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Abstract— This work presents two continuous time-varying
control laws that globally uniformly asymptotically stabilize
the origin of a vectorial generalization of the basic chained-
form system. A strict Lyapunov function for the controlled
system is developed, and the results verified through numerical
simulation.

I. INTRODUCTION

Chained-form systems are classical nonholonomic sys-
tems, and several control laws have been made for them.

For the general chained-form system, an algorithmic ap-
proach using sinusoids was developed in [1] that gave global
uniform asymptotic stability of the origin.

In [2], a globally uniformly asymptotically stabilizing
time-varying control law was developed, in addition to dis-
continuous time-varying control laws. This, however, was for
a subsystem and not the most general chained-form system.

Discontinuous control laws have been developed in [3],
[4], [5] and [6], among others.

While not explicitly stating so, [7] developed a contin-
uous time-varying control law that globally asymptotically
stabilized the lowest-order chained form system.

In this paper we present two continuous time-varying con-
trol laws that globally uniformly asymptotically stabilize the
origin of a vectorial generalization of the basic chained-form
system. To the authors’ best knowledge, no previous control
laws have been presented for this specific generalization of
the chained form system.

The paper is organized as follows: In Section II, the model
is presented. In Sections III and IV, the control laws are
presented. Section V presents simulation results. Conclusions
are given in Section VI. The Appendix provides some further
details into the proof in Section III.

II. THE MODEL

We look at a system on the form

ẋ1 = u1 ∈ Rm (1)
ẋ2 = u2 ∈ R (2)
ẋ3 = x2u1 ∈ Rm (3)

for any m ∈ N, which is a vectorial generalization of the
basic chained-form system (where m = 1). The control
objective is to asymptotically stabilize the origin of (1)–(3).

According to [8] and [9], this is impossible to do with any
time-invariant control law. This paper presents two smooth,
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time-varying globally uniformly asymptotically stabilizing
control laws.

The control laws are developed using vectorial back-
stepping, the method of finding strict Lyapunov functions
developed in [10] and the cascade theorems from [11].

III. STABILIZING THE REDUCED SYSTEM

We first look at the subsystem

ẋ1 = u1 (4)
ẋ3 = φxu1 (5)

where φx ∈ R and u1 ∈ Rm are considered control inputs.
We define χ1 , x1 + c3 cos(ωt)x3 ∈ Rm, whose time

derivative is given by

χ̇1 = ẋ1 + c3 cos(ωt)ẋ3 − c3ω sin(ωt)x3

= (1 + c3 cos(ωt)φx)u1 − c3ω sin(ωt)x3. (6)

We note that χ1 ≡ 0 iff x1 ≡ x3 ≡ 0. Thus we need to
stabilize the origin of the (χ1, x3) system.

Lemma 1: The origin of the system (4)–(5) is globally
uniformly asymptotically stabilized by the control law

φx(t, x3) = − sin(ωt)‖x3‖2

2(ε+ ‖x3‖2)
(7)

u1(t, χ1, x3) =
−c1χ1 + c3ω sin(ωt)x3

1 + c3 cos(ωt)φx
(8)

where
χ1 = x1 + c3 cos(ωt)x3 ∈ Rm (9)

for some ε ∈ (0, 1), c3 ∈ (0, 1), c3ω ≥ c1 > 0 and ω > 0.
Furthermore,

U2(t, χ1, x3) =
( c1

16ω
+ 2
)
U1 −

c1U
2
1 sin(2ωt)

16ω(1 + U1)
, (10)

with U1(χ1, x3) , 2‖χ1‖2 + ‖x3‖2, is a strict Lyapunov
function for the controlled system.

Proof: We start by noting that |φx| ≤ 1/2, so that
the denominator in (8) is always strictly positive. The time
derivative of χ1 with the control law (8) is given by

χ̇1 = −c1χ1. (11)

The rest of the proof is a generalization of the proof of
Theorem 3 in [7].

Using the Lyapunov function candidate

U1(χ1, x3) , 2‖χ1‖2 + ‖x3‖2 (12)
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we see that its time derivative along the trajectories of the
system (5)–(6) with the control input (7)–(8) is given by

U̇1 =
2φx

1 + c3 cos(ωt)φx
xT

3 (−c1χ1 + c3ω sin(ωt)x3)

− 4c1‖χ1‖2

=
c1 sin(ωt)‖x3‖2xT

3 χ1 − c3ω sin2(ωt)‖x3‖4(
1− c3

4 sin(2ωt) ‖x3‖2
ε+‖x3‖2

)
(ε+ ‖x3‖2)

− 4c1‖χ1‖2 (13)

≤ 2c1| sin(ωt)|‖χ1‖
‖x3‖3

ε+ ‖x3‖2
(14)

− c3ω sin2(ωt)‖x3‖4(
1− c3

4 sin(2ωt) ‖x3‖2
ε+‖x3‖2

)
(ε+ ‖x3‖2)

− 4c1‖χ1‖2

≤ 2c1| sin(ωt)|‖χ1‖
‖x3‖3

ε+ ‖x3‖2

− 2c3ω sin2(ωt)‖x3‖4

3(ε+ ‖x3‖2)
− 4c1‖χ1‖2 (15)

≤ −c3ω sin2(ωt)‖x3‖4

3(ε+ ‖x3‖2)
− c1‖χ1‖2 (16)

where it has been used that c3 < 1 for the step (14) to (15).
See Appendices A and B for further details into the other
steps of this part of the proof.

We define the positive definite functions

W1(χ1, x3) ,
c3ω‖x3‖4

3(ε+ ‖x3‖2)
+
c1
2
‖χ1‖2 (17)

λ(U1) ,
c1U

2
1

8(1 + U1)
. (18)

W1 and λ satisfy

W1(χ1, x3) ≥ λ(U1) (19)

if ε ∈ (0, 1), c3 ∈ (0, 1), c3ω ≥ c1 > 0 and ω > 0 (see
Appendix C for proof).

This gives

U̇1 ≤ − sin2(ωt)W1(x3, χ1)−
c1
2
‖χ1‖2

≤ − sin2(ωt)λ(U1) (20)

if ε ∈ (0, 1), c3 ∈ (0, 1), c3ω ≥ c1 > 0 and ω > 0.
It is worth noting that

λ(U1) ≤
c1
8
U1

∂λ

∂U1
=
c1
8

2U1 + U2
1

(1 + U1)2
∈
[
0,
c1
8

]
.

Using the technique of constructing strict Lyapunov func-
tions for a class of time-varying systems developed in [10,
Theorem 1] and used in [7], we choose the function

U2(t, χ1, x3) ,
( c1

16ω
+ 2
)
U1 −

1
2ω

sin(2ωt)λ(U1) (21)

which satisfies

2U1 ≤ U2 ≤ 2
( c1

16ω
+ 1
)
U1. (22)

The time derivative of U2 is given by

U̇2 =
( c1

16ω
+ 2
)
U̇1 −

sin(2ωt)
2ω

∂λ

∂U1
U̇1 − cos(2ωt)λ(U1)

= 2U̇1 +
(
2 sin2(ωt)− 1

)
λ(U1)

+
1
2ω

(
c1
8
− sin(2ωt)

∂λ

∂U1

)
U̇1

≤ −2 sin2(ωt)λ(U1) +
(
2 sin2(ωt)− 1

)
λ(U1)

+
1
2ω

(
c1
8
− sin(2ωt)

∂λ

∂U1

)
U̇1

= −λ(U1) +
1
2ω

(
c1
8
− sin(2ωt)

∂λ

∂U1

)
U̇1

≤ −λ(U1) (23)

since
c1
8
− sin(2ωt)

∂λ

∂U1
≥ 0 and U̇1 ≤ 0.

According to [12, Theorem 4.9], the origin of the (χ1, x3)
system, and thus the origin of the system (4)–(5), is then
globally uniformly asymptotically stable.

IV. STABILIZING THE ENTIRE SYSTEM

We define
χ2 , x2 − φx (24)

as per the techniques of backstepping in [13] and [12].
The time derivative of χ2 is given by

χ̇2 = ẋ2 − φ̇x = u2 − φ̇x (25)

where φ̇x can be found analytically to be

φ̇x = −ω cos(ωt)‖x3‖2

2(ε+ ‖x3‖2)
− ε sin(ωt)x2x

T
3 u1

(ε+ ‖x3‖2)2
. (26)

Choosing v2 , u2 − φ̇x, we get the new system

χ̇1 = −c1χ1 + c3 cos(ωt)χ2u1 ∈ Rm (27)
χ̇2 = v2 ∈ R (28)
ẋ3 = (χ2 + φx)u1 ∈ Rm (29)

where φx and u1 are as in (7) and (8), respectively.
The goal then becomes to find a v2 such that the origin

of the system (27)–(29) is globally uniformly asymptotically
stable.

A. Control Law A

Theorem 1: The origin of the system (1)–(3) is globally
uniformly asymptotically stabilized by the control law

u1(t, χ1, x3) =
−c1χ1 + c3ω sin(ωt)x3

1 + c3 cos(ωt)φx
(30)

u2(t, χ1, χ2, x3) = φ̇x − c2χ2 − γ(U1)xT
3 u1

− 2c3γ(U1) cos(ωt)χT
1 u1 (31)

where

γ(U1) , 2
(
c1

16ω
+ 2− c1

16ω
sin(2ωt)

2U1 + U2
1

(1 + U1)2

)
(32)
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for some ε ∈ (0, 1), c3 ∈ (0, 1), c3ω ≥ c1 > 0 and c2, ω >
0, where U1, φx and φ̇x are given by (12), (7) and (26),
respectively.

Furthermore,

U3(t, χ1, χ2, x3) = U2(t, χ1, x3) + χ2
2/2, (33)

where U2 is given by (10), is a strict Lyapunov function for
the controlled system.

Proof: We concentrate our efforts on the system (27)–
(29). We define the Lyapunov function candidate U3 as

U3(t, χ1, χ2, x3) , U2(t, χ1, x3) +
1
2
χ2

2 (34)

which satisfies

2U1 +
1
2
χ2

2 ≤ U3 ≤ 2
( c1

16ω
+ 1
)
U1 +

1
2
χ2

2.

The time derivative of U3 is given by

U̇3 =
∂U2

∂t
+
∂U2

∂χ1
χ̇1 +

∂U2

∂x3
ẋ3 + χ2χ̇2

=
∂U2

∂t
+
∂U2

∂χ1
(−c1χ1 + c3 cos(ωt)χ2u1)

+
∂U2

∂x3
(χ2 + φx)u1 + χ2v2

=
∂U2

∂t
− ∂U2

∂χ1
c1χ1 +

∂U2

∂x3
φxu1

+
∂U2

∂χ1
c3 cos(ωt)χ2u1 +

∂U2

∂x3
χ2u1 + χ2v2.

Based on the proof of Lemma 1, we know that the first
three terms on the right-hand side of the above expression
are collectively less than or equal to −λ(U1). We thus get
that

U̇3 ≤ −λ(U1) +
∂U2

∂χ1
c3 cos(ωt)χ2u1 +

∂U2

∂x3
χ2u1 + χ2v2

= −λ(U1)

+ χ2

(
2c3γ(U1) cos(ωt)χT

1 u1 + γ(U1)xT
3 u1 + v2

)
= −λ(U1)− c2χ2

2 , −W3(χ1, χ2, x3) (35)

with the feedback v2 = −c2χ2 − 2c3γ(U1) cos(ωt)χT
1 u1 −

γ(U1)xT
3 u1. Thus, according to [12, Theorem 4.9], the origin

of the system (27)–(29) is globally uniformly asymptotically
stable.

Knowing that χ1 ≡ 0 iff x1 ≡ x3 ≡ 0 and that u2 = φ̇x+
v2, we see that the control law (30)–(31) globally uniformly
asymptotically stabilizes the origin of the system (1)–(3).

B. Control Law B

Theorem 2: The origin of the system (1)–(3) is globally
uniformly asymptotically stabilized by the control law

u1(t, χ1, x3) =
−c1χ1 + c3ω sin(ωt)x3

1 + c3 cos(ωt)φx
(36)

u2(t, χ1, χ2, x3) = φ̇x − c2χ2 (37)

for some ε ∈ (0, 1), c3 ∈ (0, 1), c3ω ≥ c1 > 0 and c2, ω > 0,
where φx and φ̇x are given by (7) and (26), respectively. .

Proof: According to [11, Theorem 2], the origin of the
non-linear time-varying cascade system

ż1 = f1(t, z1) + g(t, z)z2 (38)
ż2 = f2(t, z2) (39)

is globally uniformly asymptotically stable if
1) The origin of the system ż1 = f1(t, z1) is globally

uniformly asymptotically stable.
2) The function g(t, z) satisfies

‖g(t, z)‖ ≤ θ1(‖z2‖) + θ2(‖z2‖)‖z1‖ (40)

for some continuous functions θ1, θ2 : R≥0 7→ R≥0.
3) The origin of the system ż2 = f2(t, x2) is globally

exponentially stable.
These points are satisfied for the system (1)–(3) with z1 ,

[χT
1 , x

T
3 ]T ∈ R2m and z2 , χ2 ∈ R using the control (36)–

(37):
1) Proven in Lemma 1.
2) In this case, the function g can be found to be

g(t, z) =
c3ω sin(ωt)x3 − c1χ1

1 + c3 cos(ωt)φx

[
c3 cos(ωt)

1

]
.

Using the 2-norm gives

‖g‖2 =
‖−c1χ1 + c3ω sin(ωt)x3‖2

(1 + c3 cos(ωt)φx)
2

(
c23 cos2(ωt) + 1

)
≤ 32

9
(
c23 + 1

) (
‖c1χ1‖2 + ‖c3ω sin(ωt)x3‖2

)
≤ 32

9
(
c23 + 1

)
max(c21, c

2
3ω

2)
(
‖χ1‖2 + ‖x3‖2

)
=

32
9
(
c23 + 1

)
c23ω

2

∥∥∥∥[ χ1

x3

]∥∥∥∥2

= k2‖z1‖2

since c1 < c3ω by design.
3) χ̇2 = −c2χ2 ⇒ χ2(t) = χ2(t0)e−c2(t−t0).

Thus the origin of the system (1)–(3), with the control input
(36)–(37) is globally uniformly asymptotically stable.

V. SIMULATIONS

To verify the results in the previous section, numerical
simulations were carried out on the system (1)–(3) with the
control laws of Theorems 1 and 2. The following (arbitrary)
simulation parameters were used:

m = 2 c1 = 0.8
t0 = 0 c2 = 1

x1(t0) = [3, −1]T c3 = 0.9
x2(t0) = 1 ε = 0.01
x3(t0) = [−0.5, 2]T ω = 1

All simulations were in accordance with the theoretical
results.

Three metrics were used for the comparison of the con-
trol laws: The smallest value of T such that ‖xi(t)‖ ≤
0.05‖xi(t0)‖, ∀ t ≥ T, i ∈ {1, 2, 3}, was used as
convergence time. The simulations were halted at t =
T . As a measure of actuator use, the RMS value
u2

1,RMS = 1
T−t0

∫ T
t0
‖u1(t)‖2 dt of u1 and u2

2,RMS =
1

T−t0

∫ T
t0
|u2(t)|2 dt of u2 were used.
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A. Control Law A

Simulation results with Control Law A can be seen in
Figs. 1–6. The origin is, as expected, attractive.

According to Theorem 1, the time derivative of the Lya-
punov function U3 along the trajectories of the system (27)–
(29) should satisfy the property U̇3 + W3(χ1, χ2, x3) ≤ 0
for all t ≥ t0, where W3 is given by (35). As can be seen
from Fig. 4, this is the case.

With the parameters used in this simulation, the conver-
gence time was T ≈ 29.3. The actuator use was u1,RMS ≈
0.209 and u2,RMS ≈ 1.84.

B. Control Law B

Simulation results with Control Law B can be seen in
Figs 7–11. The origin is, as expected, attractive.

With the parameters used in this simulation, the conver-
gence time was T ≈ 41.8. The actuator use was u1,RMS ≈
0.522 and u2,RMS ≈ 0.263.

C. Analysis

From the figures it is seen that, in this case, the use of
control input u2 is significantly less with Control Law B
than with Control Law A. However, the convergence time is
longer for Control Law B than A, and the use of u1 higher.

While only the results of one simulation is included in this
paper, simulations with different parameters and different
initial conditions indicates that the above is the case in
general.

t

x
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x11
x12
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0
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1.5

2

2.5

3

Fig. 1. Control Law A: x1(t).

VI. CONCLUSIONS

Two control laws that globally asymptotically stabilize
the origin of the nonholonomic chained-form system (1)–(3)
were presented, and a strict Lyapunov function developed.

The control laws were tested in simulation. As can be seen
in Figs. 1–11, the simulation results are in accordance with
the theoretical results.

Simulation results show some differences between Control
Laws A and B. Control Law A is faster than Control Law
B. Control Law A uses less control input u1 but more u2

than Control Law B. Control Law B is the simpler of the
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Fig. 2. Control Law A: x2(t).
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Fig. 3. Control Law A: x3(t).

pair, but only for Control Law A is there a strict Lyapunov
function.

APPENDIX

A. From (13) to (14)
To get from (13) to (14), we need to prove that

c1 sin(ωt)‖x3‖2xT
3 χ1(

1− c3
4 sin(2ωt) ‖x3‖2

ε+‖x3‖2

)
(ε+ ‖x3‖2)

≤ 2c1| sin(ωt)|‖χ1‖
‖x3‖3

ε+ ‖x3‖2
. (41)

We start by noting that

sin(ωt)xT
3 χ1 ≤ | sin(ωt)|‖χ1‖‖x3‖ <

3
2
| sin(ωt)|‖χ1‖‖x3‖

< 2| sin(ωt)|‖χ1‖‖x3‖
(

1− c3
4

sin(2ωt)
‖x3‖2

ε+ ‖x3‖2

)
since

1− c3
4

sin(2ωt)
‖x3‖2

ε+ ‖x3‖2
∈ (3/4, 5/4) .

Multiplying with

c1‖x3‖2(
1− c3

4 sin(2ωt) ‖x3‖2
ε+‖x3‖2

)
(ε+ ‖x3‖2)

> 0
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on both sides of the inequality gives (41). This concludes
this part of the proof.

B. From (15) to (16)
To get from (15) to (16), we need to prove that

2c1| sin(ωt)|‖χ1‖
‖x3‖3

ε+ ‖x3‖2
− 2c3ω sin2(ωt)‖x3‖4

3(ε+ ‖x3‖2)
− 4c1‖χ1‖2

≤ − c3ω sin2(ωt)‖x3‖4

3(ε+ ‖x3‖2)
− c1‖χ1‖2. (42)

We start by noting that

0 ≤ c1‖x3‖2
(

1√
3
| sin(ωt)|‖x3‖ −

√
3‖χ1‖

)2

=
c1
3

sin2(ωt)‖x3‖4 + 3c1‖χ1‖2‖x3‖2

− 2c1| sin(ωt)|‖χ1‖‖x3‖3

≤ c3ω

3
sin2(ωt)‖x3‖4 − 2c1| sin(ωt)|‖χ1‖‖x3‖3

+ 3c1‖χ1‖2(ε+ ‖x3‖2)

since c3ω ≥ c1 by design.
Dividing by (ε + ‖x3‖2) > 0 on both sides of the above

inequality and rearranging the terms gives the inequality (42).
This concludes this part of the proof.

C. Equation (19)

We need to prove (19), which reads

W1(χ1, x3) ≥ λ(U1)

or

c3ω‖x3‖4

3(ε+ ‖x3‖2)
+
c1
2
‖χ1‖2 ≥

c1U
2
1

8(1 + U1)
.

We start by noting that

(8c3ω − 3c1)‖x3‖6 + (8c3ω − 3εc1)‖x3‖4

+(16c3ω + 24c1)‖x3‖4‖χ1‖2 + (24εc1 + 12c1)‖x3‖2‖χ1‖2

+12c1‖x3‖2‖χ1‖4 + 12εc1‖χ1‖4 + 12εc1‖χ1‖2 ≥ 0

since c3ω ≥ c1 and ε ∈ (0, 1).

t

U̇
3
+

W
3

0 5 10 15 20 25

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Fig. 4. Control Law A: U̇3 + W3.

Dividing by 24(ε+ ‖x3‖2)(1 + ‖x3‖2 + 2‖χ1‖2) > 0 on
both sides of the inequality and rearranging the terms gives

8c3ω(1 + ‖x3‖2 + 2‖χ1‖2)‖x3‖4

24(ε+ ‖x3‖2)(1 + ‖x3‖2 + 2‖χ1‖2)

− 3c1(‖x3‖2 + 2‖χ1‖2)2(ε+ ‖x3‖2)
24(ε+ ‖x3‖2)(1 + ‖x3‖2 + 2‖χ1‖2)

+
4c1‖χ1‖2(ε+ ‖x3‖2)(1 + ‖x3‖2 + 2‖χ1‖2)

24(ε+ ‖x3‖2)(1 + ‖x3‖2 + 2‖χ1‖2)
≥ 0.

Using U1 = 2‖χ1‖2 + ‖x3‖2 and rearranging the terms
gives (19). This concludes this part of the proof.
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Fig. 5. Control Law A: u1(t).
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Fig. 7. Control Law B: x1(t).
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t

x
3

x31
x32

0 5 10 15 20 25 30 35 40

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 9. Control Law B: x3(t).
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Fig. 10. Control Law B: u1(t).
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Fig. 11. Control Law B: u2(t).
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