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Abstract— In this paper we show how stability of an infinite-
dimensional linear time-delay system can be assessed by
studying the stability of an associated finite-dimensional linear
system, constructed after substituting the exponential function
in the characteristic equation of the delay-system by a high
enough finite power of the bilinear transformation.

I. INTRODUCTION AND MOTIVATION

Consider the general class of linear time retarded systems

ẋ(t) = Ax(t) +Bx(t− τ), (1)

with initial condition x(t) = ϕ(t), t ∈ [−τ, 0], where x(t) ∈
Rn, τ ≥ 0 and A, B ∈ Rn×n. Stability of system (1) is

dictated by the location of the roots of the transcendental

function

∆τ (s) := det(sI −A−Be−sτ ). (2)

When τ > 0, the function ∆τ (s) has infinitely many roots.

We say that system (1) is stable if all roots of ∆τ (s) lie in

the open left half of the complex plane. In this case we say

that the roots of ∆τ (s) are stable. Since direct “calculation”

of the roots of ∆τ (s) is not practical, the literature is rich

in methods that try to indirectly assess the location of the

roots. This paper propose one such method.

The idea is to establish an equivalence relationship be-

tween stability of the roots of the transcendental func-

tion ∆τ (s) with the roots of the rational function

∆k
T (s) := det

[

sI −A−B

(

1 − Ts

1 + Ts

)k
]

. (3)

We will show that in case 0 ≤ τ < τ̄ , where τ̄ is finite, then

a large enough integer k exists such that studying stability

of ∆k
T (s) is equivalent to studying stability of ∆τ (s).

For any τ , T and k, let (π, ν, δ)τ and (π, ν, δ)k
T be,

respectively, the number of roots of ∆τ (s) and ∆k
T (s)

with negative real part (π), zero real part (ν) and positive

real part (δ). The triplet (π, ν, δ)τ , also known as inertia,

completely characterize stability of system (1). We will prove

the following theorem.

Theorem 1: Let 0 < τ̄ < ∞ be given. Let (π, ν, δ)τ and

(π, ν, δ)k
T be, respectively, the inertia of ∆τ (s) and ∆k

T (s)
for some k, τ and T . There exists an integer 0 < k∗ < ∞
and a real number 0 < T̄ < ∞ such that for any k > k∗

there exists a monotonically increasing continuous function
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φk : [0, τ̄) → [0, T̄ ) so that: (i) δτ = δk
T , (ii) ντ = νk

T and

where T = φk(τ).
The above theorem essentially establishes that, as far as

stability analysis is concerned, one can analyze the roots

of the rational function ∆k
T (s) instead of those of the

transcendental function ∆τ (s). For that to become possible,

we had to limit the analysis to a finite interval τ ∈ [0, τ̄). This

translates into a finite upper bound on an integer k∗ above

which stability of the roots of ∆τ (s) is simply equivalent

to the stability of the roots of ∆k
T (s) for any k > k∗.

The advantage is evident since that analyzing stability of

the roots of ∆k
T (s), even for large finite k, is a lot simpler

than analyzing the stability of the roots of the transcendental

function ∆τ (s).
We will show in Section VII that a finite upper bound

for k∗ can be given as a function of the magnitude of

the purely imaginary roots of ∆τ (s) in the interval [0, τ̄)
and how spaced the crossing points τ ’s are. The closer the

crossings the larger the k∗. As it is well known (see, for

instance, [1]–[3]), if a pair of roots of ∆τ (s) cross the

imaginary axis for some finite τi ≥ 0 at the point s = jωi

then other pairs of roots of ∆τ (s) also cross the imaginary

axis at s = jωi an infinite number of times for every

τiℓ = τi + 2ℓ ω−1
i π, ℓ = 0, 1, 2, . . . (4)

This suggests that τ̄ must indeed be finite for k∗ to be finite

because the roots of any finite dimensional rational system

can only cross the imaginary axis a finite number of times.

Perhaps the main difference between this paper and other

works, such as [4]–[7] (see also [2, Chapter 2]) that are also

based on the use of the rational function (3) is that those

works establish a relationship between ∆τ (s) and ∆k
T (s)

only on the imaginary axis. However, we seek to establish

a relationship between stability, hence involving all roots

including the ones that are on the imaginary axis. Existing

works usually consider k = 1, as in Rekasius [4] or Olgac

and Sipahi [7], or k = 2 if only positive values of T are to

be analyzed, as in Thowsen [5], [6]. The idea is to show that

each time some pair of roots of ∆τ (s) cross the imaginary

axis at s = jω for some τ ≥ 0 and in some direction, some

pair of roots of ∆1
T (s) (or ∆2

T (s)) also cross the imaginary

axis for some T ∈ R (or T ≥ 0) at exactly s = jω and

in the same direction. By keeping track of the number and

the direction of imaginary axis crossing of both ∆τ (s) and

∆T (s) an analysis of stability can be constructed. We revisit

such procedures in the numerical example of Section III.

We emphasize that the existing works do not establish a

relationship between stability of the roots of ∆τ (s) and those

of ∆k
T (s). First, even when the roots of ∆τ (s) are stable for
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Fig. 1. Root locus branches of ∆τ (s) and ∆1

T
(s) which are not equivalent,

where T ∗ is a positive small enough value for T .

τ = 0, it is not clear whether the roots of ∆k
T (s) should

also be stable in any neighborhood of zero, a question we

answer positively in Section IV. Furthermore, ∆τ (s) and

∆k
T (s) may cross the imaginary axis at s = jωi for τi and

Ti, respectively, and also at s = jωi+1 for τi+1 and Ti+1.

However ∆τ (s) may be stable in the interval (τi, τi+1) while

∆T (s) may be unstable in the interval (Ti, Ti+1). This is an

extremely common phenomenon which will be illustrated by

an example in Section III. Another common situation is that

depicted in Figure 1.

Notation throughout the paper is standard. When we take

norms of a transfer function it is the H∞ norm. Norms of

vectors are the two-norm.

II. PRELIMINARIES

We seek to relate the zeros of ∆τ (s) and ∆k
T (s). From (3)

∆k
T (s) =

det
[

(1 + Ts)k(sI −A) −B(1 − Ts)k
]

(1 + Ts)kn

is a rational function of s of order kn for any T 6= 0.

The following are typical results found in the literature.

Lemma 1: Let k ≥ 1 be a given finite integer. The

imaginary number s = jωc is a root of ∆τ (s) for some

τc ≥ 0, i.e. ∆τ (jωc) = 0, if and only if it is also a

root of ∆k
T (s), for some Tc ∈ R (Tc ≥ 0 if k ≥ 2), i.e.

∆k
T (jωc) = 0.

A proof for the case k = 1 is available in [7] and for k = 2
in [6]. The arguments of [6] can be used to extend this result

to any k > 2 finite.

The following lemma is a slight generalization of [7,

Proposition I].

Lemma 2: For any τc ≥ 0 finite it is true that ντc
≤ 2n. If

the imaginary number s = jωc is a root of ∆τ (s) for τ = τc
then ωc is also finite.

Proof: The first part follows from Lemma 1 and the

equivalence of the imaginary roots of ∆τ (s) with those of

∆k
T (s), which can only have a finite number of roots on the

imaginary axis [1], [2]. Indeed, ∆k
T (s) has exactly (k+1)n

roots for any T ≥ 0. The bound 2n is obtained with k = 1.

The second part follows from an extension of argument

found in [1] for scalar systems. Note that ∆τ (s) = 0 for

some s = λ + jω if and only if there exists x ∈ Cn 6= 0
such that [(λ + jω)I − A]x = Be−(λ+jω)τx. In particular

one can assume ‖x‖ = 1 without loss of generality. Here

‖ · ‖ denotes the 2-norm. Therefore, taking norms on both

sides ‖[(λ+ jω)I−A]x‖ = ‖Be−λτe−jωτx‖ ≤ |e−λτ |‖B‖.
Then, for purely imaginary roots λ = 0 and

‖(jωI −A)x‖ ≤ ‖B‖ <∞.

Therefore, if jω is not an eigenvalue of A then ω must be

finite. If jω is an eigenvalue of A then the above inequality

may be satisfied regardless of ω if x is also an eigenvector

of A. But in this case ω is also finite because A is finite.

Lemma 1 is rooted on the properties of the bilinear

transformation, which we utilize here after raising the right-

hand side to the kth power in the form of the substitution

e−sτ −→

(

1 − Ts

1 + Ts

)k

, τ, T ∈ R. (5)

The bilinear transformation maps the imaginary axis into the

unit circle. Evaluation of equation (5) at s = jω produces a

(non-unique) relationship between τ and T of the form

τ = 2 k ω−1 arctan(ωT ). (6)

Unfortunately the substitution (5) is exact only on the

imaginary axis, which limits the scope of results such as

Lemmas 1 and 2 to imaginary roots. Not much can be

said about the roots which are not purely imaginary without

invoking new ideas. An analysis of stability is possible

however on the basis of arguments similar to the one in [7].

For that we need to define the notion of root tendency. First

define the root locus

ψ(τ) = {s ∈ C : ∆τ (s) = 0, τ ≥ 0}. (7)

As usual, ψ(τ) is a collection of curves parametrized by τ .

Any point s0 ∈ ψ(τ) is said to be regular if the underlying

curve passing by s0 is a differentiable function of τ . We

identify a particular curve in ψ(τ) passing by s0 at τ0 by

writing ψ(τ, τ0, s0) and a particular point as s0 ∈ ψ(τ0). A

condition sufficient for regularity is that s0 be a single (non-

repeated) root of ∆τ (s). On a regular point on the imaginary

axis jωc ∈ ψ(τ) we can define the quantity

RTτ (ωc, τc) := sign

(

Re

{

dψ(τ, τc, jωc)

dτ

∣

∣

∣

∣

τ=τc

})

(8)

which is an indicator of the direction of crossing of the

imaginary root jωc. If RTτ (ωc, τc) = 1 roots of ∆τ (s)
cross the imaginary axis at jωc from left (stable) to right

(unstable); conversely, if RTτ (ωc, τc) = −1 roots of ∆τ (s)
cross the imaginary axis at jωc from right to left. We may

similarly define RT k
T (ωc, Tc) by substituting ψ(τ) by

ψk(T ) = {s ∈ C : ∆k
T (s) = 0, T ≥ 0} (9)

and replacing the derivative with respect to τ by a derivative

with respect to T in the previous discussion.

The work [7] does not explicitly discuss regularity but

regularity is implicitly assumed in the definitions and proofs.

For a non-regular point jωc ∈ ψ(τ) the notion of root

tendency can still be defined but should require a more

elaborate setup. The idea is that singular points in ψ(τ) are

isolated and therefore, even though ψ(τ) is not differentiable
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TABLE I

IMAGINARY AXIS CROSSINGS OF ZEROS OF ∆1

T
(s)

i ωi Ti tendency τℓ ℓ

1 3.0352 0.0829 LR 0.1624 1
2 2.9124 0.0953 RL 0.1859 2
3 2.1109 0.6233 LR 0.8725 5
4 15.5032 -0.4269 LR 0.2220 3
5 0.8407 -0.1332 LR 7.2105 30

on some point jωc, one can still effectively compute the root

tendency by evaluating the directional derivatives on both

sides as τ approaches τc. We plan to formalize these notions

in a future paper.

The following result is from [7, Proposition II].

Lemma 3: Let s = jωi ∈ ψ(τi). Hence s = jωi ∈ ψk(Ti)
for some Ti ∈ R (Ti ≥ 0 for k ≥ 2). As τ reaches τi or

any one of the infinitely many values of τiℓ given in (4) the

function RTτ (ωi, τi) = RTτ (ωc, τiℓ) for any ℓ = 0, 1, 2, . . .
Furthermore RTτ (ωi, τi) = RT k

T (ωi, Ti) for any k ≥ 1.

In short, this lemma states that the root tendency on an

imaginary root s = jωc is the same for ∆τ (s) or ∆k
T (s)

regardless of the particular τ or T which makes s→ jωc.

The next example should give a hint on how this can be

used to asses stability of ∆τ (s) from ∆k
T (s).

III. EXAMPLE (PART A)

Consider the delay system (1) with

A=





−1 13.5 −1
−3 −1 −2
−2 −1 −4



 , B=





−5.9 7.1 −70.3
2 −1 5
2 0 6



 , (10)

as in [7]. For this example, the function ∆1
T (s) is a rational

function of order (k + 1)n = 6. We start by finding all

values of T and ω at which the roots of the function ∆1
T (s)

cross the imaginary axis. These are listed in Table I. We also

list the direction of crossing, from left to right (LR) or right

to left (RL). The evaluation of these quantities is Step A)

in [7]. Step B) is the construction of the Table II, in which

we use (4) discarding negative values in order to compute

all values of τ crossings. In Table II we list all crossing

times until all crossing frequencies ωi appear at least once.

The index i in the second column corresponds to column i in

Table I, from where the values of root tendency and crossing

frequencies ωi, i = 1, . . . , 5 can be obtained. Conversely, the

columns τℓ and ℓ in Table I correspond to the first values of

ℓ and τℓ for which some root ωi appears in Table II.

It is looking at Table II that stability can be analyzed. Note

that the roots of ∆τ (s) are stable at τ = 0 and invoking

continuity of the roots of ∆τ (s) in τ then we can conclude

that the system (10) is stable in the intervals τ ∈ [0, τ1) ∪
(τ2, τ3) and unstable otherwise, because after τ3 there will

always be more roots crossing the imaginary axis from left

to right (LR) than from right to left (RL), which prevent the

system from becoming stable ever again.

This example leaves little doubt that one cannot conclude

about the stability of the roots of ∆τ (s) (Table II) by looking

at the stability of the roots of ∆1
T (s) (Table I). At least not

TABLE II

IMAGINARY AXIS CROSSINGS OF ZEROS OF ∆τ (s)

ℓ i τℓ tendency

1 1 0.1624 LR
2 2 0.1859 RL
3 4 0.2220 LR
4 4 0.6272 LR
5 3 0.8725 LR
6 4 1.0326 LR
7 4 1.4378 LR
8 4 1.8431 LR
9 1 2.2325 LR

10 4 2.2484 LR
11 2 2.3433 RL
12 4 2.6537 LR
13 4 3.0590 LR
14 4 3.4642 LR
15 3 3.8489 LR

ℓ i τℓ tendency

16 4 3.8695 LR
17 4 4.2748 LR
18 1 4.3026 LR
19 2 4.5007 RL
20 4 4.6801 LR
21 4 5.0854 LR
22 4 5.4907 LR
23 4 5.8959 LR
24 4 6.3012 LR
25 1 6.3727 LR
26 2 6.6581 RL
27 4 6.7065 LR
28 3 6.8253 LR
29 4 7.1118 LR
30 5 7.2105 LR

in the whole interval [0, τ30) considered in Table II. The

difficulties are various:

a) Most τ ’s in Table II are generated by repetitions through

formula (4) and are not directly represented in Table I.

b) One needs to pay attention to the roots of ∆k
T (s) as they

emerge from T = 0, since this is a point of discontinuity.

Note that, even though the first 5 root crossing tendencies

in Tables I and II are the same (in this case by mere

coincidence), one cannot generate the same sequence

of crossings as the one displayed in Table II, that is

matching both frequency of crossing and root tendency,

by sweeping T continuously and monotonically from 0
along the root locus ψ1(T ).

c) One cannot even analyze the root locus ψ1(T ) in a single

direction with T ≥ 0 as Table I contains entries with

negative T ’s. One of the rows with a negative value

of T , i = 4, is responsible for generating most of the

entries in Table II and cannot be safely ignored. One extra

complication is the fact that formula (6) will generate a

negative value of τ if T is negative.

In the next sections we will show how increasing k may

solve all of the above problems. As mentioned in the intro-

duction, the key will be to limit the analysis for τ ∈ [0, τ̄)
for some finite given τ̄ . Note that even in this complicated

example one will achieve equivalence between stability of

the roots of ∆τ (s) and ∆1
T (s) for any τ̄ ≤ τ3 = 0.2220.

In fact, one can verify that the roots of ∆1
T (s) are indeed

stable in the interval T ∈ [0, T1) ∪ (T2, T2 + ǫ), for some

small ǫ > 0. Again, by continuity of the root locus ψ1(T )
at any T > 0 and the fact that RT 1

T (ω1, T1) = RTτ (ω1, τ1)
and RT 1

T (ω2, T2) = RTτ (ω2, τ2) we will show how one can

infer that the roots of ∆τ (s) will be stable in the interval

τ ∈ [0, τ1) ∪ (τ2, τ̄), τ2 < τ̄ < τ3. The key will be to look

at the ordering of the τi’s and Ti’s. In the next sections we

will elaborate on the technical requirements that make such

conclusions possible.

IV. STABILITY FOR SMALL T

For T = 0, and only there, ∆τ=0(s) = ∆k
T=0(s) is a

polynomial of degree n, as opposed to a transcendental or

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA07.6

4014



rational function when τ, T > 0. Note that in this case

Theorem 1 is trivial because (π, ν, δ)τ=0 = (π, ν, δ)k
T=0.

Most of our attention is therefore devoted to the case T > 0.

The first obstacle to be overcome is the discontinuity of the

roots of ∆k
T (s) as they emerge from T = 0. In this section

we will show that if the roots of ∆τ=0(s) = ∆k
T=0(s)

are stable then the roots of ∆k
T (s) are also stable in the

interval [0, T ∗) for some small enough T ∗. We start with

the following auxiliary result.

Lemma 4: Consider the transfer function

Gk(s) := 1 −

(

σ − s

σ + s

)k

.

Then s−1Gk(s) ∈ H∞ and
∥

∥s−1Gk(s)
∥

∥ = 2kσ−1 for all

0 < σ <∞.

Proof: That s−1Gk(s) is in H∞ for all σ > 0 comes

from the fact that all the poles of Gk(s) are at λi = −σ < 0
and that Gk(0) = 0 so that s−1Gk(s) has the exact same

poles as Gk(s). Now note that

s−1Gk(s) = −s−1[1 − zk(s)], z(s) :=
σ − s

σ + s
,

where ‖zi(s)‖ = 1 for any integer i. Using the identity

1 − zk = (1 − z)
(

1 + z + · · · + zk−1
)

it follows that

‖s−1Gk(s)‖ ≤ ‖s−1[1 − z(s)]‖
(

1 + · · · + ‖zk−1(s)‖
)

,

≤ k

∥

∥

∥

∥

1

s

(

1 −
σ − s

σ + s

)∥

∥

∥

∥

= 2kσ−1.

However

lim
s→0

−s−1Gk(s) = lim
s→0

2kσ

(σ + s)2

(

σ − s

σ + s

)k−1

= 2kσ−1,

so that ‖s−1Gk(s)‖ ≥ limω→0 ‖(jω)−1Gk(jω)‖ = 2kσ−1.
This proves that the equality must hold.

Lemma 4 can be combined with standard robust stability

analysis to prove our first point in the next lemma.

Lemma 5: Assume that the roots of ∆τ (s) are stable at

τ = 0. Then, for any integer k ≥ 1 there exists a sufficiently

small T ∗ > 0 such that the roots of ∆k
T (s) are stable for all

T ∈ [0, T ∗).
Proof: If the roots of ∆τ=0(s) are stable then the

roots of ∆k
T (s) are stable for T = 0. Furthermore, the

transfer function H(s) = s (sI −A−B)−1B is in H∞,

then ‖H(s)‖ = µ < ∞. From the small gain theorem [8],

the feedback connection of H(s) with any F (s) ∈ H∞

such that ‖F (s)‖ < µ−1 is also stable. For instance, with

F (s) = s−1Gk(s) where Gk(s) is as in Lemma 4 and

all σ > 2kµ we have ‖s−1Gk(s)‖ < µ−1. Therefore the

feedback connection

y(s) = H(s)w(s) w(s) = s−1Gk(s)[r(s) − y(s)]

is stable. Eliminating w(s) we obtain

(

sI −A−B
[

1 −Gk(s)
])

y(s) = BGk(s) r(s),

which reveals that

y(s) =

[

sI −A−B

(

σ − s

σ + s

)k
]−1

BGk(s) r(s),

so that the roots of ∆k
T (s) are stable for all σ ∈ (2kµ,∞),

that is for all T = σ−1 ∈ (0, T ∗) with T ∗ = (2kµ)−1.

In above, a fundamental assumption is the fact that T ≥ 0
(from T = σ−1 > 0). Indeed, one can always find a root of

∆k
T (s) that is not stable for some T < 0.

V. A CONDITION IN TERMS OF ORDERED SETS

Inspired by the previous example let us start by defining

two discrete sets

Ψτ̄ := {(τi) : jωi ∈ ψ(τi), 0 ≤ τi < τi+1 ≤ τ̄}, (11)

Ψk :=
{ (

2 k ω−1
i arctan(ωiTi)

)

: (12)

jωi ∈ ψk(Ti), 0 ≤ Ti < Ti+1, 1 ≤ i ≤ k
}

.

By now it should be clear that both sets have a finite number

of elements when k and τ̄ are finite. Note also that Ψτ̄ is a

totally ordered set in that the elements are sorted according

to the usual inequality ‘≤’ of real numbers. Unlike Ψτ̄ , the

set Ψk may not be an ordered set. Of interest here is Ψ̄k,

the largest ordered subset of Ψk. Define also the sets

Ωτ̄ := {(τi, ωi) : jωi ∈ ψ(τi),

0 ≤ τi < τi+1 ≤ τ̄}, (13)

Ωk := {(Ti, ωi) : jωi ∈ ψk(Ti),

0 ≤ Ti < Ti+1, 1 ≤ i ≤ k}, (14)

with pairs (τ, ω) and (T, ω).
The next lemma establishes conditions in terms of the

above sets under which stability of the roots of ∆τ (s) is

equivalent to stability of the roots of ∆k
T (s).

Lemma 6: Let 0 < τ̄ < ∞ be given. Consider the tran-

scendental function ∆τ (s) and the rational function ∆k
T (s)

for some finite integer k ≥ 1 as defined in (2) and (3).

Assume that the roots of ∆τ (s) at τ = 0 are stable. Define

the associated sets ψ, and Ψk as in (11) and (12). Let

Ψ̄k ⊆ Ψk be the largest ordered subset of Ψk. There exists

T̄ > 0 and a monotonically increasing continuous function

φk : [0, τ̄) → [0, T̄ ) so that: (i) δτ = δk
T , (ii) ντ = νk

T ;

where T = φk(τ) for all τ ∈ [0, τ̄) if and only if Ψτ̄ ⊆ Ψ̄k.

Proof: Consider first the case when Ψτ̄ is empty. Then

trivially Ψτ̄ ⊆ Ψ̄k. Furthermore the roots of ∆τ (s) never

cross the imaginary axis. By Lemma 1 the roots of ∆k
T (s)

will also never cross the imaginary axis so that δτ = δk
T =

ντ = νk
T = 0 for all τ, T ≥ 0. The case when Ψτ̄ is not

empty is the interesting one.

That ντ = νk
T is a consequence of Lemma 1. If ∅ 6=

Ψτ̄ ⊆ Ψ̄k then each time the roots of ∆τ (s) cross the

imaginary axis at (τi, ωi) ∈ Ωτ̄ the roots of ∆k
T (s) cross

the imaginary axis at (Ti, ωi) ∈ Ωk for the same index i.
This is a consequence of the ordering of both Ψτ̄ and Ψ̄k.

Using Lemma 5, the roots of ∆k
T (s) are stable for all

T ∈ [0, T ∗) for some small enough T ∗ > 0. That is δk
T = 0

for all T ∈ [0, T ∗). We can then increase T from 0 passing
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TABLE III

IMAGINARY AXIS CROSSINGS OF ZEROS OF ∆2

T
(s)

i ωi Ti tendency τℓ ℓ

1 3.0352 0.0408 LR 0.1624 1
2 2.9124 0.0468 RL 0.1859 2
3 15.5032 0.0750 LR 0.2220 3
4 2.1109 0.2350 LR 0.8725 5
5 0.8407 21.3076 LR 7.2105 20

through T ∗ continuously and monotonically until the roots

of ∆k
T (s) cross the imaginary axis at ω1, T1 > 0. By

Lemma 1, at the same time the roots of ∆τ (s) should cross

the imaginary axis at ω1, τ1 = 2kω−1
1 arctan(ω1T1) > 0.

As T increases continuously and monotonically, the roots

of ∆τ (s) and ∆k
T (s) cross the imaginary axis at all ωi, Ti,

τi = 2kω−1
i arctan(ωiTi) < τ̄ . This ensures the existence

of a continuous and monotone map φk from τ ∈ [0, τ̄ ) to

T ∈ [0, T̄ ). Without loss of generality the value of T̄ can

be chosen as T̄ = Tι + ǫ for some sufficiently small ǫ > 0,

where

ι = arg max
i

{Ti : (Ti, ωi) ∈ Ωk, 2k arctan(ωiTi) ≤ ωiτ̄}.

This ordering of the imaginary axis crossing allows one to

conclude that for T ∈ [Ti, Ti+1) and τ ∈ [τi, τi+i) for any

i ≤ ι such that τi ≤ τ̄ the number of roots with nonnegative

real part of ∆k
T (s) and ∆τ (s) are always the same, as the

same number of roots cross the imaginary axis in the same

order, hence implying that δτ = δk
T .

In order to prove that the condition Ψτ̄ ⊆ Ψ̄k is also

necessary it suffices to invoke Lemma 1 to show that if

Ψτ̄ 6⊆ Ψ̄k then there will necessarily exist τi, Ti > 0 for

which ∆k
T (s) crosses the imaginary axis at ωi 6= ωj , hence

τi 6= 2kω−1
j arctan(ωjTj) so that the map φk cannot be

continuous and monotonic.

In the next section these conditions on ordered sets will

be illustrated by the example in Section III.

VI. EXAMPLE (PART B)

Consider now the example introduced in Section III, and

start with τ̄ = 0.2. From Table II we obtain the ordered set

Ψτ̄=0.2 = {0.1624, 0.1859}.

For k = 1, Table I provides

Ψk=1 = {0.1624, 0.1859, 0.8725}. (15)

Note that Ψ̄k=1 = Ψk=1 is the largest ordered subset of

Ψk=1. Because Ψτ̄=0.2 ⊂ Ψ̄k=1 then δτ = δk
T and ντ = νk

T

for all τ ∈ [0, 0.2) and all T ∈ [0, T̄ ), in this case for some

0.0953 = T2 < T̄ < T3 = 0.6233.

Now let τ̄ = 1.0. We build from Table II the ordered set

Ψτ̄=1.0 = {0.1624, 0.1859, 0.2220, 0.6272, 0.8725}.

For k = 1 the sets Ψk=1 = Ψ̄k=1 are the same as given

in (15). In this case however Ψτ̄=1.0 6⊆ Ψ̄k=1 and indeed

at τ = τ4 = 0.6272 < 1.0 we have δτ = 4 whereas from

Table I we have δk
T ≤ 2 for all T ≥ 0.

Keeping τ̄ = 1.0 we now let k = 2 and build Table III

showing only the crossings for T ≥ 0. Indeed, for k ≥ 2 we

need not consider T < 0, as noticed by Thowsen [5], [6].

From this table we build

Ψk=2 = {0.1624, 0.1859, 0.2220, 0.8725, 7.2105}.

As for k = 1, coincidently Ψ̄k=2 = Ψk=2. Note that

Ψτ̄=0.2 ⊂ Ψ̄k=1 ⊂ Ψ̄k=2 but that Ψτ̄=1.0 6⊆ Ψ̄k=2. Indeed,

at T3 = 0.2350 we have Ψk=2,i=3 = τ3 = 0.2220 and

at T4 = 0.2350 we have τ4 = 0.6272 whereas the fourth

element of Ψk=2,i=4 = 0.8725, so that no continuous and

monotonic mapping φk can exist between τ ∈ [0, 1.0) and

T . For this example one needs k ≥ 6 for Ψτ̄=1.0 ⊆ Ψ̄k=6.

This will be illustrated after the next section.

VII. CONDITIONS FOR ORDERING

We now discuss the issue of ensuring the ordering of the

sets required by Lemma 6 by increasing k. We will show

that given 0 < τ̄ < ∞ there exists a sufficiently large yet

finite k∗ such that for any k > k∗ the ordering condition

Ψτ̄ ⊆ Ψ̄k is always satisfied. This will be achieved in two

steps. Note that the results in this section do not require the

hypothesis that the roots of ∆τ (s) be stable at τ = 0.

Lemma 7: Let 0 < τ̄ < ∞ be given. Consider the tran-

scendental function ∆τ (s) and the rational function ∆k
T (s)

for some integer k ≥ 1 as defined in (2) and (3). Define the

associated sets Ψτ̄ , and Ωτ̄ as in (11) and (13). Compute

k̄ := π−1 max{(ωiτi) : (τi, ωi) ∈ Ωτ̄}. (16)

If k ≥ k̄ then Ψτ̄ ⊆ Ψk where Ψk is as in (12).

Proof: The condition Ψτ̄ ⊆ Ψk is essentially a

requirement that the relation

f : Ωk → Ψτ̄ , f(T,w) = 2 k ω−1 arctan(ωT )

be surjective, that is, that each crossing time τi ∈ Ωτ̄ be

mapped by some (Tj , ωj) ∈ Ωk not necessarily with j = i
(see next lemma). Correspondingly in Ψτ̄ and Ψk. In view

of Lemma 1, all that is needed is that

0 ≤ max{(ωiτi) : (τi, ωi) ∈ Ωτ̄} ≤ 2k arctan(ωiT ).

Since arctan : R → (−π/2, π/2) it suffices that k ≥ k̄ for f
to be surjective.

The condition k ≥ k̄ will thus ensure that Ψ̄τ̄ ⊆ Ψk.

This is a necessary condition for Ψτ̄ ⊆ Ψ̄k in Lemma 6 to

hold. That is because Ψ̄k ⊆ Ψk. The next lemma provides a

sufficient condition for Ψτ̄ ⊆ Ψ̄k.

Lemma 8: Let 0 < τ̄ < ∞ be given. Consider the tran-

scendental function ∆τ (s) and the rational function ∆k
T (s)

for some integer k ≥ k̄ as defined in (2), (3) and (16). Define

the associated sets Ψτ̄ and Ωτ̄ as in (11) and (13). Compute

k∗ = max







ωjτj

2 arccos
(

√

τj/τi

) : (ωi, τi), (ωj , τj) ∈ Ωτ̄







.

If k > k∗ then Ψτ̄ ⊆ Ψ̄k, where Ψ̄k is the largest ordered

subset of Ψk defined in (12).
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TABLE IV

τ̄ k̄ k∗ k∗†

0.20 0.2 0.7 —
1.00 3.0 13.4 8.7
2.24 9.0 39.3 33.2
5.00 23.0 496.5 412.1
7.22 35.0 754.4 470.0

Proof: Because k ≥ k̄ then each crossing time τi ∈ Ωτ̄

is mapped by some Ti ∈ Ωk. We want to show that if k > k∗

then Ψτ̄ ⊆ Ψ̄k. With that in mind, assume that k > k∗ but

Ψτ̄ 6⊆ Ψ̄k. This implies that there exists at least one pair of

indices i and j for which 0 < τj < τi < τ̄ but with Tj > Ti.

Now recall that the trigonometric tangent is continuous and

differentiable in the interval (−π/2, π/2) and invoke zero-

order Taylor’s formula [9], it yields: tan(x) = x/ cos2(ξ),
where 0 ≤ ξ ≤ x < π/2. This equality holds for some

ξ ∈ [0, x]. Because tangent is also bijective (invertible) in

the interval (−π/2, π/2) we have

Ti =
1

ωi
tan

(ωiτi
2k

)

=
τi

2k cos2(ξi)
, 0 ≤ ξi ≤

ωiτi
2k

.

From Lemma 7, if k ≥ k̄ then ωiτi/(2k) ∈ [0, π/2).

Likewise: Tj =
τj

2k cos2(ξj)
, 0 ≤ ξj ≤

ωjτj
2k

, and

Ti − Tj =
τi − ρ2

ijτj

2k cos2(ξi)
, ρij :=

cos(ξi)

cos(ξj)
. (17)

Now recall that: k > k∗ ≥
ωjτj

2 arccos
(

√

τj/τi

) , which

implies: cos
(ωjτj

2k

)

>

(

τj
τi

)1/2

. On the other hand

ρij ≤
[

cos
(ωjτj

2k

)]−1

,

which leads to the conclusion that ρ2
ij < τi/τj . But from (17)

Ti − Tj =
τi − ρ2

ijτj

2k cos2(ξi)
> 0

which contradicts the hypothesis that Tj > Ti.

VIII. PROOF OF THEOREM 1

A proof of Theorem 1 can now be simply constructed by

combining Lemmas 6, 7 and 8.

IX. EXAMPLE (PART C)

Back to our example, we now assemble Table IV where we

list the values of k̄ and k∗ as computed in Lemmas 7 and 8

for various values of τ̄ . The value of k∗† has been computed

essentially by the same formula used to compute k∗ except

that the indices i, j were taken only over the subset of entries

which appear unordered at k = k̄. The proof of Lemma 8

remains unaltered if that restriction is added. As Table IV

reveals, it should not bring much improvement except for

values of τ̄ ’s with many crossings.

We then build Table V, which was created after evaluating

all imaginary axis zero crossing for ∆k
T (s) for the values

TABLE V

IMAGINARY AXIS CROSSINGS OF ZEROS OF ∆τ (s)

i τℓ

τ̄ = 0.20 τ̄ = 1.00 τ̄ = 2.24 τ̄ = 5.00
k = 1 k = 4 k = 10 k = 24

1 1 1 1 0.1624
2 2 2 2 0.1859

3 3 3 0.2220
5 4 4 0.6272
4 5 5 0.8725

6 6 1.0326
9 7 1.4378
15 8 1.8431
7 9 2.2325

11 2.2484
10 2.3433
12 2.6537
16 3.0590
17 3.4642
13 3.8489
22 3.8695
30 4.2748
14 4.3026
15 4.5007
46 4.6801

of k immediately larger then the least value k̄ computed

in Table IV. What we list in Table V is the index i
corresponding to a particular τℓ. The condition Ψτ̄ ⊆ Ψ̄k

in Lemma 6 is fulfilled when a particular column in Table V

appears completely ordered and with no gaps. In Table V

we show in boldface the largest ordered subset of indices,

which is associated with the sets Ψ̄k. Note how conservative

the values of the upper bound k∗ can be. For instance, total

ordering of the crossings for τ < τ̄ = 2.24 already happens

at k = 24 as opposed to the least upper bound k∗† = 34.

Likewise, total ordering for τ̄ < 1.00 happens for k ≥ 6 (not

shown in the table).
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