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Abstract— In this paper we study the problem of dynamic
optimization of ping schedule in an active sonar buoy network
deployed to provide persistent surveillance of a littoral area
through multistatic detection. The goal of ping scheduling is to
dynamically determine when to ping and which ping source to
engage in order to achieve the desirable detection performance.
For applications where persistent surveillance is needed for an
extended period of time, it is expected that the energy available
at each ping source is limited relative to the required system
lifetime. Hence efficient management of power consumption
for pinging is important to support the required lifetime of the
network while maintaining acceptable detection performance.
Our approach to ping optimization is based on the application
of approximate Partially Observable Markov Decision Process
(POMDP) techniques such as the rollout algorithm. To enable
a practical implementation of the policy rollout, we apply
sampling-based techniques based on a simplified model that
approximates the detailed multistatic model. Using high fidelity
sonar simulations, we evaluate the performance of the proposed
approach and compare it with the greedy technique in terms
of detection performance and system lifetime.

I. INTRODUCTION

In this paper we derive a formulation of the dynamic

ping optimization problem in multistatic sonar buoy networks

using the framework of Partially Observable Markov Deci-

sion Processes (POMDP). The basic operating concept of a

multistatic sonar buoy network for underwater surveillance

is to proactively ping from an acoustic source and correlate

the echo returns (specifically time of arrivals and bearings)

across receivers in the field to detect, localize, and track

targets of interest. In order to provide necessary coverage for

the surveillance area and sufficient diversity in multistatic ge-

ometry for target localization, multiple receivers and acoustic

sources are deployed and distributed throughout the field.

The ping optimization problem considered here is a specific

example of sensor management in sensor networks, which

has received significant interest in recent years in generic

sensor network settings (see, for example, [1], [2], [3]). Our

work focuses on the practical application of existing algo-

rithms (in particular, the approximate dynamic programming

techniques proposed in [3], [4]) to multistatic sonar networks

where sensing and detection models are more complicated

than in settings considered in the literature.
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The benefit of optimizing ping sequences to tracking

performance for multistatic sonar systems has been demon-

strated through simulations in [5], where a greedy approach

is presented to optimize the expected detection probability

during the search phase when no detections are confirmed

and to improve the track with worst quality after tracks are

established. In this paper we focus on the aspects of ping

source selection with additional energy constraint during the

surveillance phase. The surveillance phase is defined as the

stage where no specific track with sufficient confidence has

been established based on the detection results from the

network of receivers. In contrast to [5], where complete

absence of confirmed detections is assumed, we permit

the existence of initial detections in our formulation. The

rationale for this unique feature is two-fold:

• In practical applications, sparse detections are expected

before sufficient measurements are available to establish

a track (the track initiation problem). Furthermore, an

approach assuming no detection has limited applicabil-

ity since false alarms are inevitable for most practical

scenarios.

• The separation of surveillance and tactical (after tracks

are established) phases postulated by existing literature

is somewhat artificial. In reality, both situations exist

simultaneously since continuing search of new targets

is desirable even after tracks are established. A formu-

lation incorporating detections during the surveillance

phase (such as the one proposed here) can likely be

extended to address requirements for both search and

tracking simultaneously.

In Section II, we formally define all the necessary at-

tributes of a POMDP for the ping optimization problem.

Based on the formulation, we discuss in Section III how

the policy rollout technique can be applied to sequentially

solve for ping source selections by taking a nonmyopic view

of performance over a time horizon into the near future. This

approach serves to trade-off the detection performance versus

energy management requirement. We present simulation re-

sults to demonstrate the performance of proposed algorithms

in Section IV. Throughout the discussion, we assume that

there are Ns sources and Nr receivers deployed in the field

and their positions are stationary.

II. MATHEMATICAL FORMULATION OF PING

OPTIMIZATION PROBLEMS

We assume a discrete time model and use k = 0, 1, 2, . . .

to denote the kth stage with 0th stage denoting the starting

time. We will use time k to denote the beginning of the
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a(k) is taken. Assuming that the initial energy state E(0) is

given, the state transition is defined by

ei(k + 1) =

{

ei(k) − 1 if a(k) = i and ei(k) ≥ 1,

ei(k) otherwise.

In this simple model we assume that the energy consumption

for pinging is deterministic. Furthermore, we assume that

the energy state E(k) is directly observable (that is, can be

measured without errors).

B. Belief states and estimation

To apply the POMDP technique, we define the belief states

and derive a recursion that enables us to estimate the belief

states sequentially based on the observations Z(k).
The belief state is defined as the conditional probability of

the states given the information state (all prior observations

and actions), that is,

P{X(k)|Z(0), Z(1), . . . , Z(k − 1), a(0), . . . , a(k − 1)}.

We denote the belief state by

PT (k) =
[

PT (x1, y1; k), PT (x2, y2; k), . . . , PT (xNg
, yNg

; k)
]T

,

where PT (xi, yi; k) denotes the conditional probability of

target presence at (xi, yi) at time k given all prior observa-

tions and actions.

The belief state PT (k) can be estimated and propagated

sequentially by a two-step recursion. Given the current belief

state PT (k):

1) Bayes update: Given an action a(k) and the resulting

observation Z(k), compute the a posteriori belief state

PT |Z using Bayes rule.

PT |Z(k)(xi, yi; k) =
{

pdPT

pdPT +pfa[1−PT ] if zi(k) = 1,
(1−pd)PT

[1−pd]PT +[1−pfa][1−PT ] otherwise.

where pd, pfa, and PT have been written instead

of pd(xi, yi, a(k)), pfa(xi, yi, a(k)), and PT (xi, yi; k),
respectively, for readability.

2) Diffusion: Propagate the a posteriori belief state ac-

cording to the transition model

PT (xi, yi; k+1) = 1−
∏

j

(

1 − PT |Z(k)(xj , yj ; k)Pij

)

The following diagram illustrates the propagation of belief

state:

PT (k)
a(k)
−−−→ Z(k)

Bayes update
−−−−−−−→ PT |Z(k)(k)

diffusion
−−−−→ PT (k+1)

C. Feasible actions and policies

An action that meets all the constraints defined in the

problem is called a feasible action. An obvious constraint

for the ping optimization problem is that the energy level

at a source is sufficient to ping. That is, ai is feasible only

if ei ≥ 1 in our formulation. Note that the feasibility of

an action will depend on the current state {PT (k), E(k)}.
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Fig. 2. An illustration of the policy rollout.

We denote the set of feasible actions at time k by Ak ⊂
{0, . . . , Ns}.

A (Markov) policy π is a mapping from the states

{PT (k), E(k)} to an action a(k). A policy is feasible if

π (PT (k), E(k)) ∈ Ak for all k = 0, . . . ,H−1. Two typical

examples of policy for the ping optimization problem are:

• Fixed sequence policies: One can define a feasible

policy by repeating the same sequence of ping decisions

as long as the remaining energy level at a source is

sufficient to ping. The round-robin algorithm falls under

this class of policies.

• Greedy policies: The greedy policy is a policy that

selects a decision among the feasible actions by maxi-

mizing the immediate reward. That is

π (PT (k), E(k)) = argmaxa∈Ak
E [r(PT (k), E(k), a)] .

III. OPTIMIZATION CRITERIA AND POLICY

ROLLOUT

A. Rewards and dynamic programming formulation

For detection performance we define the reward function

using the average detection probability across the field:

r(PT , a) =
1

Ng

Ng
∑

i=1

Pα
T (xi, yi)pd(xi, yi, a), (4)

where α ≥ 1 is a parameter that allows us to control the

search strategy.

To model the energy constraint, we assume a simplified

model where each ping source has a pre-specified number

of pings throughout its lifetime. Even though we do not

explicitly model energy related considerations as part of the

reward in POMDP, it is expected that the energy constraint

will play a role in the performance of POMDP if the

selected horizon is long enough relative to the available ping

resources.

With the reward and constraint defined above, we formu-

late ping optimization as the following stochastic dynamic

programming problem:

max
a(0),...,a(H−1);a(k)∈Ak

E

[

H−1
∑

k=0

r (PT (k), a(k))

]

, (5)

where r is defined in (4). For our experiments, we use the

formulation (5) in a receding horizon setting. The receding
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horizon setting can potentially reduce the impact of model

inaccuracy on the prediction of future detection performance

in dynamic programming.

B. Policy Rollout Technique

To address the complexity of the dynamic programming

formulated for the ping optimization problem, we apply the

policy rollout technique [9]. The basic idea of the policy

rollout algorithm is to use the performance resulting from

a base policy π to estimate the Q-value for making the

decision. Given the complexity of the underlying models,

it is difficult to directly estimate the performance of a base

policy. Hence, we apply a sampling-based approach similar

to the ones used in [3], [4] to this estimation problem.

The sampling-based approach relies on the outcome of

multiple Monte Carlo simulations with the base policy to

estimate the Q-value of each feasible action. Consider the

traces of states from M independent Monte Carlo runs by

taking an action a and following a feasible base policy π

afterward:

{PT (k), E(k)}
a
−→ Zi(k) → {P i

T (k + 1), Ei(k + 1)}

aπ(k+1)
−−−−−→ {P i

T (k + 2), Ei(k + 2)}

...

aπ(H−1)
−−−−−−→ {P i

T (H), Ei(H)},

i = 1, . . . ,M . Note that the specific actions taken following

the base policy will generally differ among the traces since

they depend on the specific belief and energy state trajectory,

{P i
T , Ei}, obtained in each Monte Carlo run.

From each sample path, we obtain a sample of the Q-value

for the base policy π as

Qi (PT (k), a) = r (PT (k), a) + r
(

P i
T (k + 1), aπ(k + 1)

)

+ · · · + r
(

P i
T (H − 1), aπ(H − 1)

)

.

An estimate of the Q-value for the action a at the belief

state PT (k), denoted by Q̄ (PT (k), a), can be obtained as the

empirical average over these Monte Carlo runs. Following

the policy rollout strategy, the action at time k is chosen

based on

a∗(k) = argmaxa∈Ak
Q̄ (PT (k), a) .

In this paper, we consider the following approximation

model for simulations of Z(k) in policy rollout:

zi(k) = 1 with probability pdPT + pfa(1 − PT ),

where PT , pd, and pfa are again used as shorthand for

PT (xi, yi; k), pd(xi, yi, a(k)), and pfa(xi, yi, a(k)), respec-

tively, for the sake of readability.

IV. HIGH FIDELITY SIMULATION RESULTS

A. Sonar Models

In order to test performance over a range of environmen-

tal settings and conditions, numerical modeling was used

to simulate the motion of a target through a distributed

TABLE I

TOTAL PROBABILITY OF DETECTION FOR TARGET 1

Mean Std dev Num scenarios

Round-robin 293.9 87.3 11
Greedy 333.4 92.3 11
Rollout H=10 358.8 102.7 7
Rollout H=15 339.2 103.0 8
Rollout H=20 328.0 93.5 10

TABLE II

TOTAL PROBABILITY OF DETECTION FOR TARGET 2

Mean Std dev Num scenarios

Round-robin 214.2 56.8 11
Greedy 240.1 65.2 11
Rollout H=10 215.0 55.2 7
Rollout H=15 226.4 63.1 8
Rollout H=20 228.3 65.4 10

sensor network. The signal excess for echoes associated

with source-receiver pairs was determined for each event

in a ping schedule using a physics-based model. Clutter

was established statistically from a measured characteristic

distribution.

Transmission loss calculations are performed using

APLNM, a range-dependent coupled normal mode code.

Sound velocity profiles, bathymetry, and bottom properties

are extracted from standard databases.

Background interference was calculated using a power

sum of an assumed spectral ambient noise level (NL) and

a calculated spectral reverberation level (RL). The RL was

calculated by assuming a constant sound speed, with an eq-

uitime ellipse of reverberant patches (RV B) constrained by

the signal bandwidth. The receiver beam pattern is included

directly in establishing RL, with a single directivity index

applied to the NL. Both NL and RV B are determined

in units of intensity, and are assumed constant over the

bandwidth of the signal.

Potential clutter events are established using a uniform

density of events for each receiver beam (e.g. one event per

second). These events are drawn randomly from a gener-

alized gamma distribution having mean, standard deviation,

and skewness parameters fit to represent measured clutter

statistics from at-sea experiments.

B. Evaluation with Simulated Data

Our simulations are based on a sonobuoy field consisting

of 16 receivers arranged in a 4x4 grid and 4 active sonar

sources located within the grid of receivers as shown in

Figure 3. Each source begins with enough energy to ping

TABLE III

SYSTEM LIFETIME

Mean Min Max Num scenarios
Round-robin 600.0 600 600 11
Greedy 601.0 601 601 11
Rollout H=10 638.0 601 840 7
Rollout H=15 635.8 603 840 8
Rollout H=20 631.7 603 840 10
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150 times. The first target enters the field at stage 15, and

the second enters at stage 250.

We compare detection performance of three source selec-

tion policies: the round-robin policy, the greedy policy, and

policy rollout using the greedy policy as the base policy.

Policy rollout optimized the decision at each stage based

on the average of up to 50 Monte Carlo simulations of the

observations. At each stage, there are 5 possible actions: ping

from one of the 4 sources, or do not ping from any source.

We measure surveillance performance by summing the

probability of detecting each target over each simulation run.

A number of different target track scenarios were run using

round-robin, greedy, and policy rollout strategies, with their

results summarized in Table I for the first target entering the

field and in Table II for the second. Policy rollout was run

with horizon lengths of 10, 15, and 20 stages with the results

for each listed in the table separately.

Since target 1 is tracked with sufficient energy reserves,

prediction accuracy over the horizon is governed by the unin-

formed diffusion target motion model – the longer horizons

seem to have overextended the relevance of those predictions.

Since target 2 arrived later, the end game of limited resources

becomes more of a factor. Longer horizons may be beneficial

in this case since prediction of energy depletion is accurate

even over long horizons. While these trends seem reasonable,

the statistics of these results preclude us from concluding that

any of these policies performs better or worse than any other.

The system lifetime, defined as the time after which all

sources have exhausted their energy, is shown in Table III.

Since we do not allow pings to occur simultaneously, 600 is

a lower bound on the lifetime from any algorithm. Since the

round-robin policy pings at every stage, it produces lifetimes

of 600 for all scenarios. With the exception of the first stage

when there are no targets believed to be in the area and our

implementation selects not to ping, the greedy policy also

pings at every stage, until source energies are exhausted at
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Fig. 3. Simulated scenario: asterisks indicate acoustic sources, circles
receivers, lines show target tracks, and circles indicate the time at which
the target is at that point of the track. Targets enter the field from the
Northwest, turn East, and leave.
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Fig. 4. Plot of the energy reserves in the number of pings remaining on
each source as a function of time under the greedy source selection policy.
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Fig. 5. Plot of the energy reserves in the number of pings remaining on
each source as a function of time under the rollout source selection policy
with horizon length of 20.

stage 601.

However, the table shows that rollout produces longer life-

times, as would be expected by the algorithm’s anticipation

of the scarcity and subsequent rationing of energy. For some

scenarios, there were sources that still had energy when the

simulation was terminated at the 840th stage. Since persistent

surveillance benefits from detection coverage in time as well

as space, this is an important result, and the fact that this

is accomplished without a significant impact on detection

performance over that lifetime demonstrates the promise of

this type of approach.

We now briefly present more detailed data from one

scenario to illustrate the performance of policy rollout with

horizon length 20 versus the greedy algorithm. Figure 3

shows an example of the simulated tracks that was used to

generate the plots presented here. Figure 4 shows the energy

reserves of each source as a function of time for the greedy

policy, and Figure 5 shows this for policy rollout, giving

an idea of how judiciously each policy makes use of each

source.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a mathematical formulation

of the dynamic ping optimization problem for sonar buoy
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networks with energy constraints. We develop an implemen-

tation of the sampling-based policy rollout to optimize the

average detection performance. Even with a much simplified

model used in policy rollout, the approximate dynamic

programming approach leads to a longer system lifetime

while achieving detection performance similar to the greedy

approach, as illustrated by the experimental results using

high-fidelity sonar simulations. As an immediate future work,

we will consider applying state aggregation techniques to

further improve the efficiency of policy rollout.

We address the energy constraint by defining a horizon

long enough in stochastic dynamic programming. One might

consider explicitly modelling the energy consideration to

enable a receding horizon formulation with shorter horizon

(and hence reducing the computational costs of policy roll-

out). Theoretically, the most appropriate metric for energy

management is the lifetime of the system. However, directly

using the lifetime as the reward will lead to a difficult

POMDP. A good alternative is to use a load-balancing type of

metric to capture the fairness of energy consumption across

the field. Given the energy levels E = [e1, . . . , eNs
]T , define

the deviation of energy level at source i as

σe
i (E) =

|ei − ē|

ē
,

where ē is the average among {ei}. We can then use the

energy deviations to either define the reward

r(PT , E, a) = −

Ns
∑

i=1

σe
i (E

′), (6)

or define a constraint

σe
i (E

′) ≤ ρ(E) < 1, for all i = 1, . . . , Ns, (7)

where E′ is the resulting energy levels after the action a is

taken given current energy levels E, and ρ(E) is defined to

ensure the existence of a feasible action while maintaining

a desirable level of load balancing.

Finally, since we consider the detections during the

surveillance in our formulation, it is straightforward to in-

corporate the outcome of tracking algorithms into our for-

mulation with an appropriate expansion of the state space to

include the current target course and speed, etc.. In essence,

the state estimation process we discussed in Section II-B is

a simple Bayesian tracking algorithm with the probabilistic

diffusion as its underlying dynamic model. Among the exist-

ing tracking approaches, the Probability Hypothesis Density

(PHD) filter [10], [11] is perhaps the most natural one to

consider. The PHD filter recursions propagate the intensity

of the target states in a way that is very similiar to the

propagation of the belief state considered in our formula-

tion. A key challenge in incorporating tracking outcomes

in ping optimization is to devise a performance metric that

adequately addresses the operational priority regarding the

trade-off between continuing tracking of confirmed targets

and persistent surveillance of the entire field. One possible

approach is to experiment with the choice of parameter α

in the average detection reward defined in (4) to control the

preference of future detection on locations with higher target

presence belief where established tracks would be.
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