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Abstract— This paper is concerned with L2-stability analysis
of hinging hyperplane autoregressive models with exogenous
inputs (HHARX). The proposed approach relies on analysis
results for systems with repeated nonlinearities based on the
use of integral quadratic constraints. An equivalent linear
fractional representation of HHARX models is firstly derived.
In this representation, an HHARX model is seen as the feedback
interconnection of a linear system and a diagonal static block
with repeated scalar nonlinearity. This makes it possible to
exploit the aforementioned analysis results. The corresponding
sufficient condition for L2-stability can be checked via a
linear matrix inequality. A numerical example shows that the
proposed approach is effective in practice.

I. INTRODUCTION

This paper addresses the problem of L2-stability analysis

for hinging hyperplane autoregressive models with exoge-

nous inputs (HHARX), i.e. nonlinear regression models

based on the use of hinging hyperplane (HH) functions. An

HH function is the sum of a given number of hinge functions,

each consisting in either the maximum or minimum of

two affine functions [1]. It turns out that HH functions

are a special class of piecewise affine (PWA) functions

for which the mapping is continuous. In fact, the class

of HH functions is equivalent to the class of continuous

PWA functions that can be expressed in Chua’s canonical

representation [2], [3]. Though it is not a representation of

all continuous PWA functions, the class of HH functions is

an approximant of all continuous functions on a compact

set [4]. A valuable property of HH functions is that the

number of parameters required for accurate approximation

is relatively small compared to PWA functions [5]. Hence,

HHARX models form a suitable black-box model structure

for nonlinear identification [6]. Typically, their identification

is addressed by minimizing a suitable cost function (see, e.g.,

[7]–[9]).

A. Motivation

While a wide range of methods are available for analyzing

Lyapunov stability of PWA systems (see the survey paper

[10] and references therein), to the best of the authors’

knowledge L2-stability analysis of HHARX models is to a

large extent an open field. In principle, a possible indirect

approach is to build a state-space realization of the HHARX

model, and then look for a suitable piecewise quadratic
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storage function guaranteeing the boundedness of the L2-

gain of the system. However, this approach may be hindered

by the following facts:

i) When an HHARX model is equivalently represented as

a piecewise affine ARX (PWARX) model, i.e. through

a polyhedral partition of the regressor domain and

affine ARX submodels in each region of the partition,

the number of regions is typically much larger than the

number of hinges.

ii) Since a complete realization theory for PWARX mod-

els is not available yet (in [11] only autonomous sys-

tems are considered; see also [12]), in order to build a

state-space realization of the PWARX model one has to

resort to the trivial approach of defining the state equal

to the regression vector of the PWARX model. The

PWA state-space realization thus obtained is typically

not minimal with respect to both the dimension of the

state and the number of regions (equal to the number

of regions of the PWARX model).

iii) The computation of piecewise quadratic storage func-

tions for PWA models can be tackled via LMI tech-

niques similar to those proposed in [13] in the context

of passivity. However, the overall computation time

correlates directly to the number of regions and, more

importantly, to the number of transitions that occur

between regions.

In summary, L2-stability analysis of HHARX models via

state-space techniques may be seriously limited by compu-

tational complexity due to the large number of regions and

possible transitions that may show up in the equivalent PWA

state-space model.

B. Paper contribution

The first contribution of this paper is to derive an equiva-

lent linear fractional representation (LFR) of HHARX mod-

els. In this representation, a given HHARX model is decom-

posed into the feedback interconnection of a linear system

and a diagonal static block with repeated scalar nonlinearity.

Provided that the linear system is stable, this makes it

possible to apply analysis results for systems with repeated

nonlinearities based on integral quadratic constraints (IQCs)

[14]. The second contribution of the paper is hence to provide

a sufficient condition for L2-stability of HHARX models

and a computational procedure for checking this sufficient

condition via a single linear matrix inequality (LMI) whose

dimension grows linearly with the number of hinges.

The paper is structured as follows. In Section II a lin-

ear fractional representation of HHARX models is derived.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeC08.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 3398



L

N
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Fig. 1. LFR of an interconnected system consisting of a finite number of
linear time-invariant systems and static nonlinear maps.

Section III describes the proposed approach to L2-stability

analysis of HHARX models. A numerical example is illus-

trated in Section IV, while Section V draws the conclusions

and foreshadows topics for future research.

C. Notation

The sets of real, integer and nonnegative integer numbers

are denoted by R, Z and Z
≥0, respectively. The absolute

value of a scalar x ∈ R is denoted by |x|, while ( n
k ) denotes

the binomial coefficient. A matrix A with elements aij is

sometimes introduced as A = {aij}. An m×n matrix with 0

everywhere is denoted by 0m×n. The Kronecker product of

two matrices A and B is denoted by A⊗B, while H∗ denotes

the conjugate transpose of a complex matrix H . For p ≥ 1,

the set Lp is formed by all discrete-time signals u such that

‖u‖Lp
= (

∑∞
k=0 ‖u(k)‖p)

1
p < ∞, where ‖·‖ denotes the p-

norm of a vector. The extended set Lp,e is defined by Lp,e =
{u : u[0,τ ] ∈ Lp, ∀τ ∈ Z

≥0}, where u[0,τ ] is the truncation

of u at time τ , i.e.

u[0,τ ](k) =

{

u(k) if 0 ≤ k ≤ τ

0 if k > τ.
(1)

For a real discrete-time signal h(k), ĥ(z) = Z{h(k)}
denotes its zeta transform. The set of proper rational matrices

with real coefficients and all poles inside the open unit circle

is denoted by RH∞. If ε > 0, a scalar function ν : R → R

is said to belong to the sector [0, ε] if ν(x)(εx − ν(x)) ≥ 0
for all x ∈ R.

II. LINEAR FRACTIONAL REPRESENTATION OF HHARX

MODELS

Interconnected systems consisting of any finite number

of linear time-invariant systems and static nonlinear maps

can be always represented as in Fig. 1 (see, e.g., [15]). The

block L describes the overall linear dynamics of the system,

while all the nonlinearities are pulled out in the block N .

Signals ũ(k) and ỹ(k) are the system input and output at time

k ∈ Z, while z̃(k) and w̃(k) are internal signals representing

the inputs and outputs of the nonlinear part. This section

describes a systematic procedure for representing a given

HHARX model as an LFR of the type shown in Fig. 1.

ν(z)

z1

1

Fig. 2. Scalar nonlinearity that is repeated in the diagonal static block N

of the LFR of an HHARX model.

A. HHARX models

Let us consider a single-input single-output system de-

scribed by the HHARX model [1], [7]:

y(k) = θT
0

[

ϕ(k)
1

]

+
∑M

i=1σi max{θT
i

[

ϕ(k)
1

]

, 0}, (2)

where, for fixed orders na and nb, the regression vector is

ϕ(k) = [ y(k − 1) . . . y(k − na)

u(k) u(k − 1) . . . u(k − nb) ]T ,
(3)

and y ∈ R and u ∈ R are the system output and input,

respectively. In (2), θi ∈ R
na+nb+2, i = 0, 1, . . . ,M , are

the model parameters, while the coefficients σi ∈ {−1, 1},

i = 1, . . . ,M , are needed to allow for both convex and non-

convex functions. The functions hi(ϕ) = max{θT
i [ ϕ

1 ] , 0},

i = 1, . . . ,M , are called hinge functions and have the shape

of “open books,” being formed by two half-planes joined

together at the hinge. The number of regions of an equivalent

PWARX representation of (2) is bounded by the quantity
∑n

j=0

(

M
j

)

, depending on the length n = na +nb +1 of the

regression vector and on the number M of hinge functions.

Remark 1: It is worthwhile to notice that the representa-

tion (2) is not unique, i.e. the same system can be described

by several different sets of parameter values. This is due to

the fact that the following property holds:

x + max{−x, 0} = max{x, 0}, ∀x ∈ R. (4)

Hence, for instance, y(k) = θT
0

[

ϕ(k)
1

]

+max{θT
1

[

ϕ(k)
1

]

, 0}

and y(k) = (θ0 + θ1)
T

[

ϕ(k)
1

]

+ max{−θT
1

[

ϕ(k)
1

]

, 0} are

alternative representations of the same system.

B. Converting HHARX models into LFR

In order to represent (2) through an LFR, let us introduce

a fictitious constant input v(k) = 1, ∀k. Then, by defining

φ(k) = [ ϕ(k)T v(k) ]T , (5)

the HHARX model (2) can be rewritten as

y(k) = θT
0 φ(k) +

∑M
i=1σi max{θT

i φ(k), 0}. (6)

If we define z̃(k) and w̃(k) componentwise as

z̃i(k) = θT
i φ(k), i = 1, . . . ,M, (7)

w̃i(k) = max{z̃i(k), 0}, i = 1, . . . ,M, (8)
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TABLE I

TRANSFER FUNCTIONS OF THE LINEAR PART L IN THE LFR OF HHARX MODELS

Y (z) =
β0 + β1 z−1 + . . . + βnb

z−nb

d(z−1)
U(z) +

γ0

d(z−1)
V (z) +

Σ

d(z−1)
W̃ (z) , Lyu(z)U(z) + Lyv(z)V (z) + Lyw̃(z)W̃ (z)

Z̃(z) = ΘT



















z−1Lyu(z)

...
z−naLyu(z)

1
z−1

...
z−nb

0



















U(z) + ΘT

















z−1Lyv(z)

...
z−na Lyv(z)

0
0
...
0
1

















V (z) + ΘT



















z−1Lyw̃(z)

...
z−naLyw̃(z)

01×M

01×M

...
01×M

01×M



















W̃ (z) , Lz̃u(z)U(z) + Lz̃v(z)V (z) + Lz̃w̃(z)W̃ (z)

and let ũ(k) = [ u(k) v(k) ]T and ỹ(k) = y(k), then (6) can

be represented as in Fig. 1. The equations of the linear part

L are given by

ỹ(k) = θT
0 φ(k) + Σ w̃(k) (9)

z̃(k) = ΘT φ(k), (10)

where Σ = [ σ1 . . . σM ] and Θ = [ θ1 . . . θM ], while N
is a diagonal static block described by the equation:

w̃(k) = N (z̃(k)) = [ ν(z̃1(k)) . . . ν(z̃M (k)) ]T , (11)

where ν(z) = max{z, 0}. The repeated scalar nonlinearity

ν(z), plotted in Fig. 2, is non-odd and belongs to the sector

[0, 1]. Expressions for the transfer functions of the linear part

L are reported in Table I, where we have decomposed the

parameter vector θ0 as

θ0 = [ − α1 . . . − αna
β0 β1 . . . βnb

γ0 ]T , (12)

and we have defined the polynomial:

d(z−1) = 1 + α1 z−1 + . . . + αna
z−na . (13)

It is stressed that all the input-output behaviors of the orig-

inal HHARX model (2) are reproduced by the constructed

LFR model, provided that the additional input v(k) is taken

constant and equal to 1.

III. L2-STABILITY ANALYSIS OF HHARX MODELS

The following definition of L2-stability is considered in

this paper [16]:

Definition 1: A system S with input ũ and output ỹ is

said to be finite-gain L2-stable from ũ to ỹ if there exists a

nonnegative constant γ such that, for all ũ ∈ L2,e,

‖ỹ[0,τ ]‖L2
≤ γ ‖ũ[0,τ ]‖L2

, ∀τ = 0, 1, . . . (14)

In the above definition, it is implicitly assumed that the

output vanishes at ũ = 0. Otherwise, a bias term should

be added to the right-hand side of (14).

In order to address L2-stability for the HHARX model (2),

the idea is to exploit the linear fractional representation de-

rived in Section II. The following result is straightforward.

Theorem 1: If the LFR model (9)-(11) depicted in Fig. 1

is finite-gain L2-stable from ũ = [ u v ]T to ỹ, then the

HHARX model (2) is finite-gain L2-stable from u to y.

Proof. It follows immediately by recalling that all the input-

output behaviors of the HHARX model (2) are obtained from

the LFR model (9)-(11) with v(k) = 1, ∀k, and by observing

that v ∈ L2,e. �

The subsequent analysis will be conducted under the

following assumption.

Assumption 1: All the transfer functions Ly,u, Ly,v , Ly,w̃,

Lz̃,u, Lz̃,v , Lz̃,w̃ defined in Table I are elements of RH∞.

For the transfer functions defined in Table I, the above as-

sumption simply corresponds to require that the polynomial

d(z−1) in (13) is Schur. Notice that Assumption 1 may not be

so restrictive as it seems. As discussed in Remark 1, the same

system admits different equivalent HHARX representations,

some of which may satisfy Assumption 1, while others may

not. An example is provided in Section IV.

A. L2-stability of feedback interconnections

Let us consider the feedback interconnection depicted in

Fig. 3, where Lz̃,w̃ is the transfer function matrix from w̃ to

z̃ of the linear block L in Fig. 1, defined in Table I, and N
is the static nonlinear block defined in (11). The following

is a standard result in stability theory (see, e.g, [16]).

Theorem 2: Under Assumption 1, if the loop in Fig. 3 is

finite-gain L2-stable from η = [ ηT
1 ηT

2 ]T to ζ = [ ζT
1 ζT

2 ]T ,

then the LFR model in Fig. 1 is finite-gain L2-stable from

ũ to ỹ.

Based on Theorems 1 and 2, we will henceforth focus on

the L2-stability of the loop in Fig. 3. To this aim, the IQC

analysis in [14] can be used, since the nonlinear block N
defined in (11) is composed of repeated scalar monotone

and sector-bounded functions. Since these functions are also

+

+

+

+

Lz̃,w̃

N
η1

η2

ζ1

ζ2

Fig. 3. Feedback configuration for stability analysis.
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non-odd, further constraints have to be imposed with respect

to the IQC analysis for the more common case of repeated

odd nonlinearities. The following theorem specializes to the

problem at hand the IQC analysis originally developed in

[14] for the case of continuous-time systems and repeated

non-odd scalar nonlinearities.

Theorem 3: Consider the loop in Fig. 3, with Lz̃,w̃ defined

in Table I and N defined in (11), and assume Lz̃,w̃ ∈ RH∞.

If there exist an M ×M symmetric matrix-valued sequence

H(k) = {hij(k)}, i, j = 1, . . . ,M , with entries in L1, and

an M × M real symmetric matrix G = {gij} satisfying the

following conditions:

gii ≥
M
∑

j=1

j 6=i

|gij | +
M
∑

j=1

‖hij(k)‖L1
, ∀i = 1, . . . ,M

gij ≤ 0, ∀i, j = 1, . . . ,M, i 6= j

hij(k) ≥ 0, ∀i, j = 1, . . . ,M
[

Lz̃,w̃(ejω)
I

]∗

Π(ejω)
[

Lz̃,w̃(ejω)
I

]

< 0, ∀ω ∈ [0, 2π],

(15)

where

Π(ejω) =
[

0 G−Ĥ∗(ejω)

G−Ĥ(ejω) −2G+Ĥ(ejω)+Ĥ∗(ejω)

]

, (16)

then the loop in Fig. 3 is finite-gain L2-stable from η to ζ.

Combined with Theorems 1 and 2, Theorem 3 provides

a sufficient condition for L2-stability of the HHARX model

(2). To clarify why Assumption 1 is required in Theorem 3,

we observe that open-loop stability of Lz̃,w̃ is necessary

to apply the IQC analysis in [14], which is developed for

all repeated scalar monotone nondecreasing nonlinearities

belonging to a finite sector [0, ε]. In this respect, a degree of

conservativeness is introduced in the proposed approach by

treating the static nonlinearity in Fig. 2 as a general sector

nonlinearity when applying Theorem 3.

For computation, it is convenient to restrict the sequence

H(k) introduced in Theorem 3 to a linear combination of

basis functions, i.e.

H(k) =

r
∑

q=1

Λq lq(k), (17)

where Λq ∈ R
M×M , q = 1, . . . , r, are symmetric matrices

with positive entries λqij
, and lq, q = 1, . . . , r, are positive

scalar sequences with finite L1 norm ρq = ‖lq‖L1
. With

the parameterization (17), the L2-stability condition of The-

orem 3 can be recast into a set of LMIs by using a Kalman-

Yacubovich-Popov lemma argument [14], [17].

Theorem 4: Consider the loop in Fig. 3, with Lz̃,w̃ defined

in Table I and N defined in (11), and assume Lz̃,w̃ ∈ RH∞.

Let Λq = {λqij
} and lq be defined in (17), and (A,B,C,D)

be a state space realization of the transfer function matrix

Ψ(z)
[

Lz̃,w̃(z)
I

]

, where

Ψ(z) =







I −I
0 I
I −I
0 I

Υ(z) −Υ(z)
0 I






, (18)

and Υ(z) = [ l̂1(z) . . . l̂r(z) ]T ⊗ I . If there exist M × M

real symmetric matrices G+ = {g+
ij}, G− = {g−ij} and P

satisfying the following conditions:

g+
ij ≥ 0, g−ij ≥ 0, ∀i, j = 1, . . . ,M

g−ii = 0, ∀i = 1, . . . ,M

g+
ij − g−ij ≤ 0, ∀i, j = 1, . . . ,M, i 6= j

g+
ii ≥

M
∑

j=1

j 6=i

(g+
ij + g−ij) +

M
∑

j=1

r
∑

q=1

ρqλqij
, ∀i = 1, . . . ,M

[

AT PA−P AT PB

BT PA BT PB

]

+ [ C D ]
T

W [ C D ] < 0, P > 0,

(19)

where

W =









0 G+ 0 0 0 0
G+ 0 0 0 0 0
0 0 0 −G− 0 0
0 0 −G− 0 0 0

0 0 0 0 0 −XT

0 0 0 0 −X 0









(20)

and X = [ Λ1 . . . Λr ], then the loop in Fig. 3 is finite-gain

L2-stable from η to ζ.

For fixed basis functions lq, q = 1, . . . , r, the sufficient

condition for L2-stability given in Theorem 4 can be checked

via the solution of the LMI problem (19) in the unknowns

G+, G−, P and Λq, q = 1, . . . , r.

IV. NUMERICAL EXAMPLE

In this section, the sufficient condition for L2-stability

provided by Theorem 4 is applied to a system described by

a HHARX model (2) with M = 4 hinges, orders na = 3,

nb = 1, and parameters

θ0 = [−0.8 −0.5 −0.3 −0.1 −0.7 0.1 ]
T

, (21)

Θ = [ θ1 θ2 θ3 θ4 ] =





α 0.1 0.3 0.3
0.4 0.2 0.3 0.7
0.3 0.5 0.3 0.3
−0.2 0.3 −0.1 0.2

1 −0.1 0.3 −0.4
0.3 −0.5 0.1 0.3



 , (22)

Σ = [ σ1 σ2 σ3 σ4 ] = [ 1 1 −1 −1 ] , (23)

where α > 0 is an uncertain coefficient. The model thus

defined satisfies Assumption 1, since all the zeros of the

polynomial

d(z−1) = 1 + 0.8 z−1 + 0.5 z−2 + 0.3 z−3 (24)

lie inside the open unit circle.

To test the effectiveness of the proposed approach, we

provide a guaranteed estimate of the set of positive α that

yield an L2-stable system. More specifically, we compute an

interval contained in the L2-stability domain of the system

with the aid of an alternating projection-like heuristic based

on Theorem 4. We consider the following choices for H(k):

a) H(k) = 0;

b) H(k) parameterized as in (17) with the basis functions

lq(k) = (0.1q)k, q = 1, . . . , 9, (25)

having the properties that lq(k) ≥ 0 for all k, and ρq =
‖lq‖L1

= (1 − 0.1q)−1.
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Fig. 4. Example of Section IV: Impulse responses of the HHARX model for different values of the uncertain parameter α.

With the choice a), we are able to prove L2-stability for α ∈
[0, 0.535], while the choice b) yields the less conservative

estimate α ∈ [0, 2.08]. In the latter case, the solution of the

LMI problem of Theorem 4 took about 34 seconds CPU time

on a 2.2 GHz AMD Athlon 64 processor using the SeDuMi

optimization package [18].

Figure 4 reports simulations of the impulse response y(k)
of the HHARX model for different values of α. For α = 0.5,

which is contained in the estimated stability domain, the

L2-stability condition is clearly satisfied, and moreover the

output y(k) converges to zero. This is the consequence of

choosing the affine terms in such a way that y vanishes at

u = 0. For α = 2.05, i.e. very close to the boundary of

the estimated stability domain, the system output exhibits

an oscillatory behaviour which is still compatible with L2-

stability. In particular, simulations show that the system tra-

jectories converge to a stable limit cycle. The system finally

goes unstable for α ≈ 2.7. It is interesting to note that the

way to instability in this system is a sequence of bifurcations

that also leads to complex non-periodic behaviour for values

of α close to 2.7. Figures 4(d) and 5 report the impulse

response y(k) and the corresponding pairs of internal signals

(z̃1(k), z̃2(k)) for α = 2.68. These simulations clearly show

that complex non-periodic solutions occur.

If (4) is repeatedly applied to the HHARX model (2)

defined by the parameters (21)-(23), the following equivalent

representation can be obtained:

y(k) = (θ0 + θ1 − θ3 − θ4)
T

[

ϕ(k)
1

]

+ max{−θT
1

[

ϕ(k)
1

]

, 0} + max{θT
2

[

ϕ(k)
1

]

, 0}

− max{−θT
3

[

ϕ(k)
1

]

, 0} − max{−θT
4

[

ϕ(k)
1

]

, 0}.

(26)

For (26), the polynomial (13) becomes

d(z−1) = 1 + (1.4 − α) z−1 + 1.1 z−2 + 0.6 z−3, (27)

that is not Schur, e.g., for the value α = 1.5 contained in the

estimated L2-stability domain. This example shows that the

same system may admit HHARX representations that satisfy

Assumption 1, while others do not. Nevertheless, the system

can be proven to be L2-stable by applying the sufficient con-

dition of Theorem 4 to an HHARX representation satisfying

Assumption 1.

Finally, we note that an equivalent PWARX representation

of the HHARX model of this example, computed using [19],

has s = 16 regions. A state space realization obtained by

defining the state equal to the regression vector –excluding

u(k)– has order n = 4 and s = 16 modes.

V. CONCLUSIONS

L2-stability analysis of HHARX models has been ad-

dressed in this paper. The proposed approach is based on

a linear fractional representation of the HHARX model, and
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Fig. 5. Example of Section IV: Pairs (z̃1(k), z̃2(k)) corresponding to the
impulse response of the HHARX model for α = 2.68.

the use of IQCs for repeated static monotone nondecreasing

nonlinearities. A sufficient condition for L2-stability in terms

of an LMI is obtained.

Ongoing work aims at finding less conservative IQCs, as

well as convex relaxations for guaranteeing robust stability

in the face of parametric uncertainties. Moreover, further in-

vestigation is needed to extend the approach to more general

model classes, such as those based on nested canonical PWA

functions, and discontinuous PWA regression models.
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[6] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Gloren-
nec, H. Hjalmarsson, and A. Juditsky, “Nonlinear black-box modeling
in system identification: a unified overview,” Automatica, vol. 31,
no. 12, pp. 1691–1724, 1995.

[7] P. Pucar and J. Sjöberg, “On the hinge-finding algorithm for hinging
hyperplanes,” IEEE Trans. on Information Theory, vol. 44, no. 3, pp.
1310–1319, 1998.

[8] P. Julián, M. Jordán, and A. Desages, “Canonical piecewise-linear
approximation of smooth functions,” IEEE Trans. on Circuits and

Systems-I, vol. 45, no. 5, pp. 567–571, 1998.
[9] J. Roll, A. Bemporad, and L. Ljung, “Identification of piecewise affine

systems via mixed-integer programming,” Automatica, vol. 40, no. 1,
pp. 37–50, 2004.
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