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Abstract— Minimizing the rank of a matrix subject to con-
straints is a challenging is a challenging problem that arises
in many control applications including controller design, real-
ization theory and model reduction. This class of optimization
problems, known as rank minimization, is NP-HARD, and for
most practical problems there are no efficient algorithms that
yield exact solutions. A popular heuristic algorithm replaces
the rank function with the nuclear norm—equal to the sum
of the singular values—of the decision variable. In this paper,
we provide a necessary and sufficient condition that quanti-
fies when this heuristic successfully finds the minimum rank
solution of a linear constraint set. We further show that most
of the problems of interest in control can be formulated as
rank minimization subject to such linear constraints. We addi-
tionally provide a probability distribution over instances of the
affine rank minimization problem such that instances sampled
from this distribution satisfy our conditions for success with
overwhelming probability provided the number of constraints
is appropriately large. Finally, we give empirical evidence that
these probabilistic bounds provide accurate predictions of the
heuristic’s performance in non-asymptotic scenarios.

I. INTRODUCTION

Optimization problems involving constraints on the rank
of matrices are pervasive in control applications, arising in
the context of low-order controller design [7], [12], mini-
mal realization theory [9], and model reduction [2]. Rank
minimization is also of interest to a broader optimization
community in a variety of applications including inference
with partial information [16] and embedding in Euclidean
spaces [11]. In certain instances with special structure, the
rank minimization problem can be solved via the singular
value decomposition or can be reduced to the solution of
a linear system [12], [13]. In general, however, minimizing
the rank of a matrix subject to convex constraints is NP-
HARD. The best exact algorithms for this problem involve
quantifier elimination and such solution methods require
at least exponential time in the dimensions of the matrix
variables.

A popular heuristic for solving rank minimization prob-
lems in the controls community is the “trace heuristic”
where one minimizes the trace of a positive semidefinite
decision variable instead of the rank (see, e.g., [2], [12]).
A generalization of this heuristic to non-symmetric matrices
introduced by Fazel in [8] minimizes the nuclear norm,
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or the sum of the singular values of the matrix, over the
constraint set. When the matrix variable is symmetric and
positive semidefinite, this heuristic is equivalent to the trace
heuristic, as the trace of a positive semidefinite matrix is
equal to the sum of its singular values. The nuclear norm
is a convex function and can be optimized efficiently via
semidefinite programming. Both the trace heuristic and the
nuclear norm generalization have been observed to produce
very low-rank solutions in practice, but, until very recently,
conditions where the heuristic succeeded were only available
in cases that could also be solved by elementary linear
algebra [13].

The first non-trivial sufficient conditions that guaranteed
the success of the nuclear norm heuristic were provided
in [14]. Focusing on the special case where one seeks the
lowest rank matrix in an affine subspace, the authors provide
a “restricted isometry” condition on the linear map defining
the affine subspace which guarantees the minimum nuclear
norm solution is the minimum rank solution. Moreover, they
provide several ensembles of affine constraints where this
sufficient condition holds with overwhelming probability.
Their work builds on seminal developments in “compressed
sensing” that determined conditions for when minimizing
the `1 norm of a vector over an affine space returns the
sparsest vector in that space (see, e.g., [4], [3], [1]). There is
a strong parallelism between the sparse approximation and
rank minimization settings. The rank of a diagonal matrix is
equal to the number of non-zeros on the diagonal. Similarly,
the sum of the singular values of a diagonal matrix is equal
to the `1 norm of the diagonal. Exploiting the parallels, the
authors in [14] were able to extend much of the analysis
developed for the `1 heuristic to provide guarantees for the
nuclear norm heuristic.

Building on a different collection of developments in
compressed sensing [5], [6], [17], we present a necessary
and sufficient condition for the solution of the nuclear norm
heuristic to coincide with the minimum rank solution in
an affine space. The condition characterizes a particular
property of the null-space of the linear map which defines
the affine space. To demonstrate why this result is of
practical use to the controls community, we also present a
reduction of the standard Linear Matrix Inequality (LMI)
constrained rank minimization problem to a rank minimiza-
tion problem with only equality constraints. Moreover, we
show that when the linear map defining the constraint set
is generated by sampling its entries independently from a
Gaussian distribution, the null-space characterization holds
with overwhelming probability provided the dimensions of
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the equality constraints are of appropriate size. We provide
numerical experiments demonstrating that even when matrix
dimensions are small, the nuclear norm heuristic does indeed
always recover the minimum rank solution when the number
of constraints is sufficiently large.

II. NOTATION AND PRELIMINARIES

For a rectangular matrix X ∈ Rn1×n2 , X∗ denotes the
transpose of X . vec(X) denotes the vector in Rn1n2 with the
columns of X stacked on top of one and other.

σi(X) denotes the i-th largest singular value of X and is
equal to the square-root of the i-th largest eigenvalue of XX∗.
The rank of X will usually be denoted by r, and is equal to
the number of nonzero singular values. For matrices X and
Y of the same dimensions, we define the inner product in
Rn1×n2 as 〈X ,Y 〉 := trace(X∗Y ) = ∑

n1
i=1 ∑

n2
j=1 Xi jYi j. The norm

associated with this inner product is called the Frobenius (or
Hilbert-Schmidt) norm || · ||F . The Frobenius norm is also
equal to the Euclidean, or `2, norm of the vector of singular
values, i.e.,

‖X‖F :=

(
r

∑
i=1

σ
2
i

) 1
2

=
√
〈X ,X〉=

(
n1

∑
i=1

n2

∑
j=1

X2
i j

) 1
2

.

The operator norm (or induced 2-norm) of a matrix is equal
to its largest singular value (i.e., the `∞ norm of the singular
values):

‖X‖ := σ1(X).

The nuclear norm of a matrix is equal to the sum of its
singular values, i.e.,

‖X‖∗ :=
r

∑
i=1

σi(X) ,

and is alternatively known by several other names including
the Schatten 1-norm, the Ky Fan r-norm, and the trace
class norm. These three norms are related by the following
inequalities which hold for any matrix X of rank at most r:

||X || ≤ ||X ||F ≤ ||X ||∗ ≤
√

r||X ||F ≤ r||X ||. (1)

We also state the following easily verified fact that will be
used extensively throughout.

Lemma 2.1: Suppose X and Y are n1 ×n2 matrices such
that X∗Y = 0 and XY ∗ = 0. Then ‖X +Y‖∗ = ‖X‖∗+‖Y‖∗.

Indeed, if X∗Y = 0 and XY ∗ = 0, we can find a coordinate
system in which

X =
∥∥∥∥[ A 0

0 0

]∥∥∥∥
∗

and Y =
∥∥∥∥[ 0 0

0 B

]∥∥∥∥
∗

from which the lemma trivially follows.

III. MAIN RESULTS

Let X be an n1×n2 matrix decision variable. Without loss
of generality, we will assume throughout that n1 ≤ n2. Let
A : Rn1×n2 →Rm be a linear map, and let b∈Rm. The main
optimization problem under study is

minimize rank(X)
subject to A (X) = b .

(2)

As described in the introduction, our main concern is
when the optimal solution of (2) coincides with the optimal
solution of

minimize ‖X‖∗
subject to A (X) = b .

(3)

Whenever m < n1n2, the null space of A , that is the set
of Y such that A (Y ) = 0, is not empty. Note that X is an
optimal solution for (3) if and only if for every Y in the
null-space of A

‖X +Y‖∗ ≥ ‖X‖∗ . (4)

The following theorem generalizes this null-space criterion
to a critical property that guarantees when the nuclear norm
heuristic finds the minimum rank solution of A (X) = b for
all values of the vector b. Our main result is the following

Theorem 3.1: Let X0 be the optimal solution of (2) and
assume that X0 has rank r < n1/2. Then

1) If for every Y in the null space of A and for every
decomposition

Y = Y1 +Y2,

where Y1 has rank r and Y2 has rank greater than r, it
holds that

‖Y1‖∗ < ‖Y2‖∗,

then X0 is the unique minimizer of (3).
2) Conversely, if the condition of part 1 does not hold,

then there exists a vector b ∈ Rm such that the mini-
mum rank solution of A (X) = b has rank at most r and
is not equal to the minimum nuclear norm solution.

This result is of interest for multiple reasons. First, as
shown in Section V, many of the rank minimization problems
of interest to the controls community can be written in the
form of (2). To be precise, we have the following

Theorem 3.2: Let A be a linear map of a×b matrices into
Rc and C maps a×b matrices into symmetric d×d matrices.
Then the LMI constrained rank minimization problem

minimize rank(X)
subject to A (X) = b

C (X)� 0

can be equivalently formulated as

minimize rank(X)+λ rank(Z)
subject to A (X) = b

Z =
[

Id B
B∗ C (X)

]
for any λ > a. Note that in this is a formulation with a
(a+2d)×(b+2d) dimensional decision variable and a linear
map into c+2d(a+b)+d2− d

2 dimensions.
Secondly, in Section VI we present a distribution over

instances of (2) where the conditions of Theorem 3.1 hold
with overwhelming probability. Note that for a linear map
A : Rn1×n2 → Rm, we can always find an m× n1n2 matrix
A such that

A (X) = AvecX . (5)

In the case where A has entries sampled independently
from a zero-mean, unit variance Gaussian distribution, then
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the null space characterization of theorem 3.1 holds with
overwhelming probability provided m is large enough. The
particular details describing the relationship between the
dimensions of the decision variable, the rank of the optimal
solution, and the number of equations are described in detail
in Section VI.

IV. NECESSARY AND SUFFICIENT CONDITIONS

We first prove our necessary and sufficient condition
for success of the nuclear norm heuristic. We will need
the following technical lemma which allows us to exploit
Lemma 2.1 in our proof.

Lemma 4.1: Let X be an n1×n2 matrix with rank r < n1
2

and Y be an arbitrary n1 × n2 matrix. Let Pc
X and Pr

X be
the matrices that project onto the column and row spaces
of X respectively. Then if Pc

XY Pr
X has full rank, Y can be

decomposed as
Y = Y1 +Y2,

where Y1 has rank r, and

‖X +Y2‖∗ = ‖X‖∗+‖Y2‖∗.
Proof: Without loss of generality, we can write X as

X =
[

X11 0
0 0

]
,

where X11 is r× r and full rank. Accordingly, Y becomes

Y =
[

Y11 Y12
Y21 Y22

]
,

where Y11 is full rank since Pr
XY Pc

X is. The decomposition is
now clearly

Y =
[

Y11 Y12
Y21 Y21Y−1

11 Y12

]
︸ ︷︷ ︸

Y1

+
[

0 0
0 Y22−Y21Y−1

11 Y12

]
︸ ︷︷ ︸

Y2

.

That Y1 has rank r follows from the fact that the rank of a
block matrix is equal to the rank of a diagonal block plus
the rank of its Schur complement (see, e.g., [10, §2.2]). That
‖X1 +Y2‖∗ = ‖X1‖∗+‖Y2‖∗ follows from Lemma 2.1.

We can now provide a proof of Theorem 3.1.
Proof: We begin by proving the converse. Assume the

condition of part 1 is violated, i.e., there exists some Y , such
that A (Y ) = 0, Y = Y1 +Y2, rank(Y2) > rank(Y1) = r, yet
‖Y1‖∗ > ‖Y2‖∗. Now take X0 = Y1 and b = A (X0). Clearly,
A (−Y2) = b (since Y is in the null space) and so we have
found a matrix of higher rank, but lower nuclear norm.

For the other direction, assume the condition of part 1
holds. Now use Lemma 4.1 with X = X0 and Y = X∗−X0.
That is, let Pc

X and Pr
X be the matrices that project onto

the column and row spaces of X0 respectively and assume
that Pc

X0
(X∗−X0)Pr

X0
has full rank. Write X∗−X0 = Y1 +Y2

where Y1 has rank r and ‖X0 +Y2‖∗ = ‖X0‖∗+‖Y2‖∗. Assume
further that Y2 has rank larger than r (recall r < n/2). We
will consider the case where Pc

X0
(X∗−X0)Pr

X0
does not have

full rank and/or Y2 has rank less than or equal to r in the
appendix. We now have:

‖X∗‖∗ = ‖X0 +X∗−X0‖∗
= ‖X0 +Y1 +Y2‖∗
≥ ‖X0 +Y2‖∗−‖Y1‖∗
= ‖X0‖∗+‖Y2‖∗−‖Y1‖∗ by Lemma 4.1.

But A (Y1 + Y2) = 0, so ‖Y2‖∗ − ‖Y1‖∗ non-negative and
therefore ‖X∗‖∗ ≥ ‖X0‖∗. Since X∗ is the minimum nuclear
norm solution, implies that X0 = X∗.

For the interested reader, the argument for the case where
Pr

X0
(X∗−X0)Pc

X0
does not have full rank or Y2 has rank less

than or equal to r can be found in the appendix.

V. REDUCTION TO THE AFFINE CASE
The preceding result only analyzes the affine rank mini-

mization problem and do not extend to the case of arbitrary
convex constraints. However, the affine case is far more
general than it appears at first glance. For example, we can
again use the fact that the rank of a block symmetric matrix
is equal to the rank of a diagonal block plus the rank of its
Schur complement to cast any LMI in X as a rank constraint.
Indeed, given C (X) ∈ S d×d , its positive semidefiniteness
can be equivalently expressed through a rank constraint,
since C (X)� 0 if and only if

rank
([

Id B
B∗ C (X)

])
= d

for some B ∈ Rd×d . That is, if there exist matrices X and B
satisfying the equality above, then f (X) = B∗B � 0. We can
also impose the rank constraint rank(C (X))≤ r by choosing
B to be of size r × d and having Ir in the (1,1) block.
Certainly, this is not an efficient way to solve standard LMIs
for which polynomial time algorithms already exist, but this
example allows us to reformulate rank constrained LMIs as
linearly constrained LMIs and may allow us to characterize
for which LMIs the nuclear norm heuristic succeeds.

Consider the LMI constrained rank minimization problem

minimize rank(X)
subject to A (X) = b

C(X)� 0
(6)

where X , the decision variable is an a× b matrix (without
loss of generality, a ≤ b), A is some linear map of a× b
matrices into Rc and C maps a×b matrices into symmetric
d×d matrices. We can reformulate this problem into affine
form by noting that is equivalent to

minimize rank(X)+λ rank(Z)
subject to A (X) = b

Z =
[

Id B
B∗ C (X)

] (7)

for any λ > a. Note that by dimension counting, the block
diagonal decision variable in (7) is (a+2d)×(b+2d). Also,
by constraint counting, we see that there are a total of c +
2d(a+b)+d2− d

2 equations needed to both specify A (X) =
b and to define Z.
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The equivalence can be seen as follows. Let p∗1 denote the
optimum of (6) and p∗2 denote the optimum of (7). Certainly,
for any optimal solution X of (6), we can factor C (X) = B∗B
to construct a Z with rank d, implying p∗1 +λd ≥ p∗2.

Conversely, let X0 be an optimal solution for (6). Then
there exists a B0 ∈ Rd×d such that

Z0 :=
[

Id B0
B∗0 C (X0)

]
� 0

and has rank d. That is, the pair (X0,Z0) is feasible for (7).
Let X1 and Z1 be feasible for (7) and suppose rank(Z1) > d.
Then

rank(X1)+λ rank(Z1)≥ (rank(X1)+λ )+λ rank(Z0)
≥ rank(X0)+λ rank(Z0)
= p∗1 +λd .

(8)

Now, if (X2,Z2) was feasible for (7) and rank(Z2) = d, then
X2 would be feasible for (6) and would have rank at most
p∗1. Therefore (X0,Z0) is an optimal solution for (7). Note
that if we have an upper bound on the rank of the optimal
X for (6), then the same argument reveals that any λ greater
than that a priori rank bound will also suffice to guarantee
that (6) and (7) have the same optimal solutions.

Using this equivalence, we may apply the analysis tools
developed here to determine if the minimum rank solution
is found when using nuclear norm heuristic.

VI. PROBABILISTIC GENERATION OF
CONSTRAINTS SATISFYING NULL-SPACE

CHARACTERIZATION
We now present a family of random equality constraints

under which the nuclear norm heuristic succeeds with over-
whelming probability. For simplicity of notation in the the-
orem statements, we consider the case of square matrices.
These results can be then translated into rectangular matrices
by padding with rows/columns of zeros to make the matrix
square. We define the random ensemble of d1×d2 matrices
G(d1,d2) to be the Gaussian ensemble, with each entry
sampled i.i.d. from a Gaussian distribution with zero-mean
and variance one. We also denote G(d,d) by G(d).

The first result characterizes when a particular low-rank
matrix can be recovered from a random linear system via
nuclear norm minimization.

Theorem 6.1 (Weak Bound): Let X0 be an n×n matrix of
rank r = βn. Let A : Rn×n →Rµn2

denote the random linear
transformation

A (X) = Avec(X)

where A is sampled from G(µn2,n2). Then whenever

µ ≥ 1− 64
9π2

(
(1−β )3/2−β

3/2
)2

(9)

there exists a numerical constant cw(µ,β ) > 0 such that with
probability exceeding 1− e−cw(µ,β )n2

,

X0 = argmin{‖Z‖∗ : A (Z) = A (X0)} .

In particular, if β and µ satisfy (9), then nuclear norm
minimization will recover X0 from a random set of µn2

constraints drawn from the Gaussian ensemble almost surely
as n → ∞.

The second theorem characterizes when the nuclear norm
heuristic succeeds at recovering all low rank matrices.

Theorem 6.2 (Strong Bound): Let A be defined as in
Theorem 6.1. Define the two functions

f (β ,ε) =
8

3π

(1−β )3/2−β 3/2−4ε

1+4ε

g(β ,ε) =
√

2β (2−β ) log
(

3π

2ε

)
.

Then there exists a numerical constant cs(µ,β ) > 0 such
that with probability exceeding 1− e−cs(µ,β )n2

, for all n×n
matrices X0 of rank r ≤ βn,

X0 = argmin{‖Z‖∗ : A (Z) = A (X0)}

whenever

µ ≥ 1− sup
ε>0

f (β ,ε)−g(β ,ε)>0

( f (β ,ε)−g(β ,ε))2 .
(10)

In particular, if β and µ satisfy (9), then nuclear norm
minimization will recover all rank r matrices from a random
set of µn2 constraints drawn from the Gaussian ensemble
almost surely as n → ∞.

The strategy of the proofs of these theorems is to show
that A obeys the null-space criteria of Equation (4) and
Theorem 3.1 respectively with overwhelming probability.
The proofs can be found in the full version of this paper [15].
Noting that the null space of A is spanned by Gaussian
vectors, we use bounds from probability on Banach Spaces
to show that the sufficient conditions are met.

Figure 1 plots the bound from Theorems 6.1 and 6.2.
We call (9) the Weak Bound because it is a condition that
depends on the optimal solution of (2). On the other hand,
we call (10) the Strong Bound as it guarantees the nuclear
norm heuristic succeeds no matter what the optimal solution.
The Weak Bound is the only bound that can be tested
experimentally, and, in the next section, we will show that it
corresponds well to experimental data. Moreover, the Weak
Bound provides guaranteed recovery over a far larger region
of (β ,µ) parameter space. Nonetheless, the mere existence
of a Strong Bound is surprising in of itself and results in a
much better bound than what was available from previous
results (c.f., [14]).

VII. NUMERICAL EXPERIMENTS

We now show that these asymptotic estimates hold even
for small values of n. We conducted a series of experiments
for a variety of the matrix sizes n, ranks r, and numbers
of measurements m. As in the previous section, we let
β = r

n and µ = m
n2 . For a fixed n, we constructed random

recovery scenarios for low-rank n×n matrices. For each n,
we varied µ between 0 and 1 where the matrix is completely
determined. For a fixed n and µ , we generated all possible
ranks such that β (2 − β ) ≤ µ . This cutoff was chosen
because beyond that point there would be an infinite set of
matrices of rank r satisfying the m equations.
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Fig. 1. The Weak Bound (9) versus the Strong Bound (10).

For each (n,µ,β ) triple, we repeated the following proce-
dure 10 times. A matrix of rank r was generated by choosing
two random n×r factors YL and YR with i.i.d. random entries
and setting Y0 = YLY ∗

R . A matrix A was sampled from the
Gaussian ensemble with m rows and n2 columns. Then the
nuclear norm minimization

minimize ‖X‖∗
subject to AvecX = AvecY0

was solved using the freely available software SeDuMi [18]
using the semidefinite programming formulation described
in [14]. On a 2.0 GHz Laptop, each semidefinite program
could be solved in less than two minutes for 40 × 40
dimensional X . We declared Y0 to be recovered if ‖X −
Y0‖F/‖Y0‖F < 10−3.

Figure 2 displays the results of these experiments for n =
30 and 40. The color of the cell in the figures reflects the
empirical recovery rate of the 10 runs (scaled between 0 and
1). White denotes perfect recovery in all experiments, and
black denotes failure for all experiments. It is remarkable to
note that not only are the plots very similar for n = 30 and
n = 40, but that the Weak Bound falls completely within
the white region and is an excellent approximation of the
boundary between success and failure for large β .

VIII. CONCLUSIONS AND FUTURE WORK
We have presented a necessary and sufficient condition

for the nuclear norm heuristic (and hence also the trace
heuristic) to find the lowest rank solution of an affine set, and
also shown how to reformulate LMI constrained rank mini-
mization problems in the affine form. It would be interesting
to directly formulate necessary and sufficient conditions for
the LMI constrained rank minimization problem (6) that do
not require such an affine reformulation. Along the same
lines, it would be interesting to provide random instances
of LMI constrained rank minimization problems that satisfy
such necessary and sufficient conditions with high probabil-
ity. Future work should also investigate if the probabilistic
analysis that provides the bounds in Theorems 6.1 and 6.2
can be further tightened at all.
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APPENDIX

A. Rank-deficient case of Theorem 3.1
In an appropriate basis, we may write

X0 =
[

X11 0
0 0

]
and X∗−X0 = Y =

[
Y11 Y12
Y21 Y22

]
If Y11 and Y22 − Y21Y−1

11 Y12 have full rank, then all our
previous arguments apply. Thus, assume that at least one
of them is not full rank. Nonetheless, it is always possible
to find an arbitrarily small ε > 0 such that

Y11 + εI and
[

Y11 + εI Y12
Y21 Y22 + εI

]
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Fig. 2. Random rank recovery experiments for (a) n = 30 and (b) n = 40. The color of each cell reflects the empirical recovery rate. White
denotes perfect recovery in all experiments, and black denotes failure for all experiments. In both frames, we plot the Weak Bound (9),
showing that the predicted recovery regions are contained within the empirical regions, and the boundary between success and failure is
well approximated for large values of β .

are full rank. This, of course, is equivalent to having Y22 +
εI−Y21(Y11 + εI)−1Y12 full rank. We can write

‖X∗‖∗ = ‖X0 +X∗−X0‖∗

=
∥∥∥∥[ X11 0

0 0

]
+
[

Y11 Y12
Y21 Y22

]∥∥∥∥
∗

≥
∥∥∥∥[ X11− εI 0

0 Y22−Y21(Y11 + εI)−1Y12

]∥∥∥∥
∗

−
∥∥∥∥[ Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

]∥∥∥∥
∗

= ‖X11− εI‖∗

+
∥∥∥∥[ 0 0

0 Y22−Y21(Y11 + εI)−1Y12

]∥∥∥∥
∗

−
∥∥∥∥[ Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

]∥∥∥∥
∗

≥ ‖X0‖∗− rε

+
∥∥∥∥[ εI− εI 0

0 Y22−Y21(Y11 + εI)−1Y12

]∥∥∥∥
∗

−
∥∥∥∥[ Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

]∥∥∥∥
∗

≥ ‖X0‖∗−2rε

+
∥∥∥∥[ −εI 0

0 Y22−Y21(Y11 + εI)−1Y12

]∥∥∥∥
∗

−
∥∥∥∥[ Y11 + εI Y12

Y21 Y21(Y11 + εI)−1Y12

]∥∥∥∥
∗

≥ ‖X0‖∗−2rε,

where the last inequality follows from the condition of part
1 and noting that

X0−X∗ =
[
−εI 0

0 Y22−Y21(Y11 + εI)−1Y12

]
+
[

Y11 + εI Y12
Y21 Y21(Y11 + εI)−1Y12

]
,

lies in the null space of A (·) and the first matrix above has
rank more than r. But, since ε can be arbitrarily small, this
implies that X0 = X∗.
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