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Abstract— In this paper, we propose a discrete time consensus
protocol which can solve the consensus problem in the network
with nonhomogeneous communication delays. We give the suf-
ficient conditions to reach consensus and provide a closed form
formula for the consensus value. Furthermore, we investigate
the mean square stability (MSS) of our protocol when each
link of the network can break with a given probability at each
time interval. The condition for checking MSS is equivalent to
checking the spectral radius of a positive matrix. To gain more
insight, we further restrict our attention to spatially invariant
network structure and develop a more efficient expression to
check the MSS. We derive a closed form formula to determine
the MSS in the limit of large delays, get useful lower and
upper bounds and analyze their implications for large classes
of network topologies. We find that the consensus protocol is
robust to link failures in the sense the system is always mean
square stable if we put restrictions on the propagation gain.

Keywords: network consensus, mean-square stability ro-

bustness, spatially invariant systems.

I. INTRODUCTION

Consensus problem has attracted much attention among

researchers in the control community recently [5], [6], [8],

[10], [11], [12]. Generally speaking, consensus means that all

the agents of the network agree to a common value without

recourse to a central coordinator or global communication.

The consensus protocols are distributed feedback control

laws based on local information that allow the coordination

of multi-agent networks.

One particular interesting area of consensus problem is to

study consensus in the presence of propagation delays [4],

[8], [12], [16]. In particular, [8] provided a linear consensus

protocol which can solve the consensus problem with a

nice property that the consensus value is independent of the

delays, but this property is at the price of assuming reciprocal

channels and equal delays. In [12] and [16], the authors

proposed a continuous time consensus protocol which can

make the networked system reach consensus in the presence

of nonhomogeneous delays and nonreciprocal channels. In

both papers, the authors did not provide a close form formula

for the consensus value, which we will investigate in this

paper.

In this paper, we study the consensus problem in the

network with link failures and communication delays. We

first assume the network channels are reliable but subject

to nonhomogeneous propagation delays. We study a discrete
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time consensus protocol and show that the consensus value

is not the average of the initial values but has a bias term

introduced by the delays.

We next study the consensus problem when each link has

communication delays and can break stochastically. Deter-

ministic network topology changes are considered in [8],

[12]. In contrast, we consider the case where the network is

stochastically fading due to the nature of the communication

links. In [14], the authors investigate the MSS of a consensus

protocol under the assumption that the network topology is

undirected and the channels have no delay. Their problem can

be fitted into our framework and the results in that paper can

be recovered by our method. Moreover, we consider directed

network topology and nonhomogeneous delays which is

more general than the problem considered in [14]. This work

can be also seen as the extension of the work in [3], where

the communication delays are not considered. We adopt the

framework of [1] and [2] which interprets the variance of

random variables as the size of a stochastic uncertainty in an

otherwise deterministic model, the mean network. We derive

the condition for checking MSS as checking the spectral

radius of a positive matrix. To gain more insight, we further

restrict our attention to the case that the mean network is

spatially invariant. The extra structure in the network leads to

a more efficient computation of the spectral radius condition

for MSS. To understand how the system parameters affect the

MSS of the networked system, we investigate the situation

when the propagation delays among the network channels are

very large. Based on the generating function for Legendre

Polynomial, we derive a simple formula for checking the

MSS, as well as upper and lower bounds on the stability

condition to derive properties and limitation of the algorithm

which are not specific to the interconnection topology and

size of the network.

[3] identified complex behaviors induced by power law

distributions or heavy tails in networked control systems. In

our simulation studies, we also find that if the networked

system transits from Mean Square stable to Mean Square

unstable, the state trajectory will exhibit a quite interesting

complex collective behavior.

II. SETUP AND PRELIMINARY RESULTS

We consider a set of n identical Linear Time Invariant

(LTI) discrete time systems called nodes, which are con-

nected over a network. The interaction among the nodes is

properly described by a weighted directed graph (or digraph)

G = (V , E ,A) with the set of nodes V = {v1, v2, . . . , vn},

set of edges E ⊆ V × V and a weighted adjacency matrix
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A = [aij ]. An edge of G is denoted by eij = (vi, vj)
which means that there exists a channel from vj to vi. The

adjacency elements associated with the edges of the graph

are equal to 1, i.e. eij ∈ E ⇐⇒ aij = 1. Moreover, we

assume aii = 0 for all i. For any node vi ∈ V , we define the

information neighbor of vi as

Ni = {vj ∈ V : eij = (vi, vj) ∈ E}. (1)

The set Ni represents the set of nodes sending data to node

i and |Ni| denotes the number of neighbors of node i.
We assume that each node is Single Input Single Output

(SISO), strictly proper, and is governed by the following

difference equation:

P :
x+

p = Apxp + Bpup

yp = Cpxp,
(2)

where xp ∈ R
m, x+

p denote the system state at next discrete

time, Ap ∈ R
m×m, Bp ∈ R

m×1 and Cp ∈ R
1×m. We

assume the plant is stabilizable.

Although the nodes have the same dynamics, they set

their input up differently based on their neighbors in the

network. It is convenient to introduce the following diagonal

transfer matrix to represent the dynamics of all the nodes.

Let u = [up1, . . . , upn]T and y = [yp1, . . . , ypn]T . Let Ĝ be

the transfer matrix from u to y. Ĝ is diagonal with Gii = P ,

for i = 1, . . . , n, and Gij = 0 for i 6= j. The state space

representation of G is given by G = (A, B, C, 0), where A,

B and C are block diagonal with n blocks and each block

being equal to Ap, Bp and Cp respectively.

In this paper we will study the network where all its

channels are packet drop channels. The stochastic set-up

in this paper is motivated by the presence of stochastic

drop-out links and it is different from recent studies on

deterministic\arbitrary switching [8].

A. Packet Drop Channel Model

Our simplified model of a packet drop channel neglects

the quantized nature of the packet and focuses on the unreli-

ability of the connection. The PD channel is a memoryless

map PD : R → R × {0, 1} which has one input v′ and two

outputs ξ′ and η′ defined as η′ = ξ′v′, where ξ′ denotes the

channel state and it is a Bernoulli IID random variable with

probability e of being equal to 0.

Note that ξ′ = 1 means that the channel input is correctly

received and provided to the plant while ξ′ = 0 implies that

the message is lost.

B. Fading Networks

The general framework introduced in [1] and [2] allows

to easily model the presence of multiple PD channels as a

fading network.

Definition 2.1: [3]An analog Fading Network is com-

posed by two parts:

1) The Mean Network N
2) The stochastic perturbation, ∆.

The Mean Network is a deterministic LTI system described

Fig. 1. General robust control framework with stochastic perturbations.

by the following state space realization:

N :
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(3)

where η is the Network state, v is the network input vector

(which corresponds to the vector y in our case), r is the

Network output vector (which corresponds to the plant input

u in our case). w ∈ R
p and z ∈ R

p. ∆ maps z → w
and is defined as ∆ = diag(∆i, i = 1, . . . , p). For each

i = 1, . . . , p, ∆i(0), . . . ,∆i(k), . . . are IID random variable

with

E{∆i(k)} = 0 and E{(∆i(k))2} = σ2 ∀k ≥ 0.

Moreover, ∆1(k), . . . ,∆p(k) are independent for each k,

although not necessarily identically distributed. ∆ acts as

multiplication operator on z to provide w; i.e., wi(k) =
∆i(k)zi(k) for i = 1, . . . , p, ∀k ≥ 0. Finally n is a vector

of white noise signals independent from each other and

independent from ∆.

C. Feedback Over Analog Fading Networks

Next, we consider the framework described in Figure 1.

Since we are interested in stabilization, we assume that n is

not present.

Let M = F(G, N) = (A,B, C,D) denote the minimal

realization of feedback interconnection of G with N . Fol-

lowing the setup shown in Figure 1, the LTI discrete-time

system M has p−inputs and p−outputs and is in feedback

with the diagonal uncertainty ∆ described in Definition 2.1.

Let H = F(∆, M) denote the feedback interconnection of

∆ and M , with χ0 = χ(0) independent of ∆. We assume the

feedback interconnection of ∆ and M is well-posed, namely

that the solution to system H exists for any realization of ∆.

Definition 2.2: System H is mean square stable if Q(k) =
E{χ(k)χ(k)

′} is well defined for all k and limk→∞ Q(k) =
0, where E{·} denotes the expectation of a random variable.

When n is present, H has n as an input and the definition

of MSS requires that limk→∞ Q(k) < ∞. At any rate, since

the noise n enters the equation linearly, the results does not

change.

Theorem 2.3: [2] Assume that M = F(G, N) =
(A,B, C,D) is stable and that D is either strictly lower
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triangular or strictly upper triangular. The feedback inter-

connection of M and ∆ is Mean Square stable iff σ2 <
1

ρ(M̂)
where ρ(·) denotes the spectral radius and M̂ =






‖M11‖
2
2 . . . ‖M1p‖

2
2

... . . .
...

‖Mp1‖
2
2 . . . ‖Mpp‖

2
2




.

Remark 2.4: We would like to point out that an advantage

of the above condition, with respect to the standard state

space contraction condition in [7] is that it is expressed in

terms of input output maps and their H2 norms. This allows

us to handle the presence of (large) delays more effectively

directly in the frequency domain. We refer the reader to [1]

for complete discussion and reference to related work.

D. Graph Theory and Circulant Matrix

In this subsection, we will review some notations and

previous results of graph theory and circulant matrix that

will be used later in this paper.

Definition 2.5: The degree matrix D of a digraph G is

a diagonal matrix with diagonal entries [D]ii = di, where

di =
∑n

j=1 aij is the in degree of node i.

Note that for 0−1 adjacency elements, di = |Ni|. We also

define d = max{d1, d2, . . . , dn}, which is the maximum in-

degree of all the nodes.

Definition 2.6: The (weighted) Laplacian L = [lij ] of a

digraph G is defined as

lij ,

{ ∑n
k=16=i aik if j = i

−aij if j 6= i
(4)

we can also equivalently define the Laplacian as L , D−A.

According to the above definition of graph Laplacian, all the

row-sums of L are zero, therefore L always has an eigenvalue

of zero corresponding to the eigenvector 1 = (1, . . . , 1)T , i.e.

L1 = 0. Invoking the Geršgorin disk theorem [17], all the

other eigenvalues of L have positive real parts.

Definition 2.7: A digraph is strongly connected (SC) if

any two distinct nodes of the digraph can be connected

through a path that follows the direction of the edges of

the digraph.

The strongly connected digraph has the following property.

Lemma 2.8: Let G = (V , E ,A) be a weighted digraph

with Laplacian L. If G is strongly connected, then rank(L) =
n − 1 and L has a positive left eigenvector associated with

the eigenvalue of zero.

The proof of this lemma can be found in [18]. Since

rank(L) = n − 1, the previous lemma implies that the

Laplacian of a strongly connected digraph has a simple

eigenvalue of zero.

Given an n-dimensional real vector, [c0, c1, . . . , cn−1],
the associated circulant matrix is given by L̄ =
circul[c0, c1, . . . , cn−1]. Circulant matrices have the follow-

ing properties [19]:

1) The eigenvalues of a circulant matrix are given by

λk =
∑n−1

i=0 ciρ
i
k, where ρk = ej2πk/n is one of the n roots

of −1.

2) The n × n Fourier matrix V , whose kth column

vk = n−1/2 · [1, ρk, ρ2
k, . . . , ρn−1

k ]

diagonalizes any circulant matrix of size n. Furthermore,

V V ∗ = V ∗V = I and det(V ) = 1, where det(·) denotes

the determinant of a matrix.

III. A CONSENSUS PROTOCOL

We first consider the consensus problem in the network

whose channels are reliable but subject to nonhomogeneous

communication delays. We assume the agents are very simple

and have minimal intelligence. We consider the following

discrete-time protocol

xi(k + 1) = xi(k) + β
∑

j∈Ni

[xj(k − τij) − xi(k)] (5)

where β > 0 is the propagation gain and τij is the delay in

the channel eij . Now taking z transform of (5), we get

zxi(z) − zxi(0) = xi(z) + β
∑

j∈Ni

[xj(z) · z−τij − xi(z)].

We put the above equations into a compact form as

x(z) = z[zI − I + βL(z)]−1x(0), (6)

where x(z) = [xi(z), x2(z), . . . , xn(z)] and L(z) =
[lij(z)]n×n with lii(z) = di and lij(z) = −z−τij ∀j ∈
Ni. We need to note that L(1) is a graph Laplacian. The

following result directly follows from Theorem 3.9 in [4].

Corollary 3.1: Consider a networked system with its

channels being subject to non-homogeneous communication

delays, suppose the network topology is strongly connected,

then protocol (5) will solve the consensus problem if β <
1/d. Furthermore, the consensus value is given by

α =

∑n
i=1 γixi(0)

∑n
i=1 γi + β ·

∑n
i=1

∑

j∈Ni
γiτij

,

where γ is the left eigenvector corresponding to the zero

eigenvalue of L , i.e. γT L = 0, and xi(0) is the initial

condition of the i-th agent for i = 1, 2, . . . , n.

Remark 3.2: For the discrete time consensus protocol in

[9], the authors show that the consensus value is not affected

by β. We need point out that there is no confliction between

these two results since in their case, the channel has no

dynamics, thus τij = 0 ∀i, j and the β does not affect the

final value. In particular, their protocol can be seen as a

special case in our framework when each channel has no

delay. As can be seen from Corollary 3.1, when the delays

in the channel are very large, the consensus value will be

almost zero, although it still relates to the average of the

nodes initial condition.

IV. CONSENSUS OVER FADING NETWORKS

Protocol (5) can solve the consensus problem in the

network with communication delays. However, when all the

channels can break with a given probability at each time

interval, the system becomes stochastic, and we need to study
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its stochastic stability properties. We study a natural modifi-

cation of protocol (5) which characterize the unreliability of

the communication channels.

xi(k + 1) = xi(k) + β
∑

j∈Ni

ξij(k)[xj(k − τij)− xi(k)] (7)

for i = 1, . . . , n, where ξij(k) denotes the state of the

channel eij at time k. We assume

ξij(k) =

{
1 with Prob. 1 − e
0 with Prob. e

∀i, j, k (8)

and ξij(k) are independent ∀i, j, k. Next, we define ξij(k) =
µ + ∆ij(k), where µ = 1 − e and ∆ij(k) is a new random

variable with E(∆ij(k)) = 0 and σ2(∆ij(k)) = e(1 − e).
By this definition ∆ij(k) are independent ∀i, j, k too. We

can rewrite (7) as

xi(k + 1) = xi(k) + βµ
∑

j∈Ni

[xj(k − τij) − xi(k)]

+ β
∑

j∈Ni

∆ij(k)[xj(k − τij) − xi(k)]. (9)

A. Consensus in the Mean

We begin by giving the definition of consensus in the

mean.

Definition 4.1: System (7) achieves consensus in the mean

if limk→∞ E{x(k)} = 1 · c, where c ∈ R is a constant.

The following condition for consensus in the mean can be

derived easily from Corollary 3.1.

Corollary 4.2: Consider a fading network with its chan-

nels being subject to non-homogeneous communication de-

lays, suppose the network topology is strongly connected,

protocol (7) achieves consensus in the mean if 0 < βµ < 1/d
and the consensus value is given by

lim
k→∞

E{x(k)} =

∑n
i=1 γixi(0)

∑n
i=1 γi + βµ ·

∑n
i=1

∑

j∈Ni
γiτij

.

B. Mean Square Stability

Although we get consensus in the mean, its second mo-

ment may deteriorate the convergence. To study the MSS of

the system, we seek to apply Theorem 2.3 and therefore we

need to characterize the transfer function matrix M seen by

the ∆. The reader can follow the main steps with the help

of Figure 2. Taking the Z-transfom of (9) and putting the

transformed equations together, we can get the closed-loop

system dynamics as

zx(z) − zx(0) = (I − βµL(z) + βQ∆P (z))x(z), (10)

where Q, P (z) and ∆ are defined respectively as

Q = diag{Q1, . . . , Qn}, P (z) = [P1(z), . . . , Pn(z)]T and

∆ = diag{∆1, . . . ,∆n}. Here, Qi = [1, . . . , 1
︸ ︷︷ ︸

di

], ∆i =

diag{∆i1, . . . ,∆idi
} and Pi(z) = [lij(z)]Tj∈Ni

for i =
1, . . . , n. Note that lij(z) is a row vector with i−th el-

ement being 1 and j−th element being −z−τij . We also

have
∑

j∈Ni
lij(z) = li(z), where li(z) is the i-th row of

L(z). For example, suppose li(z) = [2, 0,−z−3, 0 − z−5],

+

x

(a) (b)

Fig. 2. a) Block diagram for protocol (7). b) Equivalent representation in
terms of Mean Network framework.

then we have li3(z) = [1, 0,−z−3, 0, 0] and li5(z) =
[1, 0, 0, 0,−z−5].

The Mean Network is then obtained as follows: w is the

output from ∆, from (10), we know w = ∆P (z)x(z). Since

z is the input to ∆, z = P (z)x(z). Thus, with v = x(z), we

get the mean network

N :

[
r
z

]

=

[
−βµL(z) βQ

P (z) 0

] [
v
w

]

(11)

From Figure 2, the transfer matrix seen by ∆ is given by

the following expression:

M(z) = βP (z)H−1Q

where H(z) = (z − 1)I + βµL(z) and M(z) has the

dimension of
∑n

i=1 di.

Remark 4.3: Since H(1) = βµL, we know H−1(z) has

a pole at 1. P (z) has a multivariable zero at 1 since

γT QP (1) = 0. Therefore, there is a pole-zero cancellation

at z = 1 in the product of P (z)H−1(z) and the direction of

1 is not observable. Therefore, we study the MSS of x̃(k)
(not of x(k)), where x̃(k) has its components as

x̃i(k) := xi(k) −
1

n

n∑

i=1

xi(k)

and the system is mean square stable if

limk→∞{E
(
x̃(k)x̃

′

(k)
)
} = 0.

The following condition for checking MSS can be derived

directly form theorem 2.3.

Corollary 4.4: The networked system under (7) is mean

square stable iff µ(1 − µ) < 1
ρ(M̂)

, where M(z) =

βP (z)H−1(z)Q and µ = 1 − e.

From Theorem 2.3, to compute ρ(M̂), we need compute

the H2 norm of (
∑n

i=1 di)
2 transfer functions. Therefore

as the number of uncertain links increase, the computa-

tional complexity will increase at a speed of n2
u. Although

Corollary 4.4 gives a general computational way to check

the MSS, testing such condition may be cumbersome in

systems with many agents and unreliable links and little

structure. This difficulty may translate into the impossibility

of guaranteeing MSS in self assembled or human designed
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large heterogeneous systems. For this reason, we next restrict

our attention to spatially invariant topologies, for which the

spectral radius computation can be simpler and MSS is

manageable even in large scale networks.

C. MSS over Spatially Invariant Architectures

We need the following assumption in our future develop-

ment.

Assumption 4.5: L(z) (in (6)) is a circulant matrix such

that L(z) = circul[q, c2, . . . , cn], where q denotes the number

of neighbors of every node, ci = 0 if node i is not a neighbor

of node 1 and ci = −z−ni if node i is a neighbor of node

1.

Note that with Assumption 4.5, we have di = q for all i.
By Assumption 4.5, we actually restrict our attention to the

spatially invariant network topology. The spatially invariant

structure of the network greatly reduce the computational

complexity to determine the MSS of the networked system

as shown by the next result.

Theorem 4.6: The networked system under Assumption

4.5 is mean square stable iff

µ(1 − µ) <
1

β2 · 1
n

∑n
k=1

∑

i∈N1
‖fki(z)‖2

2

, (12)

where fki(z) =
1−ρi−1

k
·z−ni

z−(1−βµq)−βµ
∑

j∈N1
ρj−1

k
·z−nj

with ρk =

ej 2π
n

k. Recall that λk =
∑

i∈N1
ρi−1

k is the k−th eigenvalue

of the adjacency matrix A.

Theorem 4.6 shows that when we restrict the network

topology to be spatially invariant, instead of computing H2

norm of n2q2 transfer functions, we only need consider nq
transfer functions.

Remark 4.7: Note that (12) does not hold, and therefore

the system is not MSS according to Definition 2.2, when

µ = 0, as ρ(M̂) = ∞ when µ = 0.

D. Limit of Large Communication Delays

The condition (12) can still be cumbersome to verify if the

number of delays is large. At the same time, it is of interest

to understand how large (dominant) delays affect the stability

properties of the protocol. In this subsection, we study the

MSS in the limit of large communication delays. This leads

to a simplified formula and captures a relevant limiting case.

We restrict our analysis to the case where each link has the

same delay

Assumption 4.8: All the delays in the network channels

are equal and denoted by nd.

For the networked system with homogeneous time delays,

we have the following results.

Theorem 4.9: Suppose βµq < 1 and the networked sys-

tem satisfy Assumption 4.5 and 4.8, then

lim
nd→∞

∑

i∈Nk

‖fki(z)‖2
2 =

q

b(1 − b)
·

[

1−

√

(1 − b)2 − |ck|2

(1 + b)2 − |ck|2

]

,

where b = 1 − βµq and ck = −βµλk.

As the consequence of theorem 4.9, we have the following

corollaries.

Corollary 4.10: Suppose βµq < 1 and the networked

system satisfy Assumption 4.5 and and 4.8, then as nd → ∞,

it is mean square stable iff

µ(1 − µ) <
µnb

β(1 − µ) ·
∑n

k=1

[

1 −
√

(1−b)2−|ck|2

(1+b)2−|ck|2

] .

Note that µ can be simplified from both sides if we

consider the resulting condition only for µ > 0. Corollary

4.10 provides us with a condition which as expected depends

for given β and e on the topology of the network through

the eigenvalues of the adjacency matrix. Next, we propose

upper and lower bounds which only loosely depend on the

topology through the number on neighborhoods, q.

Corollary 4.11: Assume βµq < 1 and the networked

system satisfy Assumption 4.5 and 4.8, then as nd → ∞,

for µ > 0

2β(1 − µ)

2 − βµq
< σ2ρ(M̂) ≤

β(1 − µ)

1 − βµq

and the upper bound is tight iff q = 1.

Remark 4.12: The lower bound for ρ(σ2M̂) is not achiev-

able. We need ck = 0 for all k to achieve this bound, but

ck = 0 means that λk = 0, ∀k, which is a contradiction to

the fact that A always has a eigenvalue of q since A·1 = q ·1.

Besides, note that both the lower and upper bound are

independent of the size of the network, which means we

can identify situations where the MSS is independent from

the size of the network.

Remark 4.13: Assume βµq < 1 to ensure the mean

stability, we consider the following cases:

1) The step size β is not fixed, which means each network

agent has the ability to adapt to the variation of the network

topology. From corollary 4.11, if β < 1
1−µ+µq the network is

mean square stable and if β > 2
2−2µ+µq the network is mean

square unstable. If the probability of link failure does not

change much, as we increase the number of links by adding

more neighbors to each node, β must be kept appropriately

small to accommodate these incoming links, otherwise we

may first lose MSS and next lose mean stability.

2) The step size β is fixed. In this case, from Corollary

4.11, if β > 1
1−µ , the networked system is mean square

unstable. Assume β < 1
1−µ , if q < 1−β(1−µ)

βµ the network is

mean square stable and if q > 1−β(1−µ)
βµ the network is mean

square unstable. Therefore we need to keep the number of

neighbors small or decrease the probability of link failure

(make µ small) to maintain the MSS.

Corollary 4.14: Assume βµq < 1 and the networked

system satisfy Assumption 4.5 and 4.8. As nd → ∞, if

β < 1/q, the networked system is always mean square stable

for any 0 < µ ≤ 1.

Remark 4.15: Corollary 4.14 is a consequence of Corol-

lary 4.11 since when β < 1/q, the upper bound of σ2ρ(M̂) is

always less than 1. Corollary 4.14 implies that the consensus

protocol we studied is robust to the link failures in the sense

that we can guarantee the MSS by choosing β properly. The

constraint on β to ensure MSS is actually the same constraint
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Fig. 3. Complex behavior: ring topology of 4 nodes, nd = 5, β = 1.06,

µ = 0.5 and σ2ρ(M̂ ) = 1.0504.

on β to achieve consensus when the channels are reliable.

However, we see that then knowledge of q is required to

choose β appropriately. Although one could play safe by

choosing β very small, this affects the convergence speed.

Finally it is interesting that for systems under study, the

lost of MSS seems to be due to the mismatch between the

expected number of neighbors and the worst case number

of neighbors that the channel realizations permit. In other

words, the system is more stressed when all the neighbors

talk to the node. Of course, this situation is specific to the

case under study and is consistent with the findings of [3],

[14].

E. Simulation Studies

In [3], Elia found the emergence of power laws in the

networked control system when the system is subject to

stochastic link failures and additive White Gaussian noise.

Here we do the same and simulate. We investigate the

consensus protocol (7) in the presence of a small variance

additive noise. We find that a complex behavior like the one

shown in Figure 3 will emerge when the system transit from

mean square stable to mean square unstable. We also find

that the emergence of the complex behavior is independent

of whether there are delays in the channels and how many

uncertain links the system has and as expected can be related

to the integration of noise process of unbounded variance.

V. CONCLUSIONS

In this paper, we study the MSS of the networked system

whose channels are modeled as packet drop channels. We

develop a computational-efficient way to determine the mean

square stability when the network topology is spatially

invariant. For the case of large delays, we derive the closed

form formula to determine the MSS and consequently get the

lower and upper bound of σ2ρ(M̂), which is independent

of the size of the network. As a result, as we increase

the number of neighbors, we first lose MSS and then lose

mean stability. We also identified that the consensus protocol

we investigated is robust to link failures if we choose the

system parameter β properly. We also presented simulations

that show the emergence of a complex behavior as the

system loses the MSS. Future research is needed to further

characterize the behavior, as well as to identify other large

scale architectures that exhibit strong robustness properties.
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