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Abstract— An adaptive approach that augments existing
decentralized linear controllers is considered. By employing a
neural network as a centralized element, the approach greatly
broadens the class of system for which linear decentralized
controllers can be designed. The stability proof naturally follows
from the viewpoint that a set of decentralized controllers are
a special class of multi-input multi-output controllers of an
existing central method. The approach is illustrated using
an inverted flexible pendulum in which a neural network
coordinates an acceleration controller with a controller for an
rigid inverted pendulum.

I. INTRODUCTION

Recent advances in the technology of sensors and actuators

allow for implementation of distributed set of inexpensive

sensors and actuators for large-scales systems. This poses a

challenge on designing a controller because most conven-

tional control methods become proportionally complicated

by the dimension of the system to be controlled. Therefore

it is not practical to design a single controller because the

design of a concurrent controller processing a distributed

set of sensors and actuators is a formidable task. Moreover,

if the system to be controlled is uncertain, the design of

a single controller for a high dimensional system becomes

less feasible in most control systems. However, we note that

a major obstacle associated with a concurrent controller in a

large-scale system does not lie in setting up multiple com-

munication channels among many subsystems in hardware,

but in the lack of an appropriate information processing

algorithm that is numerically efficient. In practice, recent

advances in microprocessors and signal processing make

it possible for a single system board to handle multiple

channels of inputs and outputs with less power consumption

compared to the past, but control design methodology for

systems having distributed arrays of sensors and actuators

has not kept up with this technology.
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In this paper, we propose a centralized neural network

(NN) as a tool for providing a hierarchy in control design to

those systems equipped with a practically manageable size

of distributed sensors and actuators. The control architecture

proposed in this paper is depicted in Figure 1. Compared

to previous NN-based decentralized approaches [1]–[4], it is

immediately clear that the main difference is the usage of

the distributed outputs as an NN input, and this process does

not drastically increase the complexity of neural processing

because of its inherently parallel nature of data processing.

It is also clear that the architecture in Figure 1 is centralized

only in a sense that the NN processes all the measurements

while the baseline controllers can remain decentralized. The

NN in Figure 1 can be equivalently realized as a set of NNs

in each subsystem [5].

G1 G2 G3

K1 K2 K3

NN

Fig. 1. Centralized NN control architecture

As a result of employing a centralized NN as a hierar-

chical controller for underlying decentralized controllers, we

encompass a broader class of nonlinear systems compared

to the classes in the literature [1]–[4]. Compared to the

class in [4], implementing a centralized NN controller over

a set of decentralized controllers allows for interconnections

that cannot be approximated by a decentralized NN because

of the requirement for observability. This further implies

that the proposed architecture can accommodate a class of

unmodeled dynamics which are prohibited in [4], in the same

manner as in the centralized setting in [6].

The paper is organized as follows. In Section II we formu-

late a central, hierarchical NN control problem. Following

the analysis of tracking error dynamics in Section III, we

present the augmenting method of adaptive control design in
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SectionIV whose stability analysis is presented in Section

V. In Section VI, we illustrate the proposed method in

controlling a flexible inverted pendulum. Conclusions are

given in Section VII. Throughout the manuscript, ‖·‖ means

Euclidean norm for a vector and the induced 2-norm for a

matrix unless otherwise mentioned. That is, ‖x‖ =
√

xT x

for x ∈ R
n, and ‖A‖ =

√
λmax(AT A) for A ∈ R

m×n.

The Frobenius norm for a matrix is represented by the

subscript F , i.e., ‖A‖F =
√

tr(A⊤A). The set S|k denotes a

projection of the set S to the k-dimensional Euclidian space

R
k. A vector is denoted by a bold symbol, and its ith element

is represented by a plain symbol with a subscript i, i.e.,

u = [u1, . . . , ui, . . .]
⊤.

II. PROBLEM FORMULATION

Consider a system described by the following normal form

ξ̇i1 =ξi2 , ξ̇i2 = ξi3 , . . .

ξ̇iri
=a⊤

i ξi + p⊤

i zi + hi(x, u)

żi =Foi
zi + Goi

ξi + gi(x)

η̇ =fη(xp, η)

yi =ξi1 ,

(1)

where x = [(xp)
⊤, η]⊤ ∈ Ωx ⊂ R

n, xp =
[xp1

, . . . ,xpm
]⊤ ∈ Ωx|r+nz

, xpi
= [ξ⊤

i , z⊤
i ]⊤ ∈

Ωx|ri+nzi
, which denotes the state of the ith subsystem,

η ∈ Ωx|n−nz−r represents the state of unmodeled internal

dynamics, i.e., f η is unknown, smooth vector field, u ∈
Ωu ⊂ R

m is the input, yi ∈ Ωx|1 ∈ R, i = 1, . . . , m are

the regulated output, ri represents the relative degrees of the

output yi, r = r1 + . . . + rm ≤ n, nz = nz1
+ . . . + nzm

.

The sets Ωx and Ωu are open, and (0,0) ∈ Ωx × Ωu.

The function hi(x, u) is a smooth partially known function

(hi(0,0) = 0), and f η(xp, η) is a smooth partially known

vector field (f η(0,0) = 0).

Assumption 1: The Jacobian ∂h

∂u
(x, u) is nonsingular for

every (x, u) ∈ Ωx × Ωu.

Assumption 2: For the system η̇ = fη(0, η), there exists

a continuously differentiable function Vη(η) satisfying

c1 ‖η‖2 ≤ Vη(η) ≤ c2 ‖η‖2

V̇η ≤ −c3 ‖η‖2

∥∥∥∥
∂V

∂η

∥∥∥∥ ≤ c4 ‖η‖ ,

(2)

with some positive constants ci’s, i = 1, . . . , 4. Furthermore,

the vector field f η is Lipschitz in its arguments.

Under this assumption, we have

V̇η =
∂Vη

∂η
fη(xp, η)

=
∂Vη

∂η
fη(0, η) +

∂Vη

∂η
[fη(xp, η) − fη(0, η)]

≤ −c3 ‖η‖2
+ c4c5 ‖η‖ ‖xp‖ ,

(3)

where c5 is the Lipschitz constant. This implies that with xp

as an input, the dynamics η̇ = fη(xp, η) in (1) are input-

to-state stable [7].

A baseline controller for the ith subsystem is assumed to

be designed using only the local output y i and neglecting the

effect of the other control signals. As a result, it is assumed

that the baseline controller for the ith subsystem is designed

based on a single estimate λi for the term in hi(x, u). This

induces the following modeling error:

hi(x, u) = λiui + ∆i(x, u), (4)

where ∆i(x, u) = hi(x, u) − λiui. The resulting controller

is described by

ẋci
=Aci

xci
+ bci

(ydi
− yi), xci

∈ R
nci

uci
=cci

⊤xci
+ dci

(ydi
− yi),

(5)

which regulates a linear model

ẋpi
=Aixpi

+ biλiui

yi =ci⊤xpi
,

(6)

where Ai =

[
Aoi

Poi

Foi
Goi

]
, bi =

[
boi

0nzi
×1

]
, ci =

[
coi

0nzi
×1

]
, Aoi

=




0 1 . . . 0
0 0 . . . 0
...

...
. . .

...

ai1 ai2 . . . airi




ri×ri

, Poi
=

[
0 0 . . . pi

]⊤
ri×nzi

, boi
=

[
0 0 . . . 1

]⊤
ri×1

,

coi
=

[
1 0 . . . 0

]⊤
ri×1

. The linear model in (6) reg-

ulated by the controller in (5) constitutes a reference model

that represents the desired behavior of the ith subsystem:

ẋmi
=Āixmi

+ b̄di
ydi

ymi
=c̄⊤i xmi

(7)

where xmi
= [(xpi

)m⊤, x⊤
ci

]⊤ ∈ Ωxmi
⊂ R

ri+nzi
+nci in

which the superscript m is introduced to denote the reference

model, and Āi =

[
Ai − biλidci

c⊤i biλic
⊤
ci

−bci
c⊤i Aci

]
,b̄di

=
[

biλidci

bci

]
, c̄i =

[
ci

0nci
×1

]
.

Let the decentralized control signal be augmented by the

adaptive signal

ui = uci
− uadi

. (8)

Applying the linear controller in (5) to the system in (1)

leads to

ẋti
=Āixti

+ b̄di
ydi

+ b̄i[−λiuadi

+ ∆i(x, u)] + Bg
i gi(x)

η̇ =fη(xp, η)

yi =c̄⊤i xti
, i = 1, . . . , m

(9)

where xti
= [x⊤

pi
x⊤

ci
]⊤, and b̄i =

[
b⊤

i 01×nci

]⊤
,Bg

i =
[

0nzi
×ri

Inzi
0nzi

×nci

]⊤
.

The control objective is to design an adaptive law for

uad, which is the output of a centralized neural network that

processes all the available outputs, such that each output y i(t)
to track the desired output ydi

(t) while all the closed-loop

signals are bounded. Our method employs a NN to cancel the
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effect of the modeling error ∆(x, u). Whereas the output of

the ith system is decoupled from the other control signals u j

(j �= i) in [4], the centralized architecture in Figure 1 allows

for coupling in the input matrix, and therefore the class

treated in this paper is broader than that in [4]. Compared

to [6], the proposed approach takes the path in [8] and does

not resort to the contraction mapping assumption.

III. TRACKING ERROR DYNAMICS

Defining the tracking error as

ei = xmi
− xti

, (10)

leads to the following error dynamics for the ith subsystem

ėi =Āiei + b̄i[λiuadi
− ∆i(x, u)] − Bg

i gi(x)

η̇ =fη(x), si = C̄iei,
(11)

where si := [ymi
− yi, xm⊤

ci
− x⊤

ci
]⊤ represents available

measurements, and hence C̄i =

[
c̄⊤i 0

0 Inci

]
. Since Āi is

Hurwitz by design, there exist a Pi = P⊤

i > 0 such that for

an arbitrary Qi > 0, Ā⊤

i Pi +PiĀi +Qi = 0. By introducing

e = [e⊤
1 , . . . ,e⊤

m]⊤ ∈ R
r+nz+nc , Eq. (11) can be written as

ė =Āe + B̄[Λuad − ∆] − Bgg(x)

η̇ =fη(x),
(12)

where Ā = diag{Ā1, Ā2, . . . , Ām} ∈
R

(r+nz+nc)×(r+nz+nc), B̄ = diag{b̄1, b̄2, . . . , b̄m} ∈
R

(r+nz+nc)×m, Bg = diag{Bg
1 , Bg

2 , . . . , Bg
m} ∈

R
(r+nz+nc)×nz , Λ = diag{λ1, λ2, . . . , λm} ∈ R

m×m

Assumption 3: The unmatched uncertainty g(x) is

bounded as follows:

‖g(x)‖ ≤ αp ‖xp‖ + αη ‖η‖ , αp, αη ≥ 0.
Note that the system in (12) has the same form as that in [6,

Eq. (21)] except the diagonalized system matrix Ā because

the linear controllers are decentralized. To address the fact

that the uncertainty ∆(x, u) depends on the control signals,

in [6] the uncertainty is assumed to be a contraction mapping

with respect to the adaptive signal uad. In this paper, we

follow the path in [8] and note that

Λuad − ∆ = −h(x, uc − uad) + Λuc. (13)

Since ∂h

∂uad
(x, uc − uad) = − ∂h

∂u
(x, u) is nonsingular by

Assumption 1, applying the implicit function theorem as in

[9] guarantees that there exists a smooth function uad∗ =
uad∗(x, xc) such that

−h(x, uc(xc) − uad∗) + Λuc, = 0 (14)

for every (x, xc) ∈ Ωx × Ωxc
. With the definition of uad∗ ,

Eq. (13) can be expressed as

Λuad − ∆ = −h(x, uc − uad) + h(x, uc − uad∗). (15)

Unlike a single-input single-out system in [10], the mean

value theorem in general does not hold in a multivariable

function. Therefore, we follow the steps in [8] and define

a mapping f(xm, x, u) := e⊤PB̄h(x, u), where P :=

diag{P1, . . . , Pm} ∈ R
(r+nz)×(r+nz). Then, the mapping

becomes a scalar mapping f : Ωxm
× Ωx × Ωu → R, and

we have

e⊤PB̄(Λuad − ∆)

= −f(xm, x, uc − uad) + f(xm, x, uc − uad∗)

= − [
∂f

∂xm
,

∂f

∂x
,

∂f

∂u
]
∣∣∣
(xm,x,ū)




0r+nz+nc

0n

−uad + uad∗




= e⊤PB̄H(ū)[uad − uad∗ ]

(16)

where H(ū) := ∂h

∂u

∣∣∣
(x,ū)

that is nonsingular by Assumption

1, and ū = uc−θuad−(1−θ)uad∗ for a constant θ ∈ [0, 1].
The above expression implies that as far as a Lyapunov can-

didate function of the form 1
2e⊤Pe ( P > 0) is considered,

the error dynamics in (12) can be treated as if the mean value

theorem holds, i.e., ė = Āe+B̄H(ū)[uad−uad∗ ]−Bgg(x)
because both error dynamics lead to the same product term

in a stability analysis. As in [8], we introduce the following

assumption regarding H(ū), which is fundamental in most

nonlinear robust control methods [11] and further explained

in Remark 1.

Assumption 4: The matrix H(ū) can be decomposed as

H(ū) = Ĥ(I + ∆H(x, u)) with a known nonsingular Ĥ
and 0 ≤ ‖∆H(x, u)‖ ≤ b∆ < 1 on Ωx × Ωu.

IV. ADAPTIVE CONTROL

A single hidden layer NN (SHLNN) is used to ap-

proximate uad∗(x, xc) in (14) because it is a universal

approximator [12]. Since the arguments of uad∗ include the

unavailable states x, we recall the main result in [13] that

establishes universal approximation for an unknown function

of the states and control in an observable system using

sampled values of its input/output. Following [13], [14], for

a given ǫ∗ > 0, uad∗ is parametrized on the compact set

Cx̄ := Ωx × Ωxc
by

uad∗(x, xc) = M⊤σ(N⊤µ) + ε(µ), ‖ε(µ)‖ ≤ ǫ∗, (17)

where ε(µ) is the NN reconstruction error and µ is the

network input vector

µ(t) = [ 1 ū⊤

d (t) ȳ⊤

d (t) xc(t)
⊤ ]⊤, ‖µ‖ ≤ µ∗

ū⊤

d (t) = [u(t), u(t − d), . . . ,u(t − (n1 − r − 1)d)]
⊤

ȳ⊤

d (t) = [y(t), y(t − d), . . . ,y(t − (n1 − 1)d)]
⊤

,
(18)

where r is the relative degree, and n1 is selected greater

than or equal to the observability index of the system output

y that guarantees a diffeormorphism between x and Y :=
[y, ẏ(t), . . . ,y(n1−1)(t)]⊤. The constant d > 0 is a time

delay, and σ is a vector of squashing functions σ(·), its i th

element being defined like
[
σ(N⊤µ)

]
i
= σ

[
(N⊤µ)i

]
.

Assumption 5: On the compact set Cx̄, the ideal NN

weights M, N are bounded, i.e., ‖M‖F ≤ M∗ and ‖N‖F ≤
N∗.

The adaptive signal uad is designed as

uad =M̂(t)⊤σ(N̂(t)⊤µ), (19)
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where M̂(t), N̂(t) are the estimates for M, N in (17) and

adapted on-line.

For an adaptation law for M̂(t), N̂(t), we follow the path

in [14] and introduce an error observer. For this, we note

that when uad = uad∗ , Λuad = ∆ by (15), and hence

λiuadi
− ∆i(x, u) = 0 for i = 1, . . . , m. Therefore, we

design the following linear observer for e i [14]: ˙̂ei = Āiêi+
Ki(si − ŝi), where Ki is selected such that Ãi := Āi −
KiC̄i is Hurwitz. Let ẽi = êi − ei. The the observation

error dynamics are described by ˙̃ei = Ãiẽi − b̄i[λiuadi
−

∆i(x, u)] + Bg
i gi(x). Since Ãi is Hurwitz, for a Q̃i > 0,

there exists a P̃ > 0 such that Ã⊤

i P̃i + P̃iÃ
⊤

i +Q̃i = 0. With

the notation ẽ = [ẽ⊤

1 , . . . , ẽ⊤

m]⊤, the overall observation error

dynamics are written as

˙̃e = Ãẽ − B̄[Λuad − ∆] + Bgg(x). (20)

The NN weights M̂(t), N̂(t) are updated according to the

following adaptation laws [14]

˙̂
M = − ΓM [(σ̂ − σ̂

′N̂⊤µ)r + kM̂ ],

˙̂
N = − ΓN [µrM̂⊤σ̂

′ + kN̂ ],
(21)

in which ΓM , ΓN > 0 are positive definite adaptation gain

matrices, k > 0 is a σ−modification constant, σ̂ � σ(N̂⊤η),
σ̂′ is the Jacobian computed at the estimates: σ̂ ′ = σ′(N̂⊤η),
and the training signal is given by

r = e⊤PB̄Ĥ (22)

Remark 1: In a completely decentralized setting, r =
[r1, . . . , rm]⊤ where ri = ê

⊤

i Pibiλi. Therefore, compared to

the decentralized approach, the centralized neural controller

is beneficial in two aspects: 1) the approach effectively

accommodates couplings in the control input matrix in

regulating all the outputs 2) the observability is enhanced by

processing all the outputs. As a price,the control input matrix

is required to meet Assumption 4. In other words, addressing

the coupling effects require an estimate for the couplings

in the input channels. This estimate should be made such

that the nominal control action should not be overcome by

uncertain modeling error (‖∆H(x, u)‖ ≤ b∆ < 1), which

has been a fundamental requirement in nonlinear robust

control literature [7], [11]. In implementation aspects, NNs

have an inherent parallel structure, and numerical complexity

does not increase significantly compared to the decentralized

NN architecture. As a matter of fact, a single centralized NN

can be decomposed as multiple NNs that processes the same

input [5].

Remark 2: Our analysis shows that when the control sys-

tem, including a NN, is fully decentralized, the decentralized

control system is valid if ‖∆H‖ = ‖H(ū) − Λ‖ < 1, and

each output is observable with respect to the entire system.

That is, if the coupling effect among control signals is not

dominant, the validity of the decentralized controllers is still

guaranteed with an each observable output.

V. STABILITY ANALYSIS

Define M̃ � M̂ − M , Ñ � N̂ − N , Z̃ �

[
M̃ 0

0 Ñ

]
,

where M, N are ideal weights defined in (17). The term

uad − uad∗ allows for the following upper bound [14]

‖uad − uad∗‖ ≤ δ1

∥∥∥Z̃
∥∥∥

F
+ δ2, δ1, δ2 > 0. The NN

approximation error uad − uad∗ can, using Taylor series

expansion, be described as follows uad − uad∗ = M̃(σ̂ −
σ̂

′N̂⊤µ)+ M̂⊤σ̂
′Ñ⊤µ+ω−ε, where ω = M̃⊤σ̂

′N⊤µ−
M⊤O((Ñ⊤µ)2) with O((Ñ⊤µ)2) as higher order terms.

Using the bound for µ in (18), the term ω−ε can be bounded

[14] ‖ω − ε‖ ≤ δ3

∥∥∥Z̃
∥∥∥

F
+ δ4, δ3, δ4 > 0.

For a stability analysis, consider the following Lyapunov

candidate function

V (e, ẽ, M̃ , Ñ) = e⊤Pe + ẽ⊤P̃ ẽ

+ tr
(
M̃⊤Γ−1

M M̃
)

+ tr
(
Ñ⊤Γ−1

N Ñ
)

+ Vη(η).
(23)

The time derivative of V along (12) and (20) becomes

V̇ = 2e⊤P
[
Āe + B̄[Λuad − ∆] − Bgg(x)

]

+ 2ẽ⊤P̃
[
Ãẽ − B̄[Λuad − ∆] + Bgg(x)

]

+ tr
(
M̃T Γ−1

M
˙̂

M
)

+ tr
(
ÑT Γ−1

N
˙̂
N

)
+ V̇η.

(24)

Applying the mean value theorem as in (16) leads to

V̇ = −e⊤Qe + 2e⊤PB̄H(ū)[uad − uad∗ ]

− ẽ⊤Q̃ẽ − 2ẽ⊤P̃ B̄H(ū)[uad − uad∗ ] + . . .
(25)

Using Assumption 4, the product term 2e⊤PB̄H(ū)[uad −
uad∗ ] can be arranged as

2e⊤PB̄H(ū)[uad − uad∗ ]

= 2(ê − ẽ)⊤PB̄H(ū)[uad − uad∗ ]

= 2ê
⊤PB̄Ĥ(I + ∆H)[uad − uad∗ ]

− 2ẽ⊤PB̄H(ū)[uad − uad∗ ]

= 2ê
⊤PB̄Ĥ [M̃(σ̂ − σ̂

′N̂⊤µ) + M̂⊤σ̂
′Ñ⊤µ

+ ω − ε] + 2ê
⊤PB̄Ĥ∆H [uad − uad∗ ]

− 2ẽ⊤PB̄H(ū)[uad − uad∗ ].

(26)

Note that Eq. (25) is the same as that in [14] except the pres-

ence of H(ū) and Vη . Since ‖∆H‖ ≤ b∆ < 1, and hence

‖H(ū)‖ ≤
∥∥∥Ĥ

∥∥∥ (1+ b∆), the product terms associated with

H(ū) and ∆H can be treated using upper bounds similar

to those in [14]. For example, |ẽ⊤PB̄H(ū)[uad −uad∗ ]| ≤∥∥PB̄
∥∥ (1+b∆) ‖e‖ [δ1

∥∥∥Z̃
∥∥∥

F
+δ2] ≤ γ1 ‖e‖

∥∥∥Z̃
∥∥∥

F
+γ2 ‖e‖,

where γ1 = δ1

∥∥PB̄
∥∥ (1+b∆), and γ2 = δ2

∥∥PB̄
∥∥ (1+b∆).

This means that the stability directly follows from the results

in [14] and [6]. Therefore, we state the main result of the

paper without a proof.

Theorem 1: Suppose that the system satisfies Assump-

tions 1-5. The feedback control law in (8) with the adaptive

signal in (19), together with the NN weights updated by (21),

guarantees that the signals e, ẽ, M̃ , Ñ , and η in the closed-

loop system are ultimately bounded.
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Remark 3: The rationale in this section is to view the

decentralized linear controllers in (5) as a subclass of cen-

tralized controllers in [6]. Therefore, the stability proof is

the same except that a SHLNN is used while a radial basis

function NN is used in [6]. A main feature that distinguishes

the control design from that in [6] is the coupling terms in

the input matrix that are treated by (26).

Remark 4: The decentralized nature of the proposed ar-

chitecture allows for straightforward addition of an additional

control system when a new set of sensors and actuators are

deployed; A local controller for a new pair is designed and

is coordinated by a NN that processes all the input and

outputs. The prerequisite for this procedure is to obtain a

new Ĥ that includes additional elements arising from added

sensor/actuator pairs.

VI. SIMULATIONS

The notations used to derive the equation of motion in this

section are independent from the other section, which should

be clear in the context.

Consider a flexible inverted pendulum in Figure 2. The

inverted pendulum has been often used to study tasks associ-

ated with balancing such as stabilization for rocket thrusters

[15]. Our motivation is to study the proposed architecture

in suppressing vibrations caused by flexibilities in a slender

launch vehicle and providing attitude stabilization during

its ascent phase. In Figure 2, the tip mass is mounted to

account for an additional payload carried by such slender

launch vehicles. The flexible pendulum in Figure 2 consists

Fig. 2. A flexible inverted pendulum on a cart

of a motor driven cart, which is equipped with two encoders

that measure the position of the cart (x) and the angle of

the pendulum (θ), which is free to swing at the side of the

cart. Due to limited spaces, we do not include a complete

system model, however, a similar model with detailed system

properties can be found in [16].

The available measurements are :

y1 = x, y2 = θ,

y3 = ẍ cos(θ + β) + (Lθ̈ + ẅ) cosβ + (Lθ̇ + ẇ)θ̇ sin θ,

where L is the length of the pendulum, β(t) := ∂w
∂r (L, t), and

therefore y3 represents the tip acceleration in the direction of

b2 in Figure 2. The control forces include the external force

applied to the cart F 1(t) and the external force F 2(t), which

mimics a gas-jet thruster located at the payload in case of

lanuch vehicles. They are realized by the control voltages

according to the following relation:

F 1 = F1i2 = (a1u1 − a2ẋ)i2,

F 2 = −F2b2 = −kau2b2,
(27)

where a1 = 1.72, a2 = 7.68 are due to the gear actuation

mechanism [17], and ka = 1 is a force gain.

The rationale for the decentralized controllers is as fol-

lows: design a controller for u1 in the same manner as

in controlling a rigid pendulum on the cart while u 2 is

independently used to suppress vibrations due to flexibility.

An immediate issue in this pursuit is that blindly suppressing

the accelerations at the tip mass also suppresses accelerations

due to the rigid body motion. Therefore, a reference model,

composed of a linear pendulum model regulated by the

controller for u1, is utilized in the design of a controller for

u2. That is, the nominal controller for u2 is designed only

to suppress the deviation of the acceleration from that of the

reference model, which is the nominal closed-loop system.

Linear controller for u1: The nominal model for the

system in Figure 2 is obtained by neglecting elasticity of

the beam and then linearizing the pendulum equation with

respect to the vertical equilibrium. Since the nominal model

is the linearized model with respect to the vertical position,

the nominal control design is carried out in the same manner

as was done in [17]. A linear quadratic Gaussian (LQG)

controller is designed for output tracking. Figure 3 compares
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Fig. 3. Times responses of the reference model and the closed loop system

the responses of the reference model to the closed-loop

responses when the LQG controller is applied to the system

. Initially the pendulum is tilted with 10◦ while all the other

states are set to zero. While the reference model shows

desired behavior for (x, θ), the system regulated by the LQG

controller goes unstable. The instability is caused by the

flexibility in the beam. The LQG controller fails to stabilize

the inverted pendulum even for an arbitrarily small initial

tilt of the pendulum. Without the flexibility, it can be proven

that a domain of attraction exists, and the closed-loop linear

system is exponentially stable.

Linear controller for u2: For acceleration feedback, an

independent control law for u2 is designed. Since the goal

of the acceleration feedback is to suppress vibrations due

to the flexibility of the pendulum, the desired profile for

the acceleration, yd3
(t), is obtained by the reference model

consisting of the plant model regulated by the LQG controller

in Section VI, and hence yd3
(t) = ym3

(t) = ẍm(t)+Lθ̈m(t).
An issue related to acceleration feedback is that it has relative
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Fig. 4. Time responses with and without NN augmentation for the
decentralized controllers

degree zero while most approaches, including the proposed

adaptive control in this paper, assume the relative degree

greater than zero. Considering that acceleration signals are

usually filtered before use for feedback, we introduce a

first-order filter for y3: y3f
= L(s)y3, where L(s) =

1
s/ωa+1 , ωa = 6(Hz) = 12π(rad/sec), and treat y3f

as

the regulated output. The resulting controller is designed as

uc2
= −KaL(s)(yd3

− y3), where Ka = 1.

Adaptive control augmentation: The input matrix Ĥ in

Assumption 4 is obtained by considering the linearized

dynamics that include the low-pass filter L(s) for the ac-

celeration. An error observer for e1 = [er
1, x

m⊤
c1

− xc1
⊤]⊤

is designed as the following reduced observer ˙̂e
r

1 = A1ê
r
1 +

b1[uc1
(ym1

) − uc1
(y1)] + L1(s1 − ŝ1), where s1 = [ym1

−
y1, ym2

− y2]
⊤ = Cr

1er
1 because xm

c1
− xc1

is available. The

signal uc1
(ym1

) is the linear control signal in the reference

model and uc1
(y1) is the output of the LQG controller.

Therefore, the error estimate ê1 is constructed as: ê1 =[
(êr

1)
⊤ (xm

c1
− xc1

)⊤
]⊤

, and the resulting overall error

estimate becomes ê = [ê⊤

1 , x⊤
c2

]⊤.

A SHLNN consisting of 10 neurons in the hidden layer

is implemented to achieve coordination between (u1, y1, y2)
and (u2, y3). The input for the NN is composed of 2 delayed

values of y1,y2, and y3, as well as the inputs u. The time

delay is set as d = 0.002 sec. The tuning parameters for

two networks are set as: ΓM = 0.1I, ΓN = 0.5I, k1 = 0.02
where I is the identity matrix with compatible dimension.

Figure 4 compares output responses of the closed-loop

systems with and without the NN. While the accelerations

levels are kept at the same level, the NN provides improved

responses in the position of the cart and the angle of the

pendulum. This implies that the NN helps to coordinate

the rigid motion with suppressing action of the tip actuator

while independent design for acceleration suppression leads

to large deviation in the rigid body motion.

VII. SUMMARY

We propose a central neural network based adaptive

algorithm that coordinates a distributed pair of sensors

and actuators in controlling an uncertain complex system.

Compared to the previous approaches, the approach allows

for control couplings among the input/output pair which

is utilized for updating a centralized neural network. The

stability proof naturally follows from that of the existing

multi-input multi-output approach by taking a viewpoint that

decentralized controllers are a subclass of linear controllers.

We illustrate the proposed method in control of a flexible

inverted pendulum mounted on a cart in which acceleration

feedback is added to a linear quadratic Gaussian regulator

designed for a rigid pendulum and a cart system.
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