k
g , π

k
g}

Gm
g=1.1

B. Prior on Cluster Location

Next, we construct an appropriate prior on the model pa-
rameters based on the previous sampling interval’s clusters.

1The parameter set includes only the independent elements of the
(symmetric) Σk

g , which will depend on the chosen covariance model. We
will treat the matrix as a single parameter for brevity. Also note that
πk
0 = 1−

∑Gm

g=1
πk

g .
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The model parameters are assumed to be independent across
mixture components and across each parameter; therefore,

p
(
Θk

m |Y 1:k−1,Mm

)
=

Gm∏
g=1

p
(
µk

g |·
)
p
(
Σk

g |·
)
p
(
πk

g |·
)
,

where the factors on the right are the prior probability
densities of the respective mixture model parameters with the
same conditioning as on the left hand side. Most important
to the practical issue of cluster consistency and tracking is
the location of each cluster center, µg . Since the cluster
covariance Σg and the mixture weight πg associated with
a given neuron may vary substantially from one sampling
interval to the next, the previous values for these parameters
may not be informative, and thus we choose diffuse priors
for these model elements.

To establish priors on the cluster center locations, we look
for the gth cluster mean µg to be near to any of the preceding
interval’s cluster locations, without regard to which one,
and thus utilize mixture of Gaussians representing all of the
previous interval’s cluster means. To allow for the possibility
that Cg represents a new neuron that was not recorded in
the previous interval, a uniform distribution component is
included as well. Thus, the prior on each mean is

p
(
µk

g | ·
)

=
ω0

V
+

Ĝk−1∑
j=1

ωk
j fN

(
µk

g | µ̂k−1
j , S

k|k−1
j

)
, (3)

where the first term represents the uniform component and
the sum consists of the Gaussian components of all Ĝk−1

clusters estimated in the previous interval. The parameter
µ̂k−1

j is the estimated value of the jth cluster mean in the
previous interval, and S

k|k−1
j is the covariance associated

with the estimation that the current mean µk
g is in the same

location as the prior mean µ̂k−1
j . To set this parameter,

S
k|k−1
j = Rk−1

j + Qk−1, where Rk−1
j = 1

Nk−1
j

Σk−1
j

is the measurement covariance matrix associated with our
estimation of µ̂k−1

j (Nj is the number of data points in
cluster Cj) and the process noise covariance matrix Qk−1 is
determined empirically. The value for Qk−1 will depend on
the recording interval length T , the time between recording
intervals (if any), and experimental setup (e.g., amplification
values), and can be adjusted to account for possible electrode
movement or other temporal factors. The mixture weight ωj ,
which is the prior probability of assigning a cluster to the jth
neuron, can be weighted by the prior probabilities that the
jth neuron will be detected on the current sampling interval,
Pd,j , or that a new neuron will be detected, Pn:

ωj =

{
Pn
c j = 0
Pd,j

c j = 1, ..., Ĝk−1

where c is the normalization constant. While this formulation
allows the probability of detection to vary among known
neurons (perhaps according to their firing rates), the results
presented in this paper use a common Pd.

C. Extending EM to Account for Cluster Location Priors

Note that the prior (3) bears distinct resemblance to
the mixture likelihood (1) and will in fact share the same
difficulty of maximization. The same solution approach can
be used: add hidden variables and optimize via EM. Thus
new “membership” variables, Zk = {ζk

gj}, are added to
indicate whether the previously found (time k − 1) cluster Cj
should influence the current (time k) cluster Cg , or, ideally,

ζk
gj =

{
1 if µk

g and µ̂k−1
j represent the same neuron

0 otherwise.

Based on this approach, instead of using (3) directly, we
employ the following complete-data log prior on the means:

log p
(
µk,Zk |Θ̂k−1) =

Gm∑
g=1

Ĝk−1∑
j=0

ζk
gj log

[
ωk

j fj

(
µk

g |ψk
j

)]
(4)

where ψk
j are the parameters of jth mixture component in the

prior (ψk
j = {µ̂k−1

j , S
k|k−1
j } for the Gaussian components).

Rewriting Bayes’ Rule to include the hidden variables and
taking the log results in

log p
(
Θk

m,Zk |Y 1:k, Z,Mm

)
= C+

log p
(
Y k, Zk |Θk

m,Zk,Mm

)︸ ︷︷ ︸
Eq. (2)

+ log p
(
Θk

m,Zk |Y 1:k−1,Mm

)︸ ︷︷ ︸
Eq. (4)

where C is a constant. This complete-data posterior is the
object equation of the EM algorithm’s iterations, which
follow.

1) E-Step: As in the classical EM algorithm, the E-step
calculates the expectation of the spike-to-cluster member-
ships ẑig , given the parameter estimates Θ̂k

m:

ẑk
ig =

π̂k
gfg

(
yi |θ̂k

g

)∑Gm

n=0 π̂
k
nfn

(
yi |θ̂k

n

) .
The expectation of the other hidden data, the current-to-prior
cluster membership ζ̂k

gj = E
[
ζk
gj | Y 1:k, Θ̂k

m

]
, is:

ζ̂k
gj =

ωk
j fj

(
µ̂k

g |ψk
j

)
∑Ĝk−1

l=0 ωk
l fl

(
µ̂k

g |ψk
l

) . (5)

2) M-Step: Since the prior is independent of the param-
eters πg and Σg , these estimates remain the same as the
classical ML clustering version [13]. Maximizing our object
equation with respect to µg results in the estimate:

µ̂k
g =

 N∑
i=1

ẑk
ig(Σ̂k

g)−1 +
Ĝk−1∑
j=1

ζ̂k
gj(Sk|k−1

j )−1

−1

·

 N∑
i=1

ẑk
ig(Σ̂k

g)−1yi +
Ĝk−1∑
j=1

ζ̂k
gj(Sk|k−1

j )−1µ̂k−1
j

 , (6)

in contrast to the ML estimation of the cluster center location,

µ̂k
g =

∑N
i=1 ẑ

k
igyi∑N

i=1 ẑ
k
ig

.
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Note that Equation (6) has the form of a weighted average
of the data points yi with (fuzzy) membership to cluster Cg
and the prior means µ̂k−1

j (fuzzily) affiliated to cluster Cg ,
with the weights governed by the respective covariance ma-
trices. A minor drawback to the MAP parameter calculation
is that (6) is a function of the parameters Σ̂k

g , implying the
need to simultaneously solve the equations for the parameters
µ̂k

g and Σ̂k
g . Alternatively, one may use an approximation for

Σ̂k
g to solve (6), such as its value from the previous EM

iteration, and then find Σ̂k
g in the usual way.

D. Generating Seed Clusters

While the previous sections described how to extend the
EM algorithm to incorporate a Bayesian prior, the choice
of seed clusters to initialize this procedure is also a key
issue, as the EM algorithm is highly susceptible to finding
local optima near its initial values. Assuming again that the
clusters from interval k−1 provide a good starting point, an
obvious seeding strategy is to assign the current data points
to whichever prior cluster is closest. For this we use the
(squared) Mahalanobis distance between the ith data point
in sampling interval k and the jth cluster center estimated
from interval k − 1:

d2
j (yi) = (yi − µ̂k−1

j )T (Σ̂k−1
j )−1(yi − µ̂k−1

j ) . (7)

Recall, however, that the EM algorithm is applied to a
range of candidate model classes, with varying model order
(numbers of clusters). The primary complication arises in
cases where the candidate model order Gm is different
from the model order estimated in the previous interval,
Ĝk−1. Such differences can naturally arise, for example,
when neurons go silent or new neural signals are introduced
between sampling intervals. Below we outline our approach
for each of the three cases of varying Gm in relation to
Ĝk−1.

1) Case Gm = Ĝk−1: The seed assignment process
assigns each observation to the closest prior cluster; that is,
for each i, the observation is assigned to the jth cluster,
where j is the index that minimizes d2

j (yi) in (7).
2) Case Gm < Ĝk−1: The goal here is to produce a good

clustering seed when ∆G = Ĝk−1−Gm neuron(s) disappear
(or perhaps become indistinguishable in the current feature
space) between sampling intervals. To produce appropriate
seeds, all

(
Ĝk−1

Gm

)
combinations of the Ĝk−1 prior clusters are

evaluated to determine which set of Gm clusters minimizes
the sum of the squared Mahalanobis distance from the
nearest prior cluster. This process tests the elimination of
each possible prior cluster(s), keeping the best to inform the
current data set.

3) Case Gm > Ĝk−1: In this case, ∆G = Gm − Ĝk−1

“extra” seed clusters must be generated. Such a situation
most commonly occurs when ∆G new neurons have been
detected and a new cluster must be created for each. Another
possibility is that the prior interval’s clustering result was in-
correct — with multiple neurons being inaccurately grouped
into one cluster, and the current clustering step must rectify
this.

The data points obtained in the current sampling interval
are first assigned to the Ĝk−1 prior clusters, as in the first
case above, after which we wish to divide the cluster that is
most likely to contain multiple neurons. Since such a group
is likely to have a larger spread of points, the group with
the largest average point-to-centroid Euclidean distance is
chosen. A one-step divisive hierarchical clustering technique
is applied to spilt the cluster. The above identification and
splitting of groups is repeated as necessary for ∆G > 1.

E. Selecting the Model Class Mm

To start the model selection step, a Bayesian approach is
used again, with the model probability:

P
(
Mm |Y 1:k

)
=
p
(
Y k |Y 1:k−1,Mm

)
P
(
Mm |Y 1:k−1

)
p
(
Y k |Y 1:k−1

) .

(8)
This probability is difficult to compute because the evidence
term p

(
Y k |Y 1:k−1,Mm

)
theoretically requires an integra-

tion over all possible parameters.
However, by employing Laplace’s asymptotic approxima-

tion [13], [17], we can estimate a value of the evidence term
while evaluating only at the MAP parameters Θ̂k

m:

p
(
Y k |Y 1:k−1,Mm

)
≈ p
(
Y k |Θ̂k

m,Mm

)
· p
(
Θ̂k

m |Θ̂k−1
m

)
(2π)nm/2|Hm(Θ̂k

m)|−1/2 , (9)

where nm is the number of independent parameters in model
Mm. The first factor is the likelihood of the Gaussian
mixture and the other factors, collectively known as the
Ockham factor, as they penalize the complexity of the model
parameterization, include the parameter prior (3) and the
Hessian matrix Hm, which we have determined analytically
for the model classes under consideration. Most popular
approaches to model selection, such as the Akaike Infor-
mation Criterion (AIC) and Bayes Information Criterion
(BIC), are essentially approximations to (9) and specific to
the maximum likelihood case [17]. For our application, the
Laplace approach naturally incorporates the prior on Θk

m.
The model class prior P

(
Mm |Y 1:k−1

)
in (8) is simply

the output of the previous clustering interval, under the
assumption that the model class is constant. However, there
exists some probability that the model class can change (e.g.,
new neural signal sources appear, or existing signal sources
disappear). Thus, we use a weighted mixture of the previous
result and a uniform prior:

P
(
Mm |Y 1:k−1

)
← αP

(
Mm |Y 1:k−1

)
+ (1− α)

1
M̄

,

where M̄ is the total number of model classes under con-
sideration. This in effect places a “forgetting factor” on the
prior, governed by the parameter α (we use α = 0.95), and
ensures a nontrivial probability of each model class at every
sampling interval.

IV. TRACKING CLUSTERS ACROSS TIME

Ultimately our goal is to “track” individual neurons across
the recording session — that is, to associate specific neurons
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with specific signal clusters over time. Viewing this as a
data association task on the means, the quantity ζ̂k

gj already
encodes the probability that current cluster Ck

g is associated
with prior cluster Ck−1

j , relative to all Ĝk−1+1 components
in the prior (3). Each current cluster Ck

g is therefore matched
to its best prior cluster Ck−1

j∗ via j∗ = arg maxj ζ̂
k
gj to track

neurons over consecutive intervals. Thus, at the completion
of the EM iterations, in addition to the model parameters Θ̂k

m

and the cluster memberships ẑk
ig , the algorithm also yields

the cluster associations ζ̂k
gj for tracking.

If j∗ indicates a match to the uniform distribution, Ck
g is

considered a new neuron, highlighting the importance of this
uniform component of our prior. Disappearing neurons are
identified during this process as well, simply by not matching
prior clusters to any current clusters. Additionally, we do
not restrict multiple current clusters Ck

g from matching to the
same prior cluster Ck−1

j , as we wish to mark these events
as “splits” of the neuronal signals (when the signals of two
(or more) neurons were previously indistinguishable and now
separated).

V. EXPERIMENTAL RESULTS

The proposed algorithm was applied to recordings from
macaque parietal cortex, collected in acute recording ses-
sions with platinum-iridium, 1.5 MΩ-impedance electrodes
in a microdrive controlled by our autonomous positioning
algorithm [2]–[4]. Spikes were detected from the recorded
voltage stream according to a wavelet matching approach
[18], aligned by their minimum, and projected onto a two-
dimensional PCA feature space prior to classification.

As noted earlier, EM optimization of a Gaussian mixture
model with ML parameters has shown its effectiveness
in many clustering applications [13] and specifically spike
sorting [1], [11], [12]. Thus, we compare our results to
such a technique, which we have used for the past two
years in hundreds of recording sessions. We originally chose
this method based on its high rate of success compared
to other spike sorting options, especially as our motivating
applications requires sufficiently low computational cost for
real-time usage and good results even in the case of small
amounts of data.

In the implementation of the ML approach, seed clusters
are generated from a standard hierarchical agglomerative
technique and model order is selected according to Bayesian
information criterion (BIC)2, following the suggestions of
[19]. Both the MAP and ML implementations use common-
volume parsimonious models of the components’ covariance
matrices and the same uniform “background” mixture com-
ponent to capture outliers. Below, we first examine sequences
of consecutive sampling intervals in detail and then provide
views of algorithm performance over longer time frames.

Fig. 2 displays clustering results over a sequence of six
consecutive sampling intervals (or steps), chosen to highlight
how the MAP algorithm enables neuron tracking over time,

2BIC ≡ 2lM (Θ̂k
m | Y k,Mm) − nm logN , for maximized mixture

log-likelihood lM , and number of independent model parameters nm.

especially as compared to alternatives. Each sampling inter-
val contains 10 seconds of data, with separating intervals
of approximately 25 seconds during which no signals are
sampled. For consistent visualization, we use the same PCA
feature space for each step, rather than the PCA features
of the individual steps (in which clustering took place).
Although it is impossible to know the actual spike-neuron
associations conclusively, the results are compared to a best-
effort “ground truth” clustering of the data, as determined
by a thorough manual examination of both the spikes’ wave-
forms and PCA features in each sampling interval (whereas
the automated clustering uses only PCA features). In addition
to the MAP and ML algorithm results, a k-means clustering
is also presented, with the number of clusters k manually
selected to match the number of clusters in the ground truth
results. Also listed for each step in Fig. 2 is the percentage of
spikes correctly classified, calculated as follows: Each cluster
is matched to the “truth” cluster sharing the most spikes,
and the number of spikes these clusters have in common is
considered correctly classified.

TABLE I
CLUSTER STATISTICS OF SELECTED STEPS FROM SEQUENCE OF FIG. 2.

Step MAP ML
g Tr. Ng Err. ∆FR g Tr. Ng Err. ∆FR

1
1 A 49 0% 0% 1 A 48 2% 2%
2 B 12 0% 0% 2 B 13 8% 8%
3 C 17 0% 0% 3 C 17 0% 0%

2
1 A 73 0% 0% 1 A 76 4% 4%
2 B 53 0% 0% 2 — 5 n/a n/a
3 C 65 0% 0% 3 C 115 86% 77%

3

1 A 73 4% 1% 1 A 74 3% 3%
2 B 32 23% 23% 2 B 32 23% 23%
3 C 36 17% 12% 3 C 36 17% 12%

4 — 4 n/a n/a

6

1 A 74 4% 4% 1 A 104 35% 35%
2 B 29 7% 7% 2 — 1 n/a n/a
3 C 48 7% 7% 3 C 53 18% 18%

4 — 3 n/a n/a

Table I provides a detailed view of steps where the MAP
and ML differed significantly. For these steps, Table I lists a)
Tr., the “truth” cluster to which the gth cluster was matched;
b) Ng , the number of spikes in gth cluster; c) Err., the
percentage of falsely classified spikes for this cluster; d)
∆FR, the difference in firing rate between the cluster and
its matching truth cluster. For individual cluster purposes,
we defined the error as Err. = MC+FP

Ng,truth
, where MC is the

number of missed classifications and FP is the number of
false positives.

Letters in Fig. 2 label “neuron identities,” indicating the
tracking of neurons across steps. Overall, notice that the
MAP algorithm consistently identifies three clusters in ap-
proximately the same PCA position and maintains the neuron
identities through all steps, matching the desired results. The
ML algorithm often provides good results as well, but some
steps (e.g., 2 and 6) show incongruous (though statistically
sound) results, seemingly more volatile to noise variations.
Meanwhile, the k-means solution is unreliable, even with the
advantage of knowing the model order a priori.

The steps with poor results significantly impact our ability
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Fig. 2. Cluster results over six consecutive time steps in a common PCA space. Rows: (1) Extracted, aligned waveforms; (2) Results of our MAP
algorithm; (3) Manual attempt at “ground truth”; (4) Baseline (ML) algorithm. (5) k-means, with k = 3. Shaded ellipses indicate σ = 2 for each cluster;
percentile is of spikes classified correctly; capital letters label neuron identity (omitted in first two rows steps 2-5 since same throughout); black points are
outliers.

to track neurons over consecutive steps, making the cost of
misclassification on a single step high. For example, on step
2, the ML method groups most spikes from neurons A and
C into a single cluster. When attempting to associate the
clusters across time, this results in “losing” the two neurons,
with the cluster interpreted as new (labeled D), rather than
just tracking the neurons from step 1 as the MAP method
does. Then, when the spikes from A and C are (mostly)
correctly classified in step 3, they are actually considered as
“new” neurons again (F and G) since they did not appear
in the same position as in the previous step. This type of
error is an example of misclassification preventing neuron
tracking.

The consistency of the clustering outcome is a primary
benefit of the proposed algorithm, as evidenced in Fig. 2. Al-
though it is difficult to compellingly quantify this advantage,
one metric to examine is the change in the number of clusters
from step to step. Taking Ψ =

∑S
s=1

∑K
k=2|Ĝk − Ĝk−1|

over all time steps k of each recording session s for which
we applied the proposed algorithm, we get a quantitative
measure of “inconsistency” — note, however, that many
changes of G are correct as the data change over a recording.
Examining a set of S = 100 consecutive recording sessions,
comprising about one month of recording trials and 21 914
total time steps k, Ψ = 3516 for the MAP algorithm,
compared to Ψ = 17 646 for the ML algorithm, an 80%

decrease.
An example plot of the number of returned clusters Ĝ

over an entire trial are shown in Fig. 33. Clearly, the MAP
algorithm provides a much more consistent model, though
some spurious changes in the number of clusters are still
evident. Several durations that neurons were tracked are
shown as well as some related event types. Often, the
regions where Ĝ varies more, as well as where neuron tracks
change, correspond to motion of the electrode, as the control
algorithm attempts to isolate a neuron. Where Ĝ changes
for just a single step sometimes indicates an intermittent
(temporarily inactive) neuron, and some are mistakes by our
algorithm. These errors may have a variety of causes but
are usually related to a lack of separability in PCA space or
coincidental alignments of the spike detector’s false positives
(outliers).

VI. DISCUSSION

The results presented above show how our MAP algorithm
provides more consistent clustering, which enables tracking
neurons from step to step. Additionally, it decreases the
corruption of neuronal statistics, such as firing rate, caused
by misclassification. Although we have focused on providing
more consistent results, our algorithm has also performed
well where the prior is not similar to the current clusters.

3Ĝ = 0 occurs when no spikes are detected on the recording interval.
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The prior’s construction as a mixture of densities effectively
influences the cluster locations but assumes neither a certain
number of clusters nor the a priori association of particular
current and prior clusters. This is a key consideration for our
prior, ensuring the algorithm is not unduly biased by the prior
when evidence suggests the appearance (or disappearance) or
neurons.

A few elements may be considered for future work.
Most importantly, some clustering mistakes (particularly in
model class selection) and temporarily inactive neurons are
inevitable. We may seek to make the tracking algorithm
more robust by incorporating prior information from several
time steps and perhaps implementing a multiple hypothesis
tracking approach. Also, choice of feature space, as well
as a neuron’s “dynamics” in this space, may be considered
further.

In conclusion, we have detailed a Bayesian clustering
algorithm to optimize a mixture model via EM. In addition
to constructing an appropriate prior on cluster locations
and adjusting the traditional EM approach to incorporate
this term, we have created a new process for generating
seed clusters and have proposed a suitable model class
selection method. As a whole, this technique enables us
to associate clusters across consecutive time intervals, and
thus track neurons whose signals persist over many adjacent
recording intervals. From an electrophysiology perspective,
using a neuron tracking algorithm can increase the number
of scientifically useful neurons identified on the signal and
the reliability of the data. From the perspective of building
an autonomous electrode positioning algorithm that tries
to maximize the SNR of a particular neuron, consistently
tracking the neurons’ identities is essential to determining
appropriate electrode control.
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