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Abstract— The stabilization of the resistive wall mode (RWM)
instability in the DIII-D tokamak is necessary to maintain con-
ditions for the plasma experiment. Stability has been achieved in
experiments using proportional/derivative (PD) gain controllers.
However, the stability range in terms of the mode growth
rate γ is limited. Employing an optimal feedback controller in
conjunction with a state estimator designed to reject sensor
colored noise, the stability region of the system is greatly
extended. Using experimental results, the power spectral density
of the measurement noise is used to model the colored noise as
a noise transfer function with a white noise input. The Linear
Quadratic Gaussian (LQG) control technique is applied and
results are compared to a traditional PD controller through
simulations.

I. INTRODUCTION

A well known instability in the field of magnetohydrody-

namic (MHD) physics is the resistive wall mode (RWM),

which occurs in high-pressure plasmas in toroidal magnetic

confinement fusion devices such as the tokamak ([1], [2]).

The RWM is a form of plasma kink instability that deforms

the entire plasma configuration symmetrically in the helical

direction with an extremely fast MHD Alfvenic time scale

(∼ µs). The presence of the conductive tokamak structure

acts as a stabilizing mechanism through the eddy currents

that are induced by the time-varying magnetic perturbations

generated by the plasma deformation. These induced currents

generate magnetic fields that oppose the plasma deformation,

resulting in a slower growth time (∼ ms) of the RWM,

which allows the use of feedback to control this mode [3].

The inherent resistive losses of the surrounding structure

cause a decay in the induced wall currents reducing the

stabilizing effect of the wall. Current research focuses on

the stabilization of the first (n = 1) kink mode (the plasma

perturbation repeats only once as the toroidal angle varies

from 0 to 2π) since this is usually the first to occur when

pressure increases.

Convention in the fusion community uses a normalized

pressure coefficient βN to measure the efficiency of confine-

ment of the plasma. The range of interest for the control

of the RWM is between the critical βN value where the

plasma becomes unstable without a perfectly conducting wall

and the critical βN where the RWM is unstable even with
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the perfectly conducting wall due to high plasma pressure.

This is the range between the “no-wall beta limit” βN,no−wall

and the “ideal-wall beta limit” βN,ideal−wall . The normalized

plasma pressure efficiency βN is further normalized based

on the limits of interest to form a new variable Cβ =
βN−βN,no−wall

βN,ideal−wall−βN,no−wall
, where Cβ is a measure of the stability

of the plasma to resistive wall modes. For Cβ < 0 the

RWM is always stable and for Cβ > 1 the plasma cannot

be practically stabilized. The range of interest for control of

the RWM is 0 < Cβ < 1. Further, there exists a relationship

between the normalized measure of stability Cβ and growth

rate of the RWM γ . There are efforts to fully understand

this relationship, yet typically the growth rate increases for

increasing Cβ [4].

There have been many successful efforts on feedback

stabilization of resistive wall modes in DIII-D [5], [6] as

well as other toroidal experiments, such as HBT-EP [7]

and NSTX [8]. Most of the stabilizing efforts in this field

focused on designing non-model-based, empirically-tuned

controllers with PD (proportional-derivative) action, without

taking advantage of developed models. One problem with PD

controllers used in present experiments is that they require

substantial derivative gain for stabilization, which implies a

large response to noise, leading to a requirement for high

peak voltages and coil currents. Linear Quadratic Gaussian

(LQG) controllers show the potential of overcoming this

limitation by making use of Kalman filters to smooth es-

timates of the unstable mode and by exploiting the a-priori

knowledge (model) of the system. There have been some

efforts on developing LQG optimal controllers based on

state-space representations of circuit models for the DIII-

D tokamak [9] and ITER [10]. Although these previous

controllers have been proved effective through simulation in

extending the stability region of the closed-loop system, they

do not exploit experimental results to model the color of the

measurement noise.

This work uses the General Atomics (GA)/Far-Tech DIII-

D RWM model, which exhibits more detail and complexity

than those models considered in previous work for DIII-

D. The model replaces the perturbed plasma surface by a

perturbed toroidal current sheet, and models the resistive wall

using an eigenmode approach [11], [12]. The plasma surface

and current sheet perturbations are equivalent in the sense

that they both produce the same magnetic field perturbation.

Using Faraday’s Law, a set of inductive circuit equations

form the state space model that embeds a scalar coupling co-

efficient cpp, which is inversely related to the growth rate γ of

the mode. Although the plasma surface deformation cannot
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Fig. 1. Coils and sensors for RWM magnetic feedback stabilization.

be directly measured in real time, the magnitude and phase

of the deformation can be diagnosed from measurements

by a set of 22 magnetic field sensors composed of poloidal

magnetic field probes and saddle loops, which measure radial

flux. A set of 12 internal feedback control coils (I-coils) can

then be used to return the plasma to its original axisymmetric

shape. Fig. 1 shows the arrangement of coils and sensors.

Using an estimator for the two orthogonal components of

the assumed n = 1 mode pattern, the 22 outputs are reduced

to 2 outputs that represent the sine and cosine components

of the RWM. These two outputs can be combined to express

the output as a signal composed of the RWM amplitude and

toroidal phase [13]. The quartet configuration for the I-coils

reduces the number of controllable inputs by locking the

phase of the I-coils in sets of four, 120 degrees apart. Thus,

the original 12 inputs are reduced to 3 inputs, which represent

three I-coil circuits that are independently controllable by the

quartet configurations.

The overall goal of this work is to use the developed DIII-

D RWM model to design a model-based optimal feedback

controller for RWM stabilization over a predefined range

of the growth rate γ , extending the theoretical stability

range to the ideal wall limit (Cβ = 100%). The color of

the measurement noise is modeled by taking advantage of

experimental data, and an augmented plant model is used for

controller design. The paper is organized as follows. Section

II introduces the GA/Far-Tech DIII-D RWM plasma model.

Section III describes the design of the optimal feedback

controllers using the LQG control technique. Section IV

describes the manipulation of experimental data to model the

colored measurement noise and augment the plasma model.

In Section V, the performance of this controller is assessed

through simulations. Section VI closes the paper by stating

the conclusions.

II. PLASMA MODEL

A. System Model

The matrices in the model represent characteristics of the

tokamak and are well known. The uncertainty is introduced

through the variable cpp, which corresponds to a certain

growth rate γ of the resistive wall mode. The relationship

between these variables is shown in Fig. 2 for a particular

plasma equilibrium and is further explained in [12].
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Fig. 2. Empirical relationship between the growth rate γ and cpp.

The model is represented in terms of the couplings be-

tween the plasma (p), vessel wall (w), and coils (c). The

model derived from Faradays law of induction results in the

system dynamics that reduce to

(Mss −MspcppMps)İs +RssIs = Vs (1)

where Mss is the mutual inductance between external conduc-

tors, including the vessel wall and the coils, Msp is the mutual

inductance between external conductors and the plasma, Rss

is the resistance matrix, Is is the current flowing in the

conductors, and Vs is the externally applied voltage to the

conductors. The mutual inductance matrices are given by

Mss =

[

Mww Mwc

Mcw Mcc

]

, Msp =

[

Mwp

Mcp

]

, Mps =
[

Mpw Mpc

]

,

where Mps and Msp satisfy the following condition

Mps = MT
sp =

[

MT
wp MT

cp

]

⇒ Mpw = MT
wp,Mpc = MT

cp.

The resistance matrix is given by

Rss =

[

λw 0

0 Rc

]

,

where λw characterizes the couplings of a wall surface

eigenmode to other states by the time-varying perpendicular

magnetic fields contributed by those states and Rc is the coil

resistance. The current and externally applied voltage to the

conductors can be written as

Is =

[

Iw

Ic

]

, Vs =

[

0

Vc

]

,

where Iw is the wall current, Ic is the coil current, and Vc is

the externally applied voltage to the coil.

This model can be represented in a state space formulation

using the current in the conductors as the states (x = Is) and

the applied voltage as the inputs (u = Vs). This results in the

following state space equation

ẋ = Ax+Bu (2)

where A = −L−1
ss Rss, and B = L−1

ss , with Lss = Mss −
MspcppMps. The output equation of the state space repre-

sentation is based on sensor measurements that relate to the

conductor currents through the dynamics

y = Cx (3)
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where C = Css −CypcppMps, Cyp is the coupling matrix be-

tween the sensor and plasma current, and Css =
[

Cyw Cyc

]

is given by the coupling matrix between the sensor and wall

current Cyw, and the coupling matrix between the sensor and

coil current Cyc.

B. Noise Effect Model

The operation of DIII-D introduces both process noise

to the systems states and measurement noise to the system

outputs. The state space system model is therefore modified

to include the noise effect,

ẋ = Ax+Bu+Gw1, (4)

y = Cx+ v, (5)

where w1 is the process noise and v is the measurement

noise. The process noise scaling matrix is assumed as G = In,

where In denotes the n × n identity matrix and n is the

number of states. The noise w1 is assumed to be zero-

mean, white noise with covariance given by Q = E(w1wT
1 ),

where E denotes the expectation operator. The measurement

noise is characterized by the covariance matrix R = E(vvT ).
Experimental data suggests that the measurement noise in

DIII-D is not white, having a particular frequency content.

The measurement noise v is then modeled as a zero-mean,

colored noise.

III. LQG OPTIMAL FEEDBACK CONTROLLER

With the ultimate goal of minimizing both the total fluctua-

tion energy of the instability and the control power, we make

use of the LQG optimal control theory. By exploiting the

separation principle, the LQG controller combines a linear

quadratic regulator (LQR) (state feedback controller) and a

Kalman filter (state estimator).

The state feedback law u =−Kx, where K is the state feed-

back gain matrix, is obtained by minimizing the quadratic

cost function,

J(u) =
∫ ∞

0

(

xT Qwx+uT Rwu
)

dt (6)

where Qw (at least positive semi-definite) and Rw (positive

definite) are weighting matrices for the states and inputs

respectively. The state feedback gain of the LQG controller

is given by

K = R−1
w BT S, (7)

where S is the solution of the associated Riccati equation

AT S +SA−SBR−1
w BT S +Qw = 0. (8)

The state estimation x̂ is provided by the Kalman filter

˙̂x = Ax̂+Bu+L(y−Cx̂) (9)

where L is the Kalman gain matrix obtained by minimizing

the trace of the estimation error x(t)− x̂(t) covariance under

the assumption that both the process noise and the measure-

ment noise are zero-mean and white (constant power spectral

density). The gain of the state estimator is given by

L = PCT R−1
, (10)

where P is the solution of the algebraic Riccati equation,

0 = AP+PAT +BQBT −PCT R−1CP, (11)

with Q and R denoting the process and sensor noise covari-

ance matrices.

The final controller is governed by the state-space equa-

tions

KLQG :

{

˙̂x = [A−LC−BK] x̂+Ly

u = −Kx̂
(12)

IV. MODELING OF COLORED NOISE

The energy of the time domain signal u(t), which is the

energy per unit time (instantaneous power u2(t)) integrated

over all time, can be expressed using Parseval’s relation as

the energy per unit frequency integrated over all frequency

E =
∫ ∞

−∞
u2(t)dt =

1

2π

∫ ∞

−∞
F∗(ω)F(ω)dω ,

∫ ∞

−∞
Ψ(ω)dω (13)

where F(ω) denotes the Fourier transform of u(t), and

Ψ(ω) =
∣

∣

∣

1√
2π

∫ ∞
−∞ u(t)e− jωtdt

∣

∣

∣

2

= |F(ω)|2
2π is the energy spec-

tral density, which describes how the energy (or variance) E

of a time signal is distributed with frequency [14].

Stochastic signals are not absolutely integrable or square

integrable, and consequently do not have Fourier transforms.

In this case, the concept of energy spectral density is not use-

ful. However, many of the properties of stationary stochastic

processes, where the statistical properties are invariant to

a shift of time origin, can be summarized in terms of the

auto-covariance function, for which the Fourier transform

often exists. As an alternative to the energy spectral density,

we use the power spectrum density (PSD) Φuu(ω), which

describes how the power P of a time signal is distributed with

frequency and is the Fourier transform of the auto-covariance

sequence Cuu(τ) = E{u(t)u(t − τ)},

Φuu(ω) =
∫ ∞

−∞
Cuu(τ)e− jωτ dτ, P =

∫ ∞

−∞
Φuu(ω)dω (14)

where we assume without loss of generality that E{u(t)}= 0.

For a linear time-invariant (LTI) system with impulse

response h(t), the output sequence y(t) is related to the input

sequence u(t) through the convolution integral,

y(t) = h(t)∗u(t) ,

∫ ∞

−∞
h(t)u(t − τ)dτ, (15)

and the relationship for the input and output PSD’s is given

by

Φyy(ω) = |H( jω)|2 Φuu(ω), (16)

where H(s) is the Laplace transform of the impulse response

h(t) (transfer function of the system).

In order to model the color of the measurement noise

present in the DIII-D, we are interested in finding a transfer

function Hv(s) that will produce an output v with the same

PSD observed from experimental data, when we have a

zero-mean, unitary-variance, white noise w2 at the input,

i.e., v(s) = Hv(s)w2(s). Since Φw2w2
(ω) = 1 by definition

of white noise, using (16) we obtain that

Φvv = |Hv( jω)|2. (17)
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Fig. 3. Typical sensor noise signal in DIII-D.
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Fig. 4. Computed and estimated noise transfer function.

Fig. 3 shows a typical zero-mean measurement noise

signal in one of the 22 diagnostics used for RWM control

in DIII-D. Using (17) we can conclude that |Hv( jω)| =
√

Φvv(ω). Fig. 4 shows the square root of the computed

PSD Φvv(ω) for the noise signal (solid blue line). Using the

Matlab fitting algorithm “fitmagfrd,” we obtain an estimate

for the noise transfer function Hv(s), which is also shown in

Fig. 4 (dashed red line).

This procedure can be carried out for each of the 22

sensors. Each transfer function can be written in state space

representation as

ẋv = Avxv +Bvw2 (18)

v = Cvxv +Dvw2. (19)

Finally the modeled color noise can be augmented with

the original system to form

x̃ =

[

x

xv

]

,w =

[

w1

w2

]

(20)

˙̃x =

[

A 0

0 Av

]

x̃+Bu+

[

G 0

0 Bv

]

w (21)

y =
[

C Cv

]

x̃+
[

0 Dv

]

w. (22)

V. CONTROLLER SYNTHESIS AND SIMULATION

A. Controller and Kalman Filter Synthesis

The LQG controller synthesis is applied to both systems

considered, model (4)-(5) without the model for the colored

noise and model (21)-(22) with the model for the colored

noise. By doing this we intend to quantify the effect of

neglecting the color of the noise during the Kalman filter

design. The choice of the weighting parameters is made such

that slightly more weight is placed on the system inputs and

less on the states. This is achieved with Qw and Rw weighting

matrices that are diagonal matrices of 1.0× 10−2 and 1.0

respectively. These design parameters increase the damping

and decrease the bandwidth, which decreases the response

time of the controller [15]. However, the controller design

can still perform to the design constraints.

For the base case where the color of the measurement

noise is neglected (i.e., the measurement noise v is erro-

neously assumed white during the Kalman filter design), the

Q and R covariance matrices are given by 1.0 × 104 and

1.0×10−11 respectively. This design choice helps to decrease

process noise and increase reliance on sensor noise, which

effectively results in a fast estimation response. For the case

where the color of the measurement noise is modeled, the

measurement noise is included in the process noise causing

an augmented Q matrix. The process noise part of the

covariance matrix Q remains 1.0× 104, while the modeled

measurement noise part of the Q matrix has a covariance of

3.5×103. The covariance matrix R is now set to zero.

The complete system that is used to design the controller

has an additional two time delay blocks preceding the plasma

model. The time delays physically represent the plasma

control system and the power supply. For design purposes,

the time delays are linearized using second order Padé

approximations.

These controllers were designed using a cpp value of 0.29

(γ = 6,900) using the 29 eigenmode model with 64 states.

The base case controller was designed with an order of

73, but using model reduction the order was reduce to 8

while maintaining similar performance characteristics. The

controller with the modeled colored noise was designed with

an order of 139, but was also reduced to 8 with minimal

performance effects.

B. Controller Simulation and Results

In order to be able to compare the proposed model-based

LQG controllers with present non-model-based controllers, a

proportional-derivative (PD) controller is designed (integral

action is not required for this system). The PD controller is

synthesized to maximize the stability range as a function of

γ and is of the form

Ki j =
GPi j

+GDi j
s

1+ τpcss
(23)

where i is the index for the control inputs into the system

(i = 1 . . .3), j is the index for the number system outputs ( j =
1 . . .2), GPi j

is the proportional gain, GDi j
is the derivative

gain, and τpcs is the time constant taken to be 4×10−4 sec.

Each Ki j term fills the 3 × 2 controller matrix K. It was found

that the stability range can be maximized by a controller with

non-zero K11, K22, and K32 terms and every other term set to

zero. Using PD controllers for the terms K11, K22, and K32,

all six gains are optimized to obtain the maximum range of

stability as a function of γ . The resulting gains are
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TABLE I

PERFORMANCE TARGETS AND CONSTRAINTS.

Condition Target Value Maximum Constraint

Rise Time 1.0ms 5.0ms
Settling Time 5.0ms 10ms
Input Voltage N/A ± 100V

Fig. 5. Top Level of the Simulink model.

GP11
= 3.80×104 GD11

= 76

GP22
= 1.38×104 GD22

= 40

GP32
= 6.62×104 GD32

= 103.

The performance of the LQG controllers are simulated

using a Simulink model of the plasma, controller, plasma

control system, and power supply and compared to the results

of a well-tuned PD controller. The top level of the Simulink

model is presented in Figure 5. The power supply has a

saturation block that realizes the physical limit of the applied

voltage of ±100 V. The applied process noise is a white noise

element while the sensor noise is the modeled colored noise

with covariance defined by the controller design values. Table

I provides the performance constraints in response to a unit

step in the RWM mode amplitude.

Fig. 6 shows the time response to initial conditions of

the plasma, normalized to a starting RWM mode amplitude

of 1 Gauss. This simulation is performed at constant RWM

growth rates of γ = 10 rad/s and γ = 5,000 rad/s, the lower

and upper limits of the growth rate range of our interest. In

both cases, the LQG controllers provide quick suppression of

the RWM mode amplitude, out-performing the PD controller,

which does not provide quick suppression at the faster growth

rate and even shows a longer settling time for the slower

growth rate.

Another example is presented in Fig. 7, which shows the

time response to a unit step disturbance in the RWM mode

amplitude. Once again, the simulation is performed with

constant growth rates, which define our range of interest. For

the slower growth rate (top graph), all three controllers have

a similar rise time, minimal overshoot, and settling time. For

the faster growth rate, the settling time for all the controllers

is increased. The PD controller converges to a bigger steady-

state offset when compared to the LQG controllers.
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Fig. 6. Initial condition response RWM mode amplitude for γ = 10 rad/s
(top) and γ = 5,000 rad/s (bottom).
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Fig. 7. Step response RWM mode amplitude for γ = 10 rad/s (top) and
γ = 5,000 rad/s (bottom).

C. Closed-loop Stability and Performance

It is useful to determine the range of γ where the sys-

tem remains stable as well as the range where the system

performs within the limits of the performance constraints

(see Table I). Table II provides the ranges of γ for which

stability and performance conditions are satisfied. The first

row (Stability Range) indicates the range of γ for which the

system remains stable when using a unit step disturbance for

the RWM model amplitude. The second row (Perf. Range

(Initial)) indicates the range of γ for which the performance

conditions are satisfied when an initial unit excitation of the

RWM mode amplitude is forced through appropriate initial

conditions. Both model-based LQG controllers show good

stability and performance properties well beyond the desired

γ range and that of the PD controller, with the LQG controller

design that exploits the model of the colored noise having a

larger range in both stability and performance.

As a final check of the controllers’ performance, the

measurement noise characteristics are determined. A test is

performed to find the RMS noise level of the RWM mode
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TABLE II

γ STABILITY AND PERFORMANCE RANGES.

Controller LQG LQG w/ Noise PD

Stability 0 - 7,300 rad/s 0 - 9,000 rad/s 0 - 3,800 rad/s
Perf. (Initial) 0 - 5,800 rad/s 0 - 7,300 rad/s 0 - 3,800 rad/s
RMS Noise 4.50 G 4.50 G 0.75 G

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000

γ and c
pp

 Trajectories versus Time

G
ro

w
th

 R
a
te

 γ
 (

ra
d
/s

e
c
)

Time (ms)
0 1 2 3 4 5 6 7 8 9 10

0

50

100

c
p

p

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

RWM Mode Amplitude Time Response for Stepping γ

R
W

M
 M

o
d
e
 A

m
p
lit

u
d
e
 (

G
)

Time (ms)

 

 

LQG (Modeled Colored Noise)

LQG (Original Plant)

PD Controller

Fig. 8. Initial condition response control inputs for stepping γ .

amplitude that can be sustained until instability is reached

due to the input voltage constraints. The third row in Table

II summarizes the approximate RWM mode amplitude noise

level at which this occurs. The row RMS Noise corresponds

to an initial condition response test at a growth rate of

γ = 5,000 rad/s to determine the maximum noise level before

instability was reached. Both LQG controllers can withstand

large amounts of sensor noise compared to the PD controller.

Since the optimal feedback controllers stabilize the plant

over a range of growth rate, it is of interest to investigate the

controller performance using time-varying of growth rate γ .

The results for a stepping and sinusoidal excitation of the cpp

parameter are presented (Fig. 8-9). The step function also
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Fig. 9. Initial condition response control inputs for sinusoidal cpp.

initiates at cpp = 5.75 and changes between the maximum,

nominal, and minimum values of cpp in 0.5 ms intervals over

a 2.5 ms span. The amplitude of the sinusoidal function in

cpp is 5.4175 with an offset of the nominal value (cpp =
5.75), which results in a function reaches the highest growth

rate in the design range. Its frequency is 5,000 rad/sec. In

both cases the RWM mode amplitude is quickly suppressed

(Fig. 8-9). The LQG controller including the colored noise

model maintains less RWM amplitude compared to the base

case LQG controller, providing better rejection to changes in

the growth rate. In all cases the PD controller has difficulty

suppressing the RWM amplitude and becomes unstable.

VI. CONCLUSIONS

A colored noise transfer function was deduced using the

power spectral density of experimental data and estimating

a model with a white noise input. The stabilization region

of the RWM was successfully extended by applying an

optimal feedback control law and state estimator (LQG)

to the augmented state space model using colored noise.

The stability region was significantly improved with the

model-based control as opposed to the non-model-based,

empirically-tuned PD controller, while maintaining a con-

troller order that can be implemented.
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