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Abstract— Optimal path coordination problems for multi-
vehicle systems are formulated in the framework of hybrid
systems and solved using dynamic programming techniques. In
these problems, the path cost for one vehicle is a discontinuous
function of the distances to other vehicles. This leads to a non-
standard optimal control problem.

I. INTRODUCTION

Problems of collaborative multi-vehicle control are posing

new challenges to control. In some problems, cooperation

concerns distributing similar vehicles over an area to op-

timize the rate of coverage in surveillance missions. In

other problems, heterogeneous vehicles with complementary

capabilities can be used more advantageously when other

forms of cooperation take place. One such example arises

when planing operations of unmanned air vehicles (UAV) in

hostile air spaces. The probability of survival of an UAV is

directly proportional to the value of the path integral taken

with respect to some risk function [5]; the level of risk is

significantly reduced when the UAV flies under the protection

of an UAV carrying a jamming device. This is an example

of a collaborative control problem where vehicles interact to

improve individual or group performance.

The interesting questions are: how is optimal vehicle

control related to optimal group control? What is the value

of cooperation? These questions are better understood in

the framework of dynamic programming (DP) [2]. DP

approaches the problem of optimizing the behavior of a

dynamic system with respect to some cost function by

introducing a value function which gives, at each point of

the state space, the optimal cost to go for the system. When

the optimization problem is properly formulated (see [8] for

details), the value function satisfies an equation which is

derived from the Principle of Optimality, which basically

states that in an optimal sequence of decisions or choices,

each subsequence must also be optimal.

Here we discuss part of our research on DP for collabora-

tive control problems with the help of a simple two-vehicle

optimal path coordination control problem (see [7] for related

work on DP for collaborative control). This problem is rep-

resentative of more general optimal coordination problems.

Vehicle v1 has to find the optimal trajectory from some

initial location α to some destination γ. The instantaneous

path cost for v1 is reduced by a fixed amount l when the
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position of this vehicle “coincides” with the position of

another vehicle, v2; this means that the path cost for v1 is

a discontinuous function of the relative positions of the two

vehicles. v2 has a limited amount of fuel; it departs from

β 6= α and is required to return to β before it runs out of

fuel. The vehicles are allowed to met once and move together

up to the point where v2 has enough fuel to return to β.

We formulate the collaborative control problem for v1 and

v2 as an optimal control problem for a hybrid automaton

with three discrete states (the hybrid automaton models the

combinatorial aspects of the problem) and find the structure

of the solution using DP techniques. In this formulation,

the state of the two-vehicle system has two components: a

memoryless component, given by the continuous state, and a

component with memory, given by the discrete state which

describes the history of motions up to the current discrete

state. This is because the system has to “remember” if the

vehicles met at a given point, to prevent them from meeting

again (as required). The jump sets are given by the set

reachable by v2 for a round trip from β (see [9] for details on

dynamic optimization techniques for reachability analysis).

The motivation for our formulation comes from two prob-

lems of motion coordination discussed in [10] to illustrate

the use Ordered Upwind Methods for solving optimal hybrid

control problems. The first problem consists of finding an

optimal trajectory on a surface, given that there are discrete

transitions between a finite number of points on the con-

tinuous state-space. This problem can be interpreted as one

of motion coordination between a person and a bus running

between two or more bus stops: in some cases it may be

better to take the bus. The directed discrete links change

only the position in the continuous state space, but not the

underlying dynamics. The problem is solved with the help of

one value function defined on the continuous state-space. The

second problem consists of finding an optimal trajectory for

a person walking on a varied landscape and carrying a pair

of inline roller skates. The person has the option to switch

between walking and skating by paying a time penalty. This

is modeled with two discrete states and two copies of the

continuous-time state-space. The problem is solved with the

help of a value function defined on the hybrid state-space.

The paper is organized as follows. In section II we pro-

vide some background on dynamic optimization for hybrid

systems. In section III we state and formulate the path

coordination problem in the framework of hybrid systems. In

section IV we use DP techniques to characterize the solution

to the problem. In section V we discuss optimal strategies

and in section VI we present a numerical example. In section

VII we draw the conclusions.
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II. BACKGROUND

We briefly review the literature on DP for optimal hybrid

control problems.

A full-fledged hybrid system model, which subsumed

previous models, was introduced by M. Branicky in [4]. The

model includes autonomous and controlled jump sets and

destination sets. Controlled jump sets model “lazy” transition

systems in the sense that the controller can decide to jump

or not to jump in these sets – this is the “lazy” transition

semantics in the terminology of computer science. The tran-

sition maps associated to each jump may introduce disconti-

nuities in state and time. The dimension of the continuous-

time state space is allowed to change with the discrete

state. Branicky introduces an optimal control problem over

an infinite horizon with three terms discounted over time:

running cost, transition cost and impulse cost. The transition

maps and the cost functions are assumed to be bounded,

uniformly continuous, and the vector fields associated to

each discrete state are assumed to be bounded and uniformly

Lipschitz in the state. The distances between autonomous and

controlled jump sets (and also between autonomous jump and

destination sets) are assumed to be strictly positive to prevent

the occurrence of multiple transitions in zero time. The flow

lines are assumed to be transversal to the boundaries of the

autonomous and controlled jump sets, and the vector field is

not allowed to vanish in these boundaries. This is required

to prove continuity from the right of the value function

for the optimal control problem. The consideration of DP

techniques leads to a system of Quasi Variational Inequalities

(QVI). No further analysis is carried out concerning the

solution of the QVI. In [6], the value function is proved

to be the “viscosity” solution to this system of QVI. The

transversality assumptions lead to two modeling difficulties:

1) the state of the system is supposed to “freeze” during

the time jump; however this is not possible at the boundary

of the autonomous and controlled jump sets; and 2) when

the state enters a controlled jump set it can only leave the

set through a discrete transition, which was supposed to be

optional (cf. [12]).

A set of QVI conditions similar to those presented in [4]

is presented in [3]. The viscosity solution to the Hamilton-

Jacobi-Bellman (HJB) is discussed. This is because under

their assumptions the value function is continuous. The

problem is that the value function for general hybrid control

problems may be discontinuous (this is mainly due to the

forced jumps, controlled jumps and discontinuous jump

relations). This problem is studied in [12]. In this case, the

value function is not continuous and the solution of the QVI

is interpreted in the discontinuous viscosity setting.

A simplified version of the hybrid system model intro-

duced by Branicky is presented in [11]. The keys simpli-

fication are: 1) the state is kept continuous at switching

times; and 2) the dimension of the continuous-time state

space is kept constant. There is a discrete transition map

which defines, at each discrete state, the discrete states that

can be reached in one discrete transition. The assumptions

also include transversality conditions as in [4]. The author

introduces a class of optimal control problems with terminal

and running cost functions that depend on the discrete state;

there are no switching costs. A set of necessary conditions

in the form of a hybrid maximum principle are introduced.

The corresponding value function is shown to be bounded

and continuous. A HJB equation is derived with the help

of the principle of optimality. The minimization in the HJB

is taken over the continuous-time control settings and the

discrete states. This is because the switching costs are zero.

The HJB equation is used to establish a verification theorem

for optimal control candidates, but there is no discussion on

viscosity solutions. The discrete transition map is not taken

into consideration as a constraint in the HJB minimization.

This can only happen if all discrete states can be reached in

a finite number of transitions. However, this condition is not

stated in the assumptions.

III. PROBLEM FORMULATION

A. The system

We consider planar motion models (evolving in R
2) for

vi, i = 1, 2

ẋi(t) = fi(xi, ui), ui ∈ Ui, t ≥ 0

x1(0) = α, x2(0) = β

where ui are the controls and Ui are closed sets.

Consider v1. The cost of a path joining α and γ is

J1(u1(.), γ) =

∫ tf

0

l(x1, x2) · k1(x1, u1)ds (1)

where k1(., .) ≥ 0, l : R
2 × R

2 → [0, 1] is a piecewise

constant function (l = c, 0 < c < 1 if x1 = x2 and l = 1
otherwise) and tf is the first time when x1(tf ) = γ under

the control function u1(.). The function l models the fact

that the path cost for v1 is reduced when the positions of v1

and v2 coincide.

v2 is fuel constrained. The model of fuel consumption is

captured by an additional state variable c2 ∈ R (indicating

the amount of fuel in the fuel tank)

ċ2(t) = g2(x2, u2) =

{

w2(x2, u2) if c2 > 0
0 otherwise

c2(0) = θ

where w2(., .) ≤ 0.

We associate the cost function J2 to the fuel remaining in

v2 when it reaches x at time t under the control u2(.)

J2(u2(.), x) = c2(t) (2)

The standing assumptions are:

A1) fi, w2 : R
2 × Ui → R

2 are uniformly Lipschitz in

x and uniformly continuous in the control variable.

This condition ensures existence and uniqueness of

solutions for the differential equations.

A2) There exist K1 < ∞ and 1 ≤ ς1 < ∞ such that

‖l(x1, x2) ·k1(x1, u1)‖ ≤ K1(1+‖(x1, x2)‖)ς1 for

(x1, x2) ∈ R
2 × R

2, u1 ∈ U1.
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A3) There exist K2 < ∞ and 1 ≤ ς2 < ∞ such that

‖g2(x2, u2)‖ ≤ K2(1 + ‖x‖)ς2 for x ∈ R
2, u2 ∈

U2. This assumption and the previous are related

to the existence of solution to the problem.

A4) 0 ∈ int fi(xi, Ui). This means that each vehicle is

locally controllable.

A5) f1(x, U1) ⊆ f1(x, U2). This means that v2 is

capable of replicating the motions of v1.

B. The case for coordination

The optimal path planning problem for v1 when operating

in isolation is (l = 1) is

Problem 1: [Uncoordinated] Find

inf
u1(.)

J1(u1(.), γ) (3)

The path planning problem becomes more interesting

when the two vehicles are allowed to coordinate their mo-

tions. We consider the following operational constraints: 1)

if v2 leaves β, then it must return to β; and 2) the vehicles

are allowed to meet only once and then move together up

to the point where v2 returns to β (this precludes behaviors

where the vehicles move together and separate repeatedly).

In what follows, and to simplify the analysis of the prob-

lem, we introduce assumption A6. This assumption means

that the problem is symmetric in the terminology of [1].

A6) The fuel optimal paths for v2 are also fuel optimal

for the path traveled in the opposite direction.

Let R denote the set of point reachable by v2 for a

round trip from β under fuel budget θ. This is the set

of points where the two vehicles can meet at one point.

A characterization of R is in order. For this purpose we

introduce a value function for the problem of minimizing

the fuel consumption for vehicle v2

V2(x) = max
u2(.)

J2(u2(.), x)

V2(β) = θ

Proposition 3.1: Under the standing assumptions the

value function V2 is continuous in x.

The proof is standard and we omit it.

Proposition 3.2: R is a closed set given by

R = {x : V2(x) ≤
θ

2
} (4)

Proof. The expression for R follows from the consideration

of Assumption A6. The fact that R is closed follows from

the continuity of V2. �

It may be worthwhile for v1 to deviate from the optimal

path for Problem 1 to join v2 at a point in R, before reaching

γ. The following example illustrates this point.

Example 3.1: Consider Figure 1. Let:

ẋi(t) ∈ B0, i = 1, 2 (B0 is the closed unit ball in R
2).

α = (0, 0), β = (50, 40), γ = (100, 0).
η = (39.2000, 24.1254), µ = (60.7999, 24.1254).
c2(0) = θ = 12.

k1(x1, u1) = 1,−w2(x2, u2) = 0.2, l(x, x) = 0.1.

R is the circle of radius 30 with center β (the optimal fuel

cost of the round trip from β to the boundary of the circle

is 60 × 0.2 = 12 = θ). This is because this system satisfies

the assumption A6: 1) the cost function does not depend

on the direction of motion; and 2) the system dynamics are

reversible. Observe that this is the set of points where the

two vehicles can start to move together.

α

β

γ

η µ

x x

x

x x

Fig. 1. Example of coordinated paths.

The fuel optimal paths for v2 are straight lines. The same

happens with the optimal paths for v1 (for fixed values of

l). This is because we have simple dynamics and piecewise

constant cost functions. The straight line joining α and γ

is the optimal path for Problem 1; the optimal cost is 100.

The cost of the path (α, η, µ, γ), where v1 deviates from the

original optimal path to benefit from a cost reduction in the

segment (η, µ), is 94.2182. v2 complies with the constraints

by taking a loop (triangle) from β, with fuel cost 12.0000
(within the fuel budget).

Remark 1: We briefly discuss the structure of the solution

in the previous example. Consider, for the sake of our discus-

sion, that the optimal coordinated path for v1 is (α, η, µ, γ).
Then the two path segments (α, η) and (µ, γ) are optimal

with respect to the uncoordinated cost function. Otherwise

we could pick other paths to connect these points with a

lower cost. This is impossible since the path (α, η, µ, γ) is

optimal under our assumption. This means that up to the

point η, the path optimization for v1 is independent of what

v2 does. The same happens with v2 for the path segments

(β, η) and (µ, β). On the other hand, when the two vehicles

meet at point η, the path optimization for both vehicles is

no longer decoupled. Here, we need a third state variable

to describe the evolution of the system. This is because the

motions of the vehicles coincide, and because we need to

keep track of the fuel consumption for v2. This means that,

from the perspective of v1, all that really matters in what

concerns v2 is: 1) the point where the meeting takes place;

and 2) the amount of the fuel remaining in the fuel tank of v2.

We observe that the amount of the fuel in v2 at the meeting

point should be optimal (otherwise this vehicle spent more

fuel than what was needed to reach that point).

C. Hybrid model

The formulation of the coordinated optimal path planning

problem for vehicle v1 requires the consideration of a state

variable that keeps track of what each vehicle does. We do

this with a 3-state hybrid automaton. The hybrid state space
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is S =
⋃

v∈{a,b,c}(Sv × v). v1 evolves in Sa = R
2 after

departing from α. The positions of the two vehicles coincide

in the discrete state b. We need an additional variable to

keep track of the fuel consumption for v2; this is why Sb =
R

2 × R
+
0 . v1 moves in Sc = R

2 after taking the transition

from discrete state b to discrete state c (after leaving v2).

There is a controlled vector field fv associated to each

discrete state, where fa = fc = f1 and fb = {f1, g2}. The

control constraints are Ua = U1, Ub = U1×U2 and Uc = U1.

In the terminology of [4], associated to each discrete state v

there are autonomous jump sets Av,v′ , controlled jump sets

Cv,v′ and jump destination sets Dv,v′ . The trajectory of the

system jumps from Sv to Sv′ upon hitting the autonomous

jump set Av,v′ ; it may or may not leave Sv upon hitting the

controlled jump set Cv,v′ and it can leave Sv at any point in

Cv,v′ ; the destination of a jump is Dv,v′ .

In what follows, xi represents the i-th component of x.

The autonomous and controlled jump sets for the system

are respectively A =
⋃

v,v′ Av,v′ and C =
⋃

v,v′ Cv,v′ . The

jump set is J = A
⋃

C. These are given by

Ca,b = R

Ab,c = {(x1, x2, x3) : x3 = V2(x
1, x2)}

Da,b = {(x1, x2, x3) : x3 ≥ V2(x
1, x2)}

Db,c = Sc

with R given by equation 4. The transition maps are

Ga,b : Ca,b → Da,b, Ga,b(x) = (x, θ − V2(x))

Gb,c : Ab,c → Db,c, Gb,c(x) = (x1, x2)

The interpretation is as follows. v1 starts moving in Sa;

if x1(.) enters Ca,b then it may continue in Sa, or take a

controlled jump to Sb. In the case of a controlled jump, the

transition map Ga,b maps the current state of v1 to a state

extended to include the optimal amount of fuel remaining in

v2 at the same location after departing from β with an initial

amount of fuel θ. In Sb, the positions of the two vehicles

coincide; there is an autonomous jump from Sb to Sc when

the trajectory of the system hits Ab,c. This means that v2

had to leave, since there was just enough fuel to go back

to β. The jump relation consists of eliminating the third

component of the state. The transition maps imply that v2

uses fuel optimal strategies to travel to the meeting point and

to reach β after leaving v1. One could ask why is it necessary

to include the discrete state c in the model (instead of having

the autonomous jump from discrete state b to discrete state

a). An autonomous transition from b to a could lead to

trajectories in the controlled jump set Ca,b = R ⊂ Sa. But

this jump can only be taken once. We need to keep track of

the jump. We do this with the discrete state c.

In what follows we adopt the notation from [12]. Time is

measured continuously with a real variable t in [0, +∞) and

the state variable is (x, v). Trajectories are piecewise con-

tinuous in x and are normalized to be right-continuous. The

hybrid control input is I = ({t0, uv(0)(.)}{ti, uv(i)}
N
1 ), N ∈

{0, 1, 2}, where ti ≤ ti+1(t0 = 0) gives the sequence of

times selected to switch the discrete dynamics. The activation

of hybrid control input can only take place in the set C, or in

the boundary of the set A. This spatial dependence translates

to time dependence as follows.

Given (x, v) and u(.), define the hitting times of A and J

as

T A(x, v, u(.)) = inf{t ≥ 0 : (x(t), v) ∈ A}

T J(x, v, u(.)) = inf{t ≥ 0 : (x(t), v) ∈ J}

where x(.) is the trajectory departing from (x, v) under the

control function u(.).
Definition 3.1: Given a hybrid state (x, v) a hybrid control

I is called an admissible control with respect to (x, v) if:

• 0 = t0, ti ≤ ti+1

• T J(x(t+i ), v, u(.)) ≤ ti+1 − ti ≤ T A((t+i ), v, u(.))
This means that between discrete jumps the trajectory may

evolve in J . Jumps may take place in C and must take place

in ∂A (the boundary of A).

In our model Da,b ∩ Ab,c 6= ∅ and Da,b is not a closed

set. This makes it possible for an instantaneous jump from

discrete state a to c to occur: first as a controlled jump from

a to b at the points in ∂R, and then as an autonomous jump

to c. This problem can be solved by changing these sets to

impose a strictly positive distance between them.

Let I(x, v) denote an admissible control with respect to

(x, v) and Λ(x, v) denote the set of all admissible controls.

Proposition 3.3: Given an initial hybrid state (x, v) the

hybrid system possesses a unique hybrid execution.

Proof. The proof follows standard arguments from [11]. �

D. Optimal collaborative control

Now consider the running cost maps kv : Sv ×Uv → ℜ+:

ka(x, u) = k1(x, u)

kb(x, u) = σl(x, x)k1((x
1, x2), u1)−

(1 − σ)g2((x
1, x2), u2)

kc(x, u) = k1(x, u)

where σ ∈ [0, 1]. An explanation for the definition of kb (and

σ) is in order. The positions of the two vehicles coincide in

the discrete state b. However, the minimization of the path

cost for v1 may not be compatible with the minimization of

the fuel consumption for v2. The problem is that v2 is fuel

constrained. The longer the fuel lasts, the longer v1 benefits

from the path coordination. We model this trade-off with

kb(x, u) which is a convex combination of the two other

cost functions.

Consider the coordinated path optimization problem for

v1. The cost of a path joining (α, a) and (γ, v) is

J̃1((I(α, a), (γ, v), σ) =
N

∑

i=0

∫ ti+1

ti

kv(i)(x(s), uv(i)(s))ds (5)

where N ≤ 2, tN+1 = tf and x(tf ) = γ.
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We introduce the explicit dependence on σ to remind us

that the optimal solution depends on this parameter.

Problem 2: [Coordinated] Find

inf
I(α,a)∈Λ(α,a)

J̃1(I(α, a), (γ, v), σ) (6)

Let T denote the set of points reachable by v2 in Sb under

the fuel constraint θ for a round-trip from β. T is the set

of all (x1, x2, x3) ∈ Sb such that the first two components

(x1, x2) are in R and the last component (x3) satisfies the

fuel constraint:

T = {x ∈ Sb : (x1, x2) ∈ R ∧ (x3 ≥ V2(x
1, x2))∧

((θ − V2(x
1, x2)) ≥ x3)}

Remark 2: M = {Sb\T, b} is not reachable in S.

IV. DYNAMIC PROGRAMMING

In the spirit of DP we embed Problem 2 in a family

of optimization problems where the final position varies.

Introduce the value function

V (x, v, σ) = inf
I(α,a)∈Λ(α,a)

J̃1(I(α, a), (x, v), σ)

V (α, a, σ) = 0

where ∀x ∈ (Sb\T ) : V (x, b, σ) = +∞.

The fact that not all points in Sb are reachable under the

constraints imposed on v2 leads to this extended-valued value

function.

In what follows we drop the explicit dependence of V on

σ to simplify the notation.

The following theorem, presented without proof, states two

important properties of the value function.

Theorem 1: The value function V (x, v) is bounded and

continuous in S\ M .

The following theorems can be proved with the help of

the results from [12].

Theorem 2: The value function V (x, v) satisfies the prin-

ciple of optimality for every v ∈ {a, b, c}.

Theorem 3: The value function V (x, v) is the viscosity

solution of the HJB equation.

Vt(x, v) + inf
u∈U

[Vx(x, v) · fv(x, u) − kv(x, u)] = 0

V (α, a) = 0

V. OPTIMAL STRATEGIES

The optimal strategy for v1 is derived from the value func-

tion V (x, v). This requires some additional computations.

The position of v1 is given by the continuous state of the

hybrid automaton in the discrete states a and c, and by the

first two components of the continuous state in the discrete

state b; the third component, x3, is the fuel remaining in v2.

However, the value function V in b depends not only on the

position of v1 (x1, x2), but also on the fuel remaining in v2

(x3). An additional minimization over x3 is required. This

is done next with the help of a new function, Ṽ : R
2 → R.

Ṽ (x, a) = V (x, a)

Ṽ (x, b) = min
x3∈[V2(x),θ−V2(x)]

V ((x, x3), b)

Ṽ (x, c) = V (x, c)

Ṽ (x, a) is also the optimal value function for Problem 1.

Keep in mind that the discrete state keeps the history of

the system. So v1 can reach a same position in the three

discrete states. To find the optimal path cost at x ∈ R
2 we

need to drop the dependence of Ṽ on the discrete state with

another minimization. This is done with the the help of a

new function, V (x) : R
2 → R.

V (x) = min
v∈{a,b,c}

Ṽ (x, v) (7)

The optimal discrete state at x is given by

v∗ = argminv∈{a,b,c}Ṽ (x, v) (8)

Observe that v∗ is not necessarily a singleton. We summarize

these observations in the theorem.

Theorem 4: V (γ) is the optimal value for solving Problem

2. If v∗ = a then path coordination is not optimal.

The optimal control is given by u∗ as follows

u∗ = argminu∈U Vt(x, v)+

[Vx(x, v) · fv(x, u) − kv(x, u)] (9)

Both the dynamics and the cost function do not depend

directly on time. This simplifies the coordination of the

optimal paths for the case when path coordination is the

optimal solution: the vehicles are required to meet at the

point where the two paths intersect for the first time.

We now study the conditions under which the solutions

to Problems 1 and 2 differ. These are aimed at simplifying

the process of finding numerical solutions to the coordinated

problem.

Proposition 5.1: Let Υ = V (γ, a) and Q = {x ∈ Sa :
V (x, a) ≤ Υ}. If Q∩R = ∅, then the solutions of Problems

1 and 2 coincide.

Proof. The condition Q∩R = ∅ means that γ can be reached

with cost budget less than the one required to reach the set

R, where coordination is possible. �

Proposition 5.2: The optimal cost for Problem 2 is l times

the optimal cost for Problem 1 when there exists a trajectory

x2(.) leaving β passing through α and γ and returning to β

such that: 1) x2(.) satisfies the fuel constraint θ; and 2) the

segment of x2(.) joining α and γ coincides with the optimal

path for Problem 1.

Proof. Consider first that v2 is not fuel constrained. Then,

the trajectories of v2 can be made to coincide with the trajec-

tories of v1 along the path for v1. This means that: 1) there

exists a path as the one in the statement of the proposition;

and 2) that v1 benefits from a constant cost reduction along

its path. Now consider the case when v2 is fuel constrained.

If there is a path satisfying the conditions of the proposition,

the optimal cost for v1 cannot be further reduced from the

optimal level obtained without fuel constraints.�
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VI. NUMERICAL EXAMPLE

Consider Example 3.1 again. The computation of the value

function becomes easier because of the simplicity of the

considered cost function (piecewise constant over the state

and input spaces, and time-invariant) and system dynamics.

A custom algorithm was especially tailored to take in account

those specific assumptions. Research of algorithms for more

general classes of problems is a work underway. The value

function is computed over a equally spaced grid.

The computation of the value function is done in three

stages. In the first stage, the system is in the discrete state a.

Since the running cost, k1(x, u) = 1, is independent of the

input and vehicle’s position, the optimal trajectory from the

initial position to any position x is a straight line, traveled

at unit speed (the maximum speed). It is trivial to note that

V (x, a) = ‖x‖2. Therefore the exact value of V (x, a) is

known at the grid points.

In the second stage, the algorithm considers only the points

in T For each point in T , the algorithm computes the cost

to every other point (in R
3) that can be reached respecting

the fuel constraint, and updates V (x, b) accordingly. The

computation of Ṽ (x, b) is straightforward.

Another version of this algorithm, which computes directly

Ṽ (x, b) performing all computations on a two dimensional

grid (therefore demanding smaller computation time), was

also implemented. This version considers only the points in

R: for each point in R, it computes the cost to every other

point that can be reached respecting the fuel constraint, and

updates Ṽ (x, b) accordingly. However, this version does not

allow the determination of the optimal trajectory using Eq. 9.

Finally, in the third stage the algorithm starts from the

positions where Ṽ (x, b) is finite, computed on the previous

stage, and propagates the value function. In this final stage,

V is computed as defined in Eq. 7.

The level sets of V are plotted on Fig. 2(a) along with

the optimal trajectory from α = (0, 0) to γ = (100, 0). The

circle of radius 30 centered at (50, 40) delimits R. Fig. 2(b)

identifies two distinct regions of the x-y plane: in white,

the final destinations for which the optimal strategy is the

uncoordinated motion (no collaborative operation of v1 with

v2); in black, the final destinations for which v1 will benefit

from coordinated motion with v2, i.e., the set of points x

such that V (x, b) < V (x, a) and V (x, c) < V (x, a).
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(a) Level sets of V and optimal
trajectory of v1 for Example 3.1.

(b) Destinations on black region
benefit from coordinated motion.

Fig. 2. Optimal strategies.

VII. CONCLUSIONS

We have formulated and solved a path coordination prob-

lem to illustrate the use of DP techniques in collaborative

control problems. The problem consists of minimizing the

path cost for v1 when this cost is a discontinuous function

of the relative positions of the two vehicles and v2 is required

to return to its starting point. The problem is formulated as an

optimal hybrid control problem. The state has a memoryless

component and a component with memory. The autonomous

and controlled jump sets are both given by the set reachable

by v2 when departing from β under the given fuel constraints.

The optimal strategies for both vehicles are derived from

value function, which depends on the location of v1 and on

the discrete state. The optimal path cost for v1 at a given

location is given by two sequential minimizations of the

value function for the optimal hybrid control problem. Tran-

sitions in the hybrid automaton take place when collaboration

is the optimal solution. The transition to the second state

is taken by v1 under the assumption that it meets v2 and

that v2 followed a fuel-optimal path. This is a non-standard

hybrid control problem: the jump sets are given by reach

sets; and the value function for the coordinated problem

assumes compatible optimal behavior by v2 (this is given

by a different value function for v2).

Future work concerns investigating other collaborative

control problems in the DP framework and removing some

of the more restrictive assumptions.

VIII. ACKNOWLEDGMENTS

The authors thanks Professors Pravin Varaiya and Alexan-

der Kurzhanskii for fruitful discussions and insights.

REFERENCES

[1] Martino Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity

solutions of Hamilton-Jacobi-Bellman equations. Birkhauser, 1997.
[2] R. Bellman. Dynamic programming. Princeton University Press, 1957.
[3] A. Bensoussan and J. L. Menaldi. Hybrid control and dynamic pro-

gramming. Dynamics of Continuous Discrete and Impulsive Systems,
3(4):395–442, 1997.

[4] Michael Branicky. Studies in Hybrid Systems: Modeling, Analysis and

Control. PhD thesis, MIT, 1995.
[5] J. Borges de Sousa, T. Simsek, and P. Varaiya. Task planning and

execution for uav teams. In Proceedings of the IEEE Conference on
Decision and Control. IEEE, 2004.

[6] S. Dharmatti and M. Ramaswamy. Hybrid control systems and
viscosity solutions. SIAM Journal of Control and Optimization,
44(4):1259–1288, 2005.

[7] M. Flint, M. Polycarpou, and E. Fernandez-Gaucherand. Cooperative
control for multiple autonomous uavs searching for targets. In
Proceedings of the 41st IEEE Conference on Decision and Control,
pages 2823–28. IEEE Control Society, 2002.

[8] A. N. Krasovskii. Control under lack of information. Birkhauser,
1995.

[9] A. B. Kurzhanskii and P. Varaiya. Dynamic optimization for reach-
ability problems. Journal of Optimization Theory & Applications,
108(2):227–51, 2001.

[10] J. Sethian and A. Vladimirsky. Ordered upwind methods for hybrid
control. In Proceedings of the hybrid systems workshop, pages 393–
406. Springer-Verlag, 2002.

[11] Mohammad Shahid Shaikh. Optimal control of hybrid systems: theory

and algorithms. PhD thesis, Department of Electrical and Computer
Engineering, McGill University, Montreal, 2004.

[12] Huan Zhang and Matthew R. James. Optimal control of hybrid systems
and a systems of quasi-variational inequalities. SIAM Journal of
Control and Optimization, 48(2):722–761, 2006.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB17.6

3118


