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Abstract— In this paper, we consider the synthesis of fixed
order controllers for nonlinear systems with sector bounded
nonlinearities. We construct an inner and outer approximation
of the set of absolutely stabilizing linear controllers by casting
the closed loop system as a Lure-Postnikov system. The inner
approximation is based on the well-known sufficient conditions
that require Strict Positive Realness (SPR) of open loop transfer
function (possibly with some multipliers) and a characterization
of SPR transfer functions that require a family of complex
polynomials to be Hurwitz. The outer approximation is based
on the condition that the open loop transfer function must have
infinite gain margin, which translates to a family of real poly-
nomials being Hurwitz. We illustrate the proposed methodology
through the construction of an inner and outer approximation
of absolutely stabilizing controllers for a mechanical system.

I. INTRODUCTION

Absolute stability of Lure-Postnikov systems have been

studied quite extensively, see the books of Aizerman [1],

Popov [2], Siljak [3], Narendra and Taylor [4] and

Safanov [5]. The problem of absolute stability is that of

ensuring the asymptotic stability in the large of a nonlinear

system of the form given in Fig. I for every nonlinearity in

the first and third quadrants.
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−

Fig. 1. Lure-Postnikov system

The seminal result of Popov subsumes earlier results of

Lure and others concerning the problem and all subsequent

results on this problem have the same flavor of requiring a

transfer function, which is usually the product of the transfer

function of the linear part of the Lure-Postnikov system and

an appropriate multiplier to be strictly positive real.
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The problem of the synthesis of absolutely stabilizing

controllers is important for two reasons - absolute stability

naturally comes with a robustness guarantee that the zero

solution of the closed loop is asymptotically stable for

every nonlinearity satisfying the sector condition. In some

nonlinear systems, the nonlinearity in the system is provided

in terms of empirical data and only crude information about

the nonlinearity is available, i.e., that it lies in the first and

third quadrants. In such a case, the problem of synthesis

of absolutely stabilizing controllers is relevant while being

conservative. The reason for conservatism is that one is

designing a controller that stabilizes the closed loop for every

nonlinearity in the first and third quadrants as opposed to the

specific nonlinearity provided in terms of empirical data. In

some applications, the assumptions involved in developing

a lumped model of a system, render the coefficient of a

nonlinearity parametrically uncertain. The classic example

is that of a pendulum - whether one assumes the mass of the

pendulum lumped or uniformly distributed, the structure of

the resulting equations is similar; while the nonlinearity is

sector bounded, its coefficient may not be known.

In the case when the nonlinearity is known, but the coef-

ficient is not exactly known, the situation may be remedied

using nonlinear design techniques developed in [6], [7] to

design a nonlinear controller which are tailor-made for the

specific nonlinearity. However, the constraint on the order

of the controller cannot be handled by the existing design

techniques. In this paper, we will explore the synthesis of

linear absolutely stabilizing controllers of a given order.

Although the procedure adopted here is conservative and

applies only to systems with sector bounded nonlinearities,

the proposed method allows for imposing structure (such as

the order) on the controller.

The problem of synthesizing absolutely stabilizing con-

trollers has been considered in the literature, for example,

see [8]–[10]. In [8], a controller is synthesized in terms of the

solution to coupled Riccatti and Lyapunov equations, while

in [9], [10], the focus was on the use of LMIs to synthesize

a controller. In this paper, we consider the problem of

constructing an inner and an outer approximation of the set

of stabilizing controllers of fixed order/structure for Lure-

Postnikov systems. The construction of an approximation of

set of stabilizing controllers is accomplished through the use

of Hermite-Biehler theorem and a characterization of strict

positive real transfer functions through the requirement of

a one-parameter family of complex polynomials being Hur-

witz [11]. The novelty of the paper lies in the construction of

an approximation to the set of absolute stabilizing controllers

as a control engineer can restrict the search for a controller
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satisfying multiple objectives from the given set.

The paper is organized as follows: In section II, we provide

the necessary mathematical preliminaries and in section III,

we provide the main results concerning the construction of

absolutely stabilizing linear controllers of fixed order. In

section IV, we provide a corroboration of the developed

methodology.

II. MATHEMATICAL PRELIMINARIES

In this section, we present the results that have been well

established in the literature and are required for arriving at

the main result discussed in the next section. Lemmas 1 and

2 are concerned with conditions for guaranteeing absolute

stability of a Lure-Postnikov system. In Theorem 1, we

present the well-known sufficient condition for absolute

stability through the requirement of a transfer function being

strictly positive real. The conditions of Lemmas 1 and 2 and

Theorem 1 require a family of real or complex polynomials

to be Hurwitz. For this reason, the rest of the section deals

with our previous results in [12] concerning a systematic

procedure for constructing sets of stabilizing controllers that

render a family of real or complex polynomials Hurwitz.

Consider the problem of synthesizing an absolutely stabi-

lizing controller for the following system:

ẋ = Ax−B1u−B2φ(y), (1)

y = Cx, (2)

where the nonlinear function φ(y) satisfies 0 ≤ yφ(y) for all

y ∈ ℜ.

Let G1(s) := C(sI − A)−1B1 and G2 := C(sI − A)−1B2.

Consider a controller Gc(s) = Nc(s)
Dc(s)

, where the polynomial,

Dc(s) is monic and of degree r, while the degree of

the polynomial Nc(s) is assumed to be at most r. Let

(Ac,Bc,K1,K2) be a minimal realization of Gc(s). Hence,

Gc(s) = K1(sI−Ac)
−1Bc +K2. We will assume that they are

in the controllable canonical form. The coefficients of the

polynomials Nc(s) and Dc(s) are free parameters that must

be chosen so as to make the zero solution of the closed loop

absolutely stable:

ẋ = Ax−B1u−B2φ(y), (3)

ẋc = Acxc +Bcy, (4)

y = Cx, (5)

u = (K1xc +K2y). (6)

In the above equation, xc(t) ∈ ℜr represents the state of the

controller.

The closed loop system may be expressed as a Lure-

Postnikov system as follows:

ż = Aclz−Bclφ(y), (7)

y = Cclz, (8)

for some Acl , Bcl and Ccl which constitute a realization

of the transfer function H(s) = (1 + G1Gc(s))
−1G2. If one

were to write G1(s) = N1(s)
Dp(s) , G2(s) = N2(s)

Dp(s) and Gc(s) =
Nc(s)
Dc(s)

, then the transfer function H(s) may be expressed

as
N2(s)Dc(s)

Dp(s)Dc(s)+N1(s)Nc(s)
. It is clear that the coefficients of

the numerator and denominator of H(s) are affine in the

parameters of the controller.

Let the transfer function H(s) = Ncl(s)
Dcl(s)

for some co-

prime polynomials, where Ncl(s) = N2(s)Dc(s) and Dcl(s) =
Dp(s)Dc(s)+N1(s)Nc(s).

Lemma 1. The requirement that Dcl(s)+λNcl(s) be Hurwitz

for every λ ≥ 0 is a necessary condition for the absolute

stability of the zero solution of the Lure-Postnikov System

considered above.

A sufficient condition for absolute stability is given in

terms of Popov’s criterion [1].

Theorem 1. If there exists a q ≥ 0 such that (1 + qs)H(s)
is Strictly Positive Real (SPR), then the zero solution of

the Lure-Postnikov system is absolutely stable. This is also

a necessary and sufficient condition for the existence of a

Lyapunov function of the form xT Px+q
∫ y

0 φ(η)dη .

A proof of the theorem can be found in [1]–[5].

The following characterization of SPR functions [11] for

reducing the problem of synthesizing SPR functions to that

of controllers rendering a family of polynomials Hurwitz:

Lemma 2. A rational transfer function
N(s)
D(s) is SPR if and

only if

1)
N(0)
D(0) > 0

2) The polynomials N(s) and D(s) are Hurwitz,

3) The family of complex polynomials, D(s) +
jαN(s), α ∈ ℜ is Hurwitz.

As these necessary and sufficient conditions respectively

involve a family of real and complex polynomials being

Hurwitz, we will provide a characterization of Hurwitz

polynomials suitable for the construction of outer and inner

approximation using Linear Programming (LP) techniques.

Such techniques have been developed in [12]. A characteriza-

tion of Hurwitz polynomials via the Hermite-Biehler theorem

will be used for the synthesis of stabilizing controllers.

Such a characterization for real and complex polynomials

respectively [3], [11], [12], are provided.

Let P(s,K) be an nth degree real polynomial whose

coefficients are affinely dependent on the vector of design

parameters, K. Write P( jw,K) := Pe(w
2,K) + jwPo(w

2,K),
where Pe and Po are polynomials with real coefficients. The

degrees of polynomials Pe and Po are ne and no respectively

in w2; if n is odd, ne = no = n−1
2

and if n is even, ne = n
2

and

no = ne − 1. Let we,i, wo,i denote the ith positive real roots

of Pe and Po respectively.

The Hermite-Biehler theorem for real polynomials may be

stated as follows; for the sake of clarity, and for the general

case, the dependence on K is suppressed.

Hermite-Biehler Theorem for real polynomials. A real

polynomial P(s) is Hurwitz iff

1) The constant coefficients of Pe(w
2) and Po(w

2) are of

the same sign,
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2) All roots of Pe(w
2) and Po(w

2) are real and distinct;

the positive roots interlace according to the following:

• if n is even:

0 < we,1 < wo,1 < · · · < wo,ne−1 < we,ne

• if n is odd:

0 < we,1 < wo,1 < · · · < we,ne < wo,ne

A proof of this theorem can be found in [3], [11], [13].

The following generalization of Descartes’ Rule of signs

by Poincaré [14] will be used in this paper; for the sake

of clarity, and for the general case, the dependence on K is

suppressed.

Poincaré’s generalization. The number of sign changes in

the coefficients of (s + 1)kP(s) is a non-increasing function

of k; for a sufficiently large k, the number of sign changes

in the coefficients exactly equals the number of real, positive

roots of P(s).

An application of Poincaré’s generalization only accounts

for the requirement of real, positive roots of the even and

odd parts of P(s,K). However, it does not account for the

interlacing requirement of roots of the even and odd parts

of P(s,K) as required by the Hermite-Biehler theorem. The

following lemma, given in [12], converts the requirement of

interlacing of roots to checking the signs of the coefficients

of a family of polynomials.

Lemma 3. Suppose Q(λ ) = q0 + q1λ + . . . + qmλ m and

R(λ ) = r0 + r1λ + . . .+ rmλ m are polynomials of the same

degree m. Let µ1, . . .µm be the roots of Q(λ ) and ξ1, . . . ,ξm

be the roots of R(λ ). Consider a one-parameter family of

polynomials: Q̃(λ ,η) = Q(λ )−ηR(λ ). Then, the following

two statements are equivalent:

1) The roots of Q(λ ) and R(λ ) are real and interlacing,

i.e., µ1 < ξ1 < µ2 < ξ2 < .. . < µm < ξm.

2) For any η ∈ ℜ, the roots of Q̃(λ ,η) are all real.

Let Q(s) be a complex polynomial of degree n. We will

write Q( jw) = Qr(w)+ jQi(w). If its degree is n, then for

a sufficiently large w∗, the Mikhailov plot of Q( jw) will

lie entirely in one quadrant for all w < −w∗; we will say

that qr,n + jqi,n defined through limw→−∞
Q( jw)
|w|n belongs to the

same quadrant. We will assume without any loss of generality

that qr,nqi,n 6= 0; in fact, if qr,nqi,n = 0, one can consider (1+
jτ)Q( jw); for this polynomial, the leading coefficients of the

corresponding real and imaginary polynomials are different

from zero whenever τ 6= 0 and the location of the roots of this

polynomial being the same as that of Q( jw) . Let Ck,Sk, k =
1,2,3,4 be diagonal matrices of dimension 2n; the (m+1)st

diagonal elements of these matrices are respectively the signs

of cos((2k−1)π
4

+m π
2
) and sin((2k−1)π

4
+m π

2
).

Hermite-Biehler Theorem for complex polynomials. Let

Q(s) be a complex polynomial of degree n with qr,nqi,n 6= 0;

the following statements are equivalent:

1) Q(s) is Hurwitz.

2) All roots of Q( jw) have positive imaginary parts.

3) All roots of the polynomials Qr(w) and Qi(w) are
real and interlace; specifically, there exists a set of
(2n− 1) real frequencies satisfying −∞ < w1 < w2 <
.. . < w2n−1 < ∞ that separates the roots of the real
polynomials in such a way that for exactly one of
k = 1,2,3,4, the following conditions hold:

Ck













qr,n
Qr(w1)
Qr(w2)

...
Qr(w2n−1)













> 0, Sk













qi,n
Qi(w1)
Qi(w2)

...
Qi(w2n−1)













> 0

III. MAIN RESULTS

Using the results of the earlier section, we will get the

inner and outer approximation of the set of absolutely

stabilizing controllers. The closed loop may be expressed

as a linear system with transfer function, H(s), perturbed by

a sector-bounded non-linearity, φ(y), in the feedback path

and hence may be treated as Lure-Postnikov system.

Let Nc(s) = n0 + n1s + · · · + nrs
r and Dc(s) =

d0 + d1s + · · · + dr−1sr−1 + sr. Let K be the

(2r + 1)−tuplet, (n0, n1, · · · ,nr, d0, d1, · · · ,dr−1). Let

∆1(s,K) = N1(s)Nc(s) + Dp(s)Dc(s), where the coefficients

of ∆1(s,K) are affine functions of K. For a given µ ∈ [0,1],
let ∆2(s,K,µ) = µ∆1(s,K) + (1 − µ)Dc(s)N2(s) and let

Q(s,K,µ) denote a one-parameter family of polynomials

as µ varies from 0 to 1. Let A be the set of all K that

render the closed loop absolutely stable. If Aouter is any set

containing A , we refer to A as an outer approximation

and similarly if Ainner is a set contained in A , it will be

referred to as an inner approximation.

Based on the results in the earlier section, we now provide

a way to construct an outer approximation of A below.

Let ∆2( jw,K,µ) = δr(w
2,K) + jwδi(w

2,K) for some real

polynomials δr and δi. Let the degrees of the polynomials

δr(λ ,K) and δi(λ ,K) be nr and ni respectively.

Lemma 4. Let S (p,µ) be the set of K satisfying the

following conditions for a given non-negative integer p and

a µ ∈ [0,1]: The number of sign changes in the coefficients

of the polynomials (1 + λ )pδr(λ ,K) and (1 + λ )pδi(λ ,K)
are respectively nr and ni. Then, S (p,µ) is an outer

approximation of A for every p and for every µ ∈ [0,1].
Moreover, S (p+1,µ) ⊂ S (p,µ).

Proof. If K is any absolutely stabilizing controller, then

for every µ , the polynomial ∆2(s,K,µ) is Hurwitz. By the

Hermite-Biehler theorem, the polynomials δr,δi must have

nr, ni real, positive respectively. By the generalization of the

Descartes’ rule of signs, for any p, the polynomials (1 +
λ )pδr, (1+λ )pδi must have exactly nr and ni sign changes

respectively in their coefficients. Hence, K ∈S (p,µ). There-

fore, A ⊂ S (p,µ).
We will first observe that the maximum number of sign

changes in the coefficients of (1+λ )pδr is nr as the number

of real positive roots can at most be nr. By the generalization

of Descartes’ rule of signs, the number of sign changes in the

coefficients of (1+λ )pδr is a non-increasing function of p.

Therefore, if the number of sign changes in the coefficients
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of (1+λ )p+1δr is nr, it must follow that the number of sign

changes in the coefficients of (1+λ )pδr must also be nr. A

similar case holds for (1+λ )pδi. Hence, if K ∈S (p+1,µ),
it must be that K ∈ S (p,µ) for every non-negative integer

p.

The set S (p,µ) can be refined further taking into account

the requirement of interlacing in the following way: Let

K ∈ S )(p,µ) be such that ∆2(s,K,µ) is not Hurwitz. Then

S (p,µ) can be refined in the following steps:

1) Find a η > 0 such that Q(λ ) = δr(λ ,K)−ηδi(λ ,K)
does not have all real roots.

2) Find a q such that (1 + λ )qQ(λ ) has fewer than nr

changes in the sign of its coefficients.

3) Consider the LPs associated with requiring the coef-

ficients of (1 + λ )pQ(λ ,K) to have nr sign changes

subject to K ∈ S (p,µ). Let the corresponding set be

Sre f . The set Sre f is a refinement of S (p,µ) and is

an outer approximation.

One can construct outer approximations corresponding to

various values of µ ∈ [0,1]. Since each of them is an outer

approximation, ∩µSre f (µ), is also an outer approximation.

Such an outer approximation is a refinement of the outer

approximation obtained for each µ and can again be deter-

mined using a linear programming approach.

We will use the characterization of SPR transfer functions

given by Lemma 2 and the characterization of Hurwitz poly-

nomials given by the Hermite-Biehler theorem to obtain an

inner approximation for A . The transfer function GT (s,K) =
NT (s,K)
DT (s,K) = (1 + qs)H(s,K) = (1 + qs) Ncl(s,K)

Dcl(s,K) is required to

be SPR. Consider the complex polynomial ∆c(s,K,α) :=
DT (s)+ jαNT (s) and further let ∆c( jw,K,α) := ∆r(w,K)+
jDi(w,K) for some real polynomials ∆r(w,K) and ∆i(w,K).
Let the degree of ∆c(s,K,α) be N = n + r. Further, let

∆r(w,K) = δr,NwN +δr,N−1wN−1 + · · ·+δr,0 and similarly, let

∆i(w,K) = δi,NwN +δi,N−1wN−1 + · · ·+δi,0.

Theorem 2. There exists a controller, C(s), of order r, that

renders the transfer function GT (s,K) SPR if and only if

there exists a K such that

1) H(0,K) = Ncl(0,K)
Dcl(0,K) > 0,

2) the polynomials Ncl(s,K) and Dcl(s,K) are Hurwitz,
3) for every α ∈ ℜ, there exists a set of 2N −1 frequen-

cies, −∞ < w1(α) < w2(α) < · · ·< w2N−1(α) < ∞ such
that K is a feasible solution of one of the following four
linear programs:

Ck













δr,N(α)
∆r(w1,α)
∆r(w2,α)

...
∆r(w2N−1,α)













> 0, Sk













δi,N(α)
∆i(w1,α)
∆i(w2,α)

...
∆i(w2N−1,α)













> 0.

These conditions are obtained by applying Lemma 2 to the

transfer function GT (s,K) and application of the Hermite-

Biehler theorem for complex polynomials to render the fam-

ily of complex polynomials to be Hurwitz. By Theorem 1,

the set K obtained as the solution to the above theorem, is

an inner approximation for the set of absolutely stabilizing

controllers.

IV. ILLUSTRATIVE EXAMPLE

We will consider a one-link robot with a flexible joint,

shown in Fig. 2, as an example for absolute stabilization.

The governing equations of motion may be written as:

Fig. 2. One-Link Robot with a Flexible Joint

I1θ̈1 +b1θ̇1 +mgLsinθ1 + k(θ1 −θ2) = 0,

Jθ̈2 +b2θ̇2 + k(θ2 −θ1) = τ (9)

We can obtain a state space representation of the system (9)

by choosing state variables :

x1 = θ1, x2 = θ̇1, x3 = θ2 x4 = θ̇2

The state space representation is:

ẋ = Ax+B1u−Bψ(y)

y = Cx,

where

A =









0 1 0 0

− k
I

− b1
I

k
I

0

0 0 0 1
k
J

0 − k
J

− b2
J









, B1 =









0

0

0

1









, B =









0

1

0

0









C =
[

1 0 0 0
]

ψ(y) =
mgL

I
siny, u =

τ

J

The system parameters are given as follows :

J = 0.5kg ·m2, b1 = 0.0Nm · s/rad, k = 50.0Nm/rad

I = 25.0kg ·m2, b2 = 1.0Nm · s/rad, m = 1.0kg, L = 5.0m

A. PID Controller

Let us consider a PID controller :

C(s) = kp +
ki

s
+ kds

u = kp(r− y)+ kd(ṙ− ẏ)+ kiw

ẇ = r− y,

where C(s) is the PID controller, w is the integral of the

error and r is reference which is set to be 0. Fig. 3 shows a

control structure for the one-link robot with a flexible joint

which has a sector-bounded nonlinearity.
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PID

Controller
Linear

Nonlinear

r = 0

y = Cx

ψ(.)

−

y+

−

u + ẋ = Ax+B1u− Bψ(y)

Fig. 3. Control Structure of One-Link Robot with a Flexible Joint

The closed loop system can be represented as an aug-

mented system as follows :

ż = Az−Bψ(y)

y = Cz,

where z =
[

x w
]′

A =













0 1 0 0 0

− k
I

− b1
I

k
I

0 0

0 0 0 1 0
k
J
− kp −kd − k

J
− b2

J
ki

−1 0 0 0 0













, B =













0

1

0

0

0













C =
[

1 0 0 0 0
]

ψ(y) =
mgL

I
siny,

which constitutes a realization of the transfer function,

G(s) =C(sI −A)−1B

=
Ncl(s)

Dcl(s)

=
s3 +2s2 +100s

s5 +2s4 +102s3 +(4+2kd)s2 +2kps+2ki

Note that the nonlinearity, ψ(.) = mgL
I

sin(.) though sector

bounded, is not restricted to the first and third quadrants. A

nonlinearity, ψ(.) is said to belong to a sector [α,β ], if the

graph of this function belongs to a sector whose boundaries

are the lines αy and βy. Fig. 4 shows the nonlinearity, ψ(y)=
mgL

I
siny and the associated sector. From the figure it is clear

that ψ(.) ∈ [α,β ], where β = mgL
I

and α = β cos(y∗), y∗ ≈
1.5π is the solution of the equation ycos(y)− sin(y) = 0.

Since the theory developed in this paper requires the

nonlinearity to lie in the first and third quadrants, we need

to transform the above system to the appropriate form. The

following loop transformation (see Ex.6.1 in [15]) basically

transforms the nonlinearity ψ(.)∈ [α,β ] to a case where the

nonlinearity belongs to the sector [0,∞] (Fig. 5).

The nonlinearity ψ̄(.) now lies in the sector [0,∞]. The

modified plant is given by

Ḡ(s) =
N̄(s,K)

D̄(s,K)
= 1+(β −α)

G(s)

1+αG(s)
=

1+βG(s)

1+αG(s)

The results developed in this paper are now applied to this

modified system.

Fig. 4. Plot of the nonlinearity, ψ(y) = mgL
I

sin(y)

−
G(s)

ψ(.)

+

+

G(s)

α

β − α

ψ(.)

α

+

+

++

− −

++

−

1

β − α

Ḡ(s)

ψ̄(.)

Fig. 5. Loop transformation

1) Outer Approximation: For a given µ ∈ [0,1], let

∆(s,K,µ) = µN̄(s,K) + (1 − µ)D̄(s,K) and let Q(s,K,µ)
denote a one-parameter family of polynomials as µ varies

from 0 to 1.

Let ∆( jw,K,µ) = δr(w
2,K,µ)+ jwδi(w

2,K,µ).
To generate the outer approximation, we consider different

values of µ ∈ [01], and require the polynomials δr(w
2,K) and

δi(w
2,K) to have exactly two sign changes. Application of

Lemma 4, generates an outer approximation to the set of

absolutely stabilizing controllers.

2) Inner Approximation: Using Theorem 1, the

system is absolutely stable if there is q ≥ 0 such that

GT (s,K) = NGT (s,K)
DGT (s,K) = (1+qs)Ḡ(s,K) is SPR.

For strictly positive realness of the GT (s), the following

conditions should be satisfied: (Theorem 2)

1) GT (0) = NGT (0)
DGT (0) > 0,

2) NGT (s,K) and DGT (s,K) are Hurwitz for some q ≥ 0,

3) P(s,K) = DGT (s,K) + jαNGT (s,K) is Hurwitz for

some q ≥ 0, ∀α ∈ ℜ.

We will illustrate how to find the set of all controllers so

that above SPR conditions satisfy under q = 1.

1) For condition 1: We find that GT (0) = ki
ki

= 1 > 0.

2) For condition 2: NGT (s) = (1 + qs)N̄(s) is Hurwitz if
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N̄(s) is Hurwitz. The real and imaginary parts of the

N̄(s) at s = jw are given by

N̄( jw,K) = (2w4 − (2kd +4.392)w2 +2ki)+

+ jw(w4 −102.2w2 +2kp +19.62)

For the polynomial N̄ to be Hurwitz, there must exist

a set of frequencies 0 = w0 < w1 < w2 < w3 < w4 for

which at least one of the following two LPs is feasible

k = (1,3):

Ck













1 0 0

1 w2
1 w4

1

1 w2
2 w4

2

1 w2
3 w4

3

1 w2
4 w4

4

















0 0 2 0

−4.3924 0 0 −2

2 0 0 0













1

kp

ki

kd









> 0,

Sk













1 0 0

1 w2
1 w4

1

1 w2
2 w4

2

1 w2
3 w4

3

1 w2
4 w4

4

















19.62 2 0 0

−102.1962 0 0 0

1 0 0 0













1

kp

ki

kd









> 0.

A similar procedure is applied to find the set of

controllers for which DT (s,K) = D̄(s,K) is Hurwitz.

3) For condition 3: The family of polynomials Q(s,α) =
DGT (s) + jαNGT (s) should be Hurwitz ∀α ∈ ℜ.

This family of polynomials can be decomposed as

Q( jw,K) = Qr(w,K)+ jQi(w,K).
For the polynomial Q(s,K) to be Hurwitz, there must exist

a set of frequencies −1 = w0 < w1 < w2 < · · ·< w10 < w11 for
which at least one of the following four LPs (for k = 1, . . .4)
is feasible:

Ck















0 0 . . . −1

1 w1 . . . w5
1

1 w2 . . . w5
2

...

1 w11 . . . w5
11





























0 0 2 0
−19.6α −2α −2α 0
−3.92 0 0 −2
106.6α 0 0 2α

2 0 0 0
−3α 0 0 0





















1
kp

ki

kd






> 0,

Sk















0 0 . . . −1

1 w1 . . . w6
1

1 w2 . . . w6
2

...

1 w11 . . . w6
11

































0 0 2α 0
−4.26 2 0 0
−24.0α −2α 0 −2α
−102 0 0 0

104.2α 0 0 0
1 0 0 0

−1α 0 0 0

























1
kp

ki

kd






> 0

Fig. 6 shows the outer and inner approximation for the set

of absolutely stabilizing controller on the same plot.

V. CONCLUSIONS

In this paper, we develop a procedure for the synthesis

of fixed order controllers for nonlinear systems with sector

bounded nonlinearities. We construct an inner and outer

approximation of the set of absolutely stabilizing linear

controllers by casting the closed loop system as a Lure-

Postnikov system. The inner approximation is based on the

well-known sufficient conditions that require Strict Positive

Realness (SPR) of open loop transfer function (possibly with

some multipliers) and a characterization of SPR transfer

functions that require a family of complex polynomials to be

Hurwitz. The outer approximation is based on the condition

Fig. 6. Outer and inner approximation for the set of absolutely stabilizing
PID controllers

that the open loop transfer function must have infinite gain

margin, which translates to a family of real polynomials

being Hurwitz. We illustrate the proposed methodology

through the construction of an inner and outer approximation

of absolutely stabilizing controllers for a mechanical system.
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