
A Hamiltonian-Based Algorithm for Measurements Clustering

Daniele Casagrande and Alessandro Astolfi

Abstract— The paper describes a novel method for clustering
points in the plane. The proposed algorithm is based on the
notions of clustering function and level lines; the clusters are
identified as the level sets corresponding to a reference value of
the clustering function. The core idea is to regard the clustering
function as a Hamiltonian function and to determine the level
lines as the trajectories of the associated Hamiltonian system.
The method is illustrated on two practical problems.

I. INTRODUCTION

The problem of clustering measurements arises in many

applications such as pattern recognition, computer graphics,

data analysis, image processing and market research (for a

survey on the subject see, among others, the books [1], [2],

[3] and [4]). The main goal of a clustering process is that

of partitioning a set of points into a number of subsets in

such a way that data points belonging to the same subset, or

group, are more correlated one to the other than data points

belonging to different subsets.

The results presented are motivated by the possibility of

exploiting the clustering of data to derive collective proper-

ties of detected objects. In particular, we consider a scenario

where a finite number of objects are moving on the two-

dimensional plane; we suppose that at a given time-instant

the displacements of the objects on the plane is detected and

the position of each object is mapped into a point. Thus the

data points, in this case, are not mere points in the space but

correspond to real objects and the clustering method can be

used to provide information on the collective behaviour of the

objects. It is reasonable to assume, for instance, that points

(objects) that are close one to the other behave in a somehow

correlated way. On the other hand, isolated points are likely

to correspond to objects whose behaviour is uncorrelated to

the others. Moreover, tracking a group of objects is more

convenient, in terms of computational load, than tracking

each of them individually.

In the literature many algorithms have been proposed

to perform the clustering when the number of clusters

is known. The ideas underlying these algorithms are the

more diverse, e.g. deterministic algorithms [5], probabilistic

algorithms [6], simulated-annealing-based algorithms [7],

evolutionary-based algorithms [8], tabu-search-based algo-

rithms [9] and hierarchical algorithms [10], just to mention
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a few. Other works consider the cluster validity, namely

the problem of finding the optimal number of clusters in

a given set of data points, and develop algorithms [11], [12]

for automatic clustering, i.e. algorithms that solve both the

cluster validity and the clustering itself.

The approach followed herein is novel as we are interested

not only in a mere clustering of the single points but also

in the identification of regions of interest surrounding the

points belonging to the same cluster. The idea is somewhat

similar to [13], where the clustering is achieved by defining a

clustering function and grouping together the points belong-

ing to the same level set. Nevertheless, while in [13] a level

function is introduced only to implicitly define the clusters,

herein the clustering function is used to define Hamiltonian

dynamics. Subsequently, the trajectory of the state of the

corresponding Hamiltonian system is proven to converge to

the contour of the level set, namely the contour of the region

of interest, no matter what the initial condition is.

The paper is organized as follows. In Section II the nota-

tion is described, while the problem is formulated in detail

in Section III. Section IV describes the class of Hamiltonian

functions used and illustrates the theoretical achievements.

The results of some simulations are reported in Section V.

Conclusions and future developments are finally drawn in

Section VI.

II. NOTATION

R denotes the extended set of real numbers, namely R ∪
{−∞, +∞}. For a pair of points a ∈ R

2 and b ∈ R
2, d(a, b)

denotes the distance between a and b. Given a point a ∈ R
2

and a set C ⊂ R
2, d(a, C) denotes the distance between

a and C, namely d(a, C) = inf{d(a, c) : c ∈ C}. BR
ξC

denotes the closed ball of centre ξC and radius R, namely

the set {ξ ∈ R
2 : ‖ξ − ξC‖ 6 R}. C 1 denotes the set

of continuous and differentiable functions with continuous

first-order derivative.

Finally, we remind that the diameter of a set C is defined

as diam(C) , sup{d(x, y) : x ∈ C , y ∈ C}.

III. DESCRIPTION OF THE PROBLEM

Suppose that at a given time-instant the position of N
objects in R

2 is detected and that the position of the i-
th object, for i = 1, . . . , N , is mapped into a point ξi

represented by a pair of coordinates: ξi = (xi, yi). The set of

points to be clustered is, then, D = {ξ1, . . . ξN} ⊂ R
2. The

method presented in the following solves, at the same time,

both the problem of finding the optimal number K of clusters

and the problem of partitioning D into sets D1, . . . ,DK .
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Fig. 1. A possible configuration for D = {ξ1, ξ2, ξ3}. According to
Definition 1, the points ξ1 and ξ2 are linked and so are P and Q as well
as P and ξ1. Therefore ξ1 and ξ2 belong to the same group D1. The
region surrounding D1 is R1 = R2 and its contour is S1 = S2. On the
other hand ξ3 ∈ D2 is isolated. The shaded regions D1 and D2 are made
by points in which the level function is greater than the reference value.

This is achieved in two steps. We first define a level

function H ; subsequently, we identify the clusters as the

sets of points internal (with the meaning that is specified

in the following) to the closed curves corresponding to the

boundary of a particular level set. The main idea is to

consider the closed curves as trajectories of Hamiltonian

systems with Hamiltonian function H . We begin by defining

the notion of link between two points.

Definition 1: Given a function H : R
2 → R and a

reference value Hr, two points P ∈ R
2 and Q ∈ R

2 are

linked with respect to Hr if

(i) H(P ) ≥ Hr,

(ii) H(Q) ≥ Hr,

(iii) there exists a continuous curve Γ ⊂ R
2 such that P ∈ Γ,

Q ∈ Γ and H(R) ≥ Hr for all points R ∈ Γ.

Moreover, we say that two points ξA ∈ D and ξB ∈ D
belong to the same group with respect to Hr if they are

linked (w.r.t. Hr). Finally we say that a point ξC ∈ D is

isolated with respect to Hr if there does not exists any ξ̄ ∈ D
such that ξC and ξ̄ are linked (w.r.t. Hr). ♦

To provide the reader with more insight on the meaning

of Definition 1 we remark that it is defined not only for

the points in D but for all points in R
2; this means that

once the function H and the reference level Hr are defined,

grouping together two points ξA and ξB implies identifying

a connected region R, the contour of which is denoted by

S, surrounding both ξA and ξB , the points of which are all

linked each other (see Figure 1)1. Clearly, the shape and the

dimension of such a connected region depend on how H and

Hr are selected.

It is easy to check that the link relation expressed by

Definition 1 has both the symmetry property (if P is linked

to Q, then Q is linked to P ) and the transitivity property

(if P is linked to Q and Q is linked to R, then P is

1Dj , for j = 1, . . . , K , denotes a cluster, namely a subset of D; Rj

denotes the set of points linked to any point in Dj ; Sj denotes the boundary
of Rj .

linked to R). To consider the Di’s as classes of equivalence,

which is a necessary requirement for correlated objects, the

reflexivity property (P is linked to itself) should also hold

for the ξ’s. For, it is sufficient to suppose that Hr is such

that H(ξi) > Hr, for all i = 1, . . . , N .

A. Selection of the level function

In accordance with the aim of rendering the link relation

an equivalence relation, we first require that the function H
and the value of Hr are such that each ξi, i = 1, . . . , N is

linked to itself; moreover, we prefer H to be positive, smooth

and such that2
∫

R2 H(x, y)dxdy = Ĥ < +∞. In particular,

we associate to each point ξ = (x, y) a Gaussian function

Hi(ξ) = e−ρi(ξ)2 , (1)

with3 ρi(ξ) = ρi(x, y) , ‖ξ−ξi‖=
√

(x− xi)2+(y − yi)2,

and we pick

H(ξ) =
N∑

i=1

Hi(ξ) . (2)

With this choice the reflexivity property is guaranteed as

long as Hr < 1. In fact, since Hi(ξi) = 1 we always have

H(ξi) > 1 > Hr. Then each ξi is linked to itself.

B. On the length of the contour

If we suppose that the region within which the objects are

detected is a compact set C ⊂ R
2, then an upper bound for

the length of the contour of Ri can be found. To achieve

this goal we need some preliminary results.

Lemma 1: If H is as in Equation (2) and ξi ∈ C ⊂ R
2,

with C compact, then Si ⊂ CB , for all i = 1, . . . , N , where

CB ,
{
ξ ∈ R

2 : d(ξ, C) 6
√

loge(N/Hr)
}

. �

Proof: Consider a point ζ /∈ CB . For all i = 1, . . . , N ,

ρi(ζ) >
√

loge(N/Hr), hence Hi(ζ) < e−(loge(N/Hr)) =

Hr/N . Therefore H(ζ) =
∑N

i=1 Hi(ζ) < N Hr

N = Hr.

Hence ζ /∈ Si.

Now, in any practical case the objects, and hence the

associated points, lie in a box4: ξi ∈ [−A, A]× [−B, B], for

all i = 1, . . . , N . Therefore, as a consequence of Lemma 1,

CB ⊂ BD
O , where

D =
√

A2 + B2 + loge(N/Hr) . (3)

Thus we have found a compact set which contains all the

contours of the level function H . We now exploit this

information to prove that, under some hypotheses, the length

of each contour is bounded. To prove this fact, we need two

preliminary results.

2This property, even though is not exploited in the paper, provides H/Ĥ
with a behaviour similar to a probability density. This may be used to find
the probability that in a future time-instant the i-th object is mapped into a
point belongs to Ri.

3Here we use the Euclidean norm; the results hold when using any
weighted norm.

4Without loss of generality we consider the box symmetric with respect
to the origin.
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Lemma 2: Let γ : [0, T ] → R
2 be a C

1 curve, let L(γ)
be its length and let (x(t), y(t)) denotes the parametric

description of γ, namely the image (in R) of t ∈ [0, T ].
Moreover, suppose that γ is contained in a compact set A
whose diameter is diam(A) = M . If the equation ẋ(t) = 0
has zx solutions in [0, T ) and the equation ẏ(t) = 0 has zy

solutions in [0, T ), then L(γ) ≤M(zx + zy). �
Proof: The length of the curve is given by

L(γ) =

∫ T

0

√
ẋ2 + ẏ2 dt ≤

∫ T

0

(|ẋ(t)|+ |ẏ(t)|) dt .

If γ ⊂ A, then the length spanned in the x direction in a

time interval in which ẋ does not change sign is bounded by

M . Thus, if ẋ changes sign (at most) zx times, we have
∫ T

0

|ẋ(t)|dt ≤Mzx .

An analogous result holds for y and the thesis follows

immediately.

We apply Lemma 2 to the function H defined by (2) thus

proving that the length of the contour of a level set admits an

upper bound. Now, as far as the first hypothesis is concerned,

namely that the curve is contained in a compact set, we have

proven in Lemma 1 that it holds. On the other hand, as far as

the second hypothesis is concerned, we make the following

assumption5.

Assumption 1: Let the level function be as in Equation (2)

with Hi defined as in (1). The curve corresponding to the

level set H = Hr, is such that the equation ẋ(t) = 0 (ẏ(t) =
0) has at most a finite number σx(N) (σy(N), respectively)

of solutions, possibly depending on N .

As a consequence, the total length of the contour of any

level set is upper bounded by D(σx(N) + σy(N)). In the

following section this fact is exploited to show that the

contours of the regions Ri’s correspond to the restriction to

a finite time-interval of a trajectory of a Hamiltonian system.

IV. MAIN RESULTS

We now show that it is possible to design a simple

switching scheme, defining modified Hamiltonian dynamics,

which in two steps, namely with only one switch, allows to

determine the set Sj , for some j ∈ {1, . . . , K} (where K is

the number of clusters), no matter what the initial condition

of the Hamiltonian system is. In particular, the two dynamics

corresponding to the two steps of the strategy perform the

following tasks: the first dynamics are such that in finite time

the state of the Hamiltonian system reaches Sj ; the second

dynamics are used so that the state covers in finite time a

closed trajectory which corresponds to the set Sj .

Suppose that a C 1 function H(x, y) : R
2 → R is given

and consider the planar Hamiltonian system described by the

equations

ẋ =
∂H

∂y
f(x, y) , ẏ = −

∂H

∂x
f(x, y) , (4)

5So far, Assumption 1 could not be proven; nevertheless, due to the simple
structure of the functions Hi it is quite reasonable.

where f(x, y) is any continuous function such that6 f(x, y)>
0 for all (x, y)∈R

2. The main feature of system (4) is that

the value of H is constant along trajectories, since

Ḣ =
∂H

∂x
ẋ +

∂H

∂y
ẏ = 0 .

Now, if the initial condition is a point (x(0), y(0)) on the

level line corresponding to Hr, namely if H(x(0), y(0)) =
Hr, then H(x(t), y(t)) = Hr for all t > 0, thus the trajectory

of the state of the system lies on Sj for some j ∈ {1, . . . , K}.
On the other hand, if the initial condition does not lie on the

level line corresponding to Hr, an additional term needs to be

introduced in Equation (4) so that the state reaches
⋃K

j=1 Sj .

A. Finite time convergence

To achieve the mentioned goal, namely to steer the state of

the system from any initial condition to a point lying on the

level line corresponding to Hr, one can choose, in particular,

a term that provides finite time convergence of the trajectory

to the set
⋃K

j=1 Sj . Consider the modified system






ẋ = f(x, y)

(
∂H
∂y
−

∂H

∂x
(H −Hr)

1/3

)
,

ẏ = −f(x, y)

(
∂H
∂x

+
∂H

∂y
(H −Hr)

1/3

)
.

(5)

In this case one has

Ḣ =
∂H

∂x
ẋ +

∂H

∂y
ẏ

= −

((
∂H

∂x

)2

+

(
∂H

∂y

)2
)

(H −Hr)
1/3f(x, y) .

By taking

f(x, y) = k1

((
∂H

∂x

)2

+

(
∂H

∂y

)2
)

−1

(6)

for a given k1 > 0, one obtains Ḣ = −k1(H −Hr)
1/3, the

solution of which is

H(t)=





Hr+µ

√(
h2/3−2

3k1t
)3

, for 0 6 t6 3h2/3

2k1

,

Hr , for t> 3h2/3

2k1

,

where µ = sign(H −Hr), h = |H0 −Hr| and H0 =
H(x(0), y(0)).
Hence H(t) = Hr for t > t∗ = 3h

2

3 /2k1.

Remark 1: The function (6) is well-defined for all points

in R
2 except the points ξ∗ such that

∂H

∂x

∣∣∣∣
ξ∗

=
∂H

∂y

∣∣∣∣
ξ∗

= 0 . (7)

The closed level lines containing the points for which (7)

holds are homoclinic level lines. In the following we suppose

that the level line corresponding to the reference level is not

homoclinic, i.e. for none of its points (7) holds. Moreover,

6This assumption is needed to maintain the orientation of the trajectory.
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ξ1 ξ2

ξ3 ξ4

M

Fig. 2. A possible situation in which the trajectory of system (5) tends to
a local minimum (the point M ) which does not belong to the desired level
line (dashed line).

we suppose that the trajectories of system (5) do not intersect

(and do not tend to) stationary points of the function H . ♦
Remark 2: Condition (7) is verified, in particular, for the

local minima of the level function, e.g. the point M in

Figure 2. In this case, if the value of the function in the

stationary point is greater than Hr and H(x(0), y(0)) > Hr,

the trajectory of system (5) might get stuck in the local

minima (see again Figure 2), without reaching the level

line. In the examples presented in the paper due to the

particular displacement of the points this does not occur;

nontheless, a generic procedure to avoid this occurrence

shoud be investigated. ♦
Note that in (2) all the functions Hi’s are bounded,

namely Hi(x, y) ∈ [0, 1], for all (x, y) ∈ R
2. Therefore

H(x, y) < N and t∗ 6 3N2/3/2k1, which means that the

time of convergence of the trajectory to the desired level line

is bounded no matter what the initial condition (x(0), y(0))
is. Moreover, by properly selecting the value of k1 the time

of convergence can be made arbitrarily small.

B. Constant linear velocity along the level lines

Consider again system (5). If the initial condition ξ0 =
(x0, y0) is such that H(ξ0) = Hr and the level line does not

contain stationary points of H , then the system is identical

to system (4) and H(t) = Hr for all t > 0. Moreover,

in Section III we have proven that the locus of points ξ

such that H(ξ) = Hr has a finite length. These two facts

imply that a system initialized at ξ0 and evolving according

to (4) (or to (5)) either runs along a homoclinic orbit, i.e.

admits an equilibrium state ξ
∗

such that (7) holds, or its

trajectory is periodic. In the latter case we define the period

of the trajectory as the minimum positive constant T such

that x(t + T ) = x(t) and y(t + T ) = y(t), for all t ∈ R. If

the condition (7) is verified, we set t =∞.

In general, the period of the trajectory depends on the

value Hr and on the function f . Nevertheless, by properly

selecting the expression of f it is possible to find an upper

bound for T . In fact, let s denote the curvilinear coordinate

of a point moving along a periodic trajectory (see Figure 3).

It is easy to see that the dynamics of s are described by

ṡ =
√

ẋ2 + ẏ2 (apply Pythagoras’s theorem to the triangle

γ

ds

dx

dy

s

Fig. 3. Some possible trajectories of the Hamiltonian system (4) corre-
sponding to different values of H .

whose sides are dx, dy and ds). Then by picking

f(x, y) = k2

((
∂H

∂x

)2

+

(
∂H

∂y

)2
)

−1/2

, (8)

for a given k2 > 0, which is well-defined for all points which

do not belong to a homoclinic orbit, one has

ṡ =

√(
∂H

∂x

)2

f(x, y)2 +

(
∂H

∂y

)2

f(x, y)2 = k2 , (9)

which means that the linear velocity of a point moving along

the trajectory is constant and may be rendered arbitrarily

large. This, together with the fact that the length of the

curve is L(γ) 6 D(σx(N) + σy(N)), with D defined by

(3), implies that T 6 D(σx(N) + σy(N))/k2.

Then we can determine in finite time the contour of Rj ,

for some j ∈ {1, . . . , K}, by applying the following two-

steps strategy.

S1. Select an initial condition ξ(0) and integrate the

dynamics defined by (5) with f as in (6) until the state

of the system reaches a point ξ ∈
⋃K

j=1 Sj .

S2. Starting from ξ, integrate the dynamics defined

by (5), with f as in (8), until a whole period of the

trajectory has elapsed.

By applying this strategy only once, one finds Sj for only

one j ∈ {1, . . . , K}, while the final goal is to find
⋃K

j=1 Sj .

A naive methodology to achieve this result is that of applying

the strategy S1-S2 N times, taking ξi as initial condition for

the i-th iteration. Each ξ, in fact, belongs to some region Rj

and is therefore internal to the contour Sj which is a closed

curve contained in a compact set. This exhaustive approach

certainly allows to find all the contours; nevertheless it can

be improved by exploiting a well-known fact in differential

geometry, as explained in the following.

C. The cluster validity problem

Let γ(t) : [0, 1]→ R
2 be a differentiable closed curve (i.e.

γ(1) = γ(0)) such that for all t1 ∈ (0, 1) and t2 ∈ (0, 1),
with t1 6= t2, γ(t1) 6= γ(t2). Let x = x(t) and y = y(t)
be the parametric description of γ and define, for a point

ξ
∗ = (x∗, y∗) ∈ R

2, the differential one-form

dθξ∗ =
−(y − y∗)dx + (x− x∗)dy

(x− x∗)2 + (y − y∗)2
.
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Fig. 4. A black-and-white picture of two flocks of birds.

The winding number [14] (or index) of γ with respect to ξ∗

is defined as

β(ξ∗, γ) ,
1

2π

∮

γ

dθξ∗ .

and by Cauchy’s theorem

β(ξ∗, γ) =

{
0 if ξ∗ lies outside the curve,

1 if ξ∗ lies inside the curve.

As a result, in order to determine all the contours correspond-

ing to the set of detected points D = {ξ1, ξ2, . . . , ξN}, to

the level function H and to the level set Hr, one can run the

following algorithm.

A0. Let i = 1 and j = 1.

A1. Run S1-S2 with ξ(0) = ξi, thus determining the

contour Sj of the region surrounding ξi, and for all

k = i + 1, . . . , N compute β(ξk,Sj).
A2. For all k = i + 1, . . . , N , if β(ξk,Sj) = 1 then

D ← D\{ξk}. If D 6= ∅ then go to step A1 with i ←
i + 1 and j ← j + 1, otherwise stop.

The algorithm does not need any preliminary information

on the final number K of clusters that one expects. On the

contrary, it computes K iteratively in the following way: as

long as there exists a point ξ̂ which do not belong to any

cluster already determined, the strategy S1-S2 is applied with

ξ(0) = ξ̂ and the number K is incremented.

V. SIMULATIONS

In this section we present the result of the application

of the method to two practical cases. In the first one, we

consider two flocks of birds, we map each bird into a (set

of) pixels of a black-and-white image (see Figure 4 which

has been obtained from an original coloured image) and

we apply the algorithm to cluster all the measurements (the

black pixels) thus identifying the two flocks. The image has

700× 961 pixels, 27016 of which are black (each of which

potentially corresponds to a bird).

To simplify the computation, the image has been sampled

with a decimation rate of 10. The new image has 70 × 97
pixels, 272 of which are black. Figure 5 shows the set of

sampled points with the contours determined according to

the algorithm in Section IV.

Fig. 5. The result of the algorithm overlapped with the set of sampled
measurements.

Fig. 6. The result of the algorithm overlapped with the original image of
Figure 4.

The algorithm has been performed with a reference level

Hr = 5×10−6 and has clustered the 272 measured data into

4 groups. Two of them correspond to the original flocks while

two contain only one point (one bird). These may correspond

to birds which are moving out from (or joining) the flock or

may be due to the fact that the sampling cut out some pixels

between them and the nearest flock. It can be noted that for

each cluster only one iteration of the strategy S1-S2 has been

performed. In particular, in each cluster one can see the piece

of trajectory (a small ”curl”) from the initial point ξi to the

level line corresponding to Hr.

Finally, in Figure 6 the level line provided by the algorithm

has been compared with the original picture. As one can see,

the sampling does not affect significantly the clustering.

To show how the selection of the level set can affect

the result of the clustering process, we have applied the

algorithm to another practical case where the measurements

are the black pixels of a black-and-white image of a flock

of geese flying “in formation”. The algorithm has been

applied with two different values of Hr. In the first case

(see Figure 7) the algorithm detects the single birds, while

in the second case (see Figure 8) the birds are grouped into

three clusters.

To have a more specific idea about the dependency of the

number of clusters on the reference value Hr, all the values

from 0.005 to 0.995, with step 0.005 have been tested. The

result is reported in Figure 9.

Note that the values of k1 and k2 do not affect the
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Fig. 7. The result of the algorithm overlapped with the original image of a
flock of geese. The pixels corresponding to each single goose are clustered
together.

Fig. 8. The result of the algorithm overlapped with the same image of
Figure 7 but with a different value of the reference level. In this case the
geese are clustered in three groups.

final result of the clustering process but only the speed of

execution of the algorithm.

VI. CONCLUSIONS

In this paper we have presented a novel approach to the

problem of clustering a set of measurements. The algorithm

makes use of the notion of level function and it clusters

together measurements internal to a level line. The goal is

achieved by considering the level function as a Hamiltonian

function and integrating the corresponding Hamiltonian sys-

tem. Future developments will be devoted to improve the

algorithm in order to cope with situations like the one in

Figure 10, where the region identified by the level lines is

not simply connected. The present version of the algorithm

A1-A3, in fact, cannot detect both contours.

ACKNOWLEDGEMENTS

The authors would like to thank Neil Cade from SELEX

Sensors and Airborne Systems Limited for many useful

discussions that contributed to this work.

REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques, ser.
Morgan Kaufmann. Academic Press, 2001.

[2] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. John
Wiley and sons, 2001.

[3] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
John Wiley and sons, 1973.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Hr

N
u
m

b
er

o
f

cl
u
st

er
s

Fig. 9. Dependency of the number of clusters on the value of Hr .

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

ξ11

Fig. 10. A non-simply connected region. The algorithm A1-A2 cannot
detect both the contours.

[4] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic
press, 1999.

[5] Z. Huang, “Extension to the k-means algorithm for clustering data
sets with categorical values,” Data Mining and Knowledge Discovery,
vol. 2, pp. 283–304, 1998.

[6] S.L. Lauritzen, “The em algorithm for graphical association models
with missing data,” Computational Statistics and Data Analysis,
vol. 19, pp. 191–201, 1995.

[7] S.Z. Selim and K. Alsultan, “A simulated annealing algorithm for the
clustering problem,” Pattern Recognition, vol. 24, no. 10, pp. 1003–
1008, 1991.

[8] K. Krishna and M. Narasimha Murty, “Genetic k-means algorithm,”
IEEE Transactions on systems, Man, ans Cybernetics-Part B: Cyber-

netics, vol. 29, no. 3, pp. 433–439, 1999.
[9] S.M. Pan and K.S. Cheng, “Evolution-based tabu search approach

to automatic clustering,” IEEE Transactions on Systems, Man, ans

Cybernetics-Part C: Applications and Reviews, vol. 37, no. 5, pp. 827–
838, 2007.

[10] G. Karypis, E. H. Han, and V. Kumar, “Chameleon: Hierarchical
clustering using dynamic modeling,” Computer, vol. 32, no. 8, pp.
68–75, 1999.

[11] N.R. Pal and J.C. Bezdek, “On cluster validity for the fuzzy c-means
model,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 370–
379, 1995.

[12] X.L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
no. 8, pp. 841–847, 1991.

[13] G. V. Nosovskiy, D. Liu, and O. Sourina, “Automatic clustering and
boundary detection algorithm based on adaptive influence function,”
Pattern Recognition, 2008, to appear.

[14] I. Stewart and D. Tall, Complex Analysis. Cambridge University
Press, 1983.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC01.3

3174


