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Abstract— We present a systematic method for model re-
duction of a class of input-quantized systems in the max-plus
algebra. We consider a generalization of the flow shop with
finite intermediate storage. These systems are useful in model-
ing chemical processes and manufacturing systems, including
pharmaceutical manufacturing, construction, propellant man-
ufacturing and assembly lines. The makespan minimization
problem we consider is NP-complete. Our method of model
reduction reduces the number of states that a system can reach,
thus reducing the search space for the optimization problem.
This allows us to construct a smaller NP-complete problem
to approximate the solution to the larger problem. We show
that the error of the approximation is bounded and that as
the approximated system approaches the true system, that the
error of the approximation goes to zero.

I. INTRODUCTION

We consider a method of model reduction for a class of
input-quantized systems motivated by batch manufacturing
systems. These systems are discussed in more detail in [4],
[6], [7], [10], [11], [12]. This model can be used for sev-
eral applications including flowshops, chemical processing
plants, and services. Some examples of relevant applications
are pharmaceutical production, propellant manufacturing,
building construction, and assembly lines. We consider a
restriction on these systems that simplifies the decision to
a sequencing problem. The input to these systems is the job
type to process in the manufacturing system.

In [12], a max-plus algebra representation for a subset
of batch manufacturing systems is given and it is shown
that the systems exhibit a particular structure. In this paper
we approach the problem of finite horizon makespan min-
imization over these systems. Due to the quantized input,
this is a combinatorial optimization problem that is NP-
complete in the length of the horizon. Optimization in the
face of quantization has been studied extensively. Recently,
in [2], [3] the authors present a method of partitioning the
state space offline to allow fast online decision making. The
more recent paper, [3], shows how to do this for discrete-time
switched linear autonomous systems with a finite number of
switches. We consider an open loop optimal control problem
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of a switched linear autonomous system in the max-plus
algebra.

Typically, model reduction attempts to find a lower order
model such that the error between the lower order system and
the higher order system is minimized with respect to some
norm. Model reduction is used to lower the complexity of
the plant, and hence the controller, to ease the computational
effort of control. Model reduction for continuous linear time-
invariant systems is described in [5]. A discrete-time version
of model reduction based on LMI methods is given in [1]. We
present a model reduction method to reduce the complexity
of an open loop optimal control problem. Because the
complexity of our problem is due to the length of the horizon,
we reduce our system by allowing the current state to only
be affected by a small number of previous inputs. This
effectively reduces the length of the horizon to reduce the
complexity of the problem we wish to solve. Furthermore,
we show that the distance of the solution obtained using
this method from the optimal solution has a bound that
can be computed a priori. This allows a decision maker to
determine the complexity of the reduced system based on the
amount of acceptable error. Once the sub-optimal solution
has been obtained, a tighter bound is easily computed using
our solution.

This paper is organized as follows. We first present the
structure of the class of systems we consider. Then, we
pose a problem over these systems related to makespan
minimization in manufacturing. To aid in the development
of a good approximation method, we detail some results of
these systems. We then present a method of model reduction
to reduce the number of states to be considered in the
optimal control problem. We show that the error due to
the approximation is bounded and that as the approximated
problem approaches the true problem, the error bound goes
to zero.

II. MAX-PLUS ALGEBRA PRELIMINARIES

We will briefly discuss the max-plus algebra. A more
thorough treatment is given in [9]. The max-plus algebra
is defined over Rmax = R ∪ {−∞}. We will define three
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binary operations for scalars:

∀a, b ∈ Rmax
a⊕ b =: max(a, b),
a⊗ b =: a+ b,
a� b =: a− b.

The zero element is defined as ε =: −∞, and the unit
element is defined as e =: 0. Throughout this paper we will
use the convention that for any y ∈ Rmax, the indeterminate
form y ⊕ (ε� ε) = y.

Matrix arithmetic is also defined. For matrices, A,B ∈
Rn×lmax, C ∈ Rl×mmax we define the operations:

[A⊕B]ij =: aij ⊕ bij

[B ⊗ C]ik =:
l⊕

j=1

bij ⊗ cjk.

The zero vector and the unit vector are given by

ε =:

ε...
ε

 ,
e =:

e...
e

 ,
where e and ε are as defined above. The identity matrix is

Imax =:


e ε . . . ε
ε e ε
...

. . .
...

ε ε . . . e

 .
We can now define a linear state-space system in the max-

plus algebra. For xk ∈ Rnmax, k = 1, . . . and A ∈ Rn×nmax,
there is a linear autonomous system,

x(k + 1) = A⊗ x(k).

Definition 2.1: We say a max-plus autonomous system is
stable if

∀i,∃v ∈ R such that lim
k→∞

xi(k)� x1(k) = v.

This means that a system is stable if, as the system is evolves
in time, the distance between all elements of the vector x
reach a finite constant.

We will define the 1-norm in the max-plus algebra.
Definition 2.2: The 1-norm of a max-plus vector, b ∈

Rnmax is

||b||1max
=

n⊕
i=1

bi = eT ⊗ b

Note that this norm is the maximum element of the vector
b. This norm induces a norm on a matrix.

Definition 2.3: The max-plus 1-induced norm of an oper-
ator A ∈ Rn×mmax is

||A||1max = max
x

(||A⊗ x||1max � ||x||1max).

Lemma 2.1: Given a matrix A ∈ Rn×mmax , the max-plus 1-
induced norm of A is

||A||1max = max
ij

aij .

Proof: Let A ∈ Rn×mmax be given. Without loss of
generality, we will say that ||x||1max = e. Note that ||A ⊗
x||1max

= eT⊗A⊗x. The vector vT =: eT⊗A is the vector
containing the max element of each column of A. Therefore,
we want to maximize vT ⊗ x. Because ||x||1max

= e, the
largest element in x is e. To maximize vT ⊗ x, we want to
make each element of x as large as possible; this means we
set x = e which gives vT ⊗ x = maxij aij .
By this theorem, we see that the max-plus 1-induced norm of
a matrix is very simple to compute. We are also interested
in a similar quantity, minx ‖A ⊗ x‖1max

� ‖x‖1max
. This

quantity is also simple to compute.
Lemma 2.2: Given a matrix A ∈ Rn×mmax ,

min
x
||A⊗ x||1max

� ||x||1max
= min

i
[eT ⊗A]i.

Proof: Let A ∈ Rn×mmax be given. Without loss of
generality, let ||x||1 = e and consider vT ⊗ x with vT =:
e ⊗ A. Now we want to minimize vT ⊗ x, so we want
each element of x as small as possible. However, having
||x||1max

= e requires at least one element of x equal to
e. Thus, we need only consider each ei where eii = e and
eij = ε for j 6= i. So

min
x
vT ⊗ x = min

i
(vT ⊗ ei)

= min
i

(vi)

= min
i

[eT ⊗A]i.

III. PROBLEM FORMULATION

Definition 3.1: We will say that a matrix A ∈ Mn ⊂
Rn×nmax if:

aij ≤ ai+1,j , ∀i ≤ n− 1, j ≤ n, (1)
aij ≥ ai,j+1, ∀i ≤ n, j ≤ n− 1, (2)

ξ1i(A) ≥ . . . ≥ ξni(A) ≥ 0, ∀i ≤ n, (3)
aij > −∞, ∀j ≤ i+ 1, i ≤ n, j ≤ n, (4)

where
ξij(A) = aij − ai,j+1.

Let A be a set of m distinct matrices in Mn indexed
by the set U = {1, . . . ,m}. We consider a class of input
quantized systems of the form

xk+1 = Auk
⊗ xk

yk = ‖Auk
⊗ xk‖1max

� ‖xk‖1max
.

(5)

Where xk ∈ Rn, yk ∈ R, uk ∈ U , and Auk
∈ A. It is shown

in [12] that a class of batch manufacturing systems can be
represented as systems of this form.
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Given a vector q ∈ Nm, we say that a sequence u =
(u0, . . . , u|q|1−1), with ui ∈ U is admissible if

|q|1−1∑
i=0

Ij(ui) = qj ∀ 1 ≤ j ≤ m,

where Ij(k) is the indicator function:

Ij(k) =
{

1 if j = k,
0 otherwise.

Characterizing admissible inputs to the system then leads to
the following problem:

min
U admissible

|q|1−1∑
k=0

yk

subject to xk+1 = Auk
⊗ xk

yk = ‖Auk
⊗ xk‖1max � ‖xk‖1max .

(6)

When each A ∈ A represents the recipe in a batch flow
shop, and q is interpreted as a fixed quota, this problem
is equivalent to the makespan minimization problem with
respect to a quota. We will now show that this problem is
NP-complete.

Proposition 3.1: The problem given in (6) is NP-
complete.

Proof: First we must show that our problem is in NP .
This is trivial since an admissible sequence can be easily
constructed, and checking the solution is done by calculating
x|q|1 and then ‖x|q|1‖1max

�‖x0‖1max
. These can all be done

in polynomial time.
To show our problem is NP-complete, we will reduce

F3|block|Cmax, which is the optimal sequencing of the 3-
machine flowshop with blocking with respect to makespan, to
our problem. This problem is shown to be NP-complete in
[8]. This problem can be represented as a 3 machine batch
flowshop with machine capacities all equal. A polynomial
time algorithm to transform a batch flowshop into our prob-
lem is presented in [12]. Thus F3|block|Cmax is reducible
to our problem in polynomial time.

IV. MAX-PLUS SYSTEMS GENERATED BYMn

A. Properties of Mn

Because of the structure of matrices in Mn, it has many
useful properties. We will show that the set Mn is closed
under multiplication and that all max plus operators in Mn

exhibit some particular input-output properties.
Lemma 4.1: Suppose A,B ∈Mn. If

air ⊗ brj =
n⊕
s=1

(ais � bsj),

ail ⊗ bl,j+1 =
n⊕
s=1

(ais � bs,j+1,

then r ≤ l.
The proof is given in [13].

Lemma 4.2: Suppose A,B ∈Mn. If

air ⊗ brj =
n⊕
s=1

(ais ⊗ bsj),

ai+1,l ⊗ bl,j =
n⊕
s=1

(ai+1,s ⊗ bsj),

then r ≤ l.
The proof is given in [13].

We will now show that the set Mn is closed under max-
plus matrix multiplication.

Theorem 4.1: Suppose A,B ∈Mn. Then A⊗B ∈Mn.
Proof: Let A,B ∈ Mn be given. We will write C =

A ⊗ B. To show that C ∈ Mn, we must show that all
four equations in Definition 3.1 hold. We will show each
individually.

Equation (1), cij ≤ ci+1,j : Let i, j ≤ n be given. We will
pick κ such that cij = aiκ ⊗ bκj . Then,

cij � ci+1,j ≤ aiκ ⊗ bκj � (ai+1,κ ⊗ bκj)
= aiκ � ai+1,κ

≤ e.

Equation (2), cij ≥ ci,j+1: Let i, j ≤ n be given. We will
pick κ such that cij+1 = aiκ ⊗ bκ,j+1. Then,

cij � ci,j+1 ≥ aiκ ⊗ bκj � (aiκ ⊗ bκ,j+1)
= bκj � bκ,j+1

≥ e.

Equation (3), cij�ci,j+1 ≥ ci+1,j�ci+1,j+1: Let i, j < n
be given. We will pick κ, l, r, s such that

cij = aiκ ⊗ bκj (7)
ci,j+1 = ail ⊗ bl,j+1 (8)
ci+1,j = ai+1,r ⊗ brj (9)

ci+1,j+1 = ai+1,s ⊗ bs,j+1. (10)

From (7, 10) we can derive the following inequalities

aiκ � ail ≥ blj � bκj (11)
ai+1,s � ai+1,r ≥ br,j+1 � bs,j+1 (12)
bs,j+1 � bl,j+1 ≥ ai+1,l � ai+1,s (13)

bκj � brj ≥ air � aiκ. (14)

Now consider

ω =cij � ci,j+1 � (ci+1,j � ci+1,j+1)
=aiκ ⊗ bκj � ail � bl,j+1

� ai+1,r � brj ⊗ ai+1,s ⊗ bs,j+1

=(aiκ � ail)⊗ (ai+1,s � ai+1,r)
⊗ (bs,j+1 � bl,j+1)⊗ (bκj � brj). (15)

From this equation we will consider two cases.
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Suppose l ≤ r. Then we write

ω ≥blj � bκj ⊗ bκj � bl,j+1 (16)
⊗ br,j+1 � bs,j+1 � brj ⊗ bs,j+1

=blj � bl,j+1 � (brj � br,j+1) (17)
≥e. (18)

Where we obtain (16) by substituting (11) and (12) into (15),
(17) by canceling and rearranging terms, and (18) by (3).

Suppose l > r. Then we write

ω ≥aiκ � ai+1,r ⊗ air � aiκ (19)
⊗ ai+1,s � ail ⊗ ai+1,l � ai+1,s

=air � ail � (ai+1,r � ai+1,l) (20)
≥e. (21)

Where we obtain (19) by substituting (13) and (14) into (15),
(20) by canceling and rearranging terms, and (21) by (3).

Equation (4): Let i, j such that j ≤ i+ 1, i, j ≤ n. Then

cij =
n⊕
κ=1

aiκ ⊗ bκj

≥ aii ⊗ bij
> −∞.

Definition 4.1: For some A ∈Mn, we define

Zi(A) = ain � ai−1,n

zi(A) = ai1 � ai−1,1.
The following Lemma, taken from [12] is useful to our

analysis.
Lemma 4.3 ([12]): For some A ∈ Mn, for any x ∈

Rnmax, if we let y = A⊗ x, then

zi(A) ≤ yi � yi−1 ≤ Zi(A).
This Lemma gives us a range on the “spread” that can

occur between the elements of the state vector after applying
any input. We are now equipped to make some statements
related to input-output properties of these max-plus opera-
tors.

Proposition 4.1: Suppose A ∈Mn. Then

min
x 6=ε

(‖A⊗ x‖1max � ‖x‖1max)

is satisfied with x =
[
ε . . . ε e

]T
. Furthermore, if B ∈

Mn, then

min
x 6=ε

(‖A⊗B ⊗ x‖1max
� ‖B ⊗ x‖1max

) (22)

is satisfied with the same choice of x.
Proof: Let A ∈ Mn be given. By Lemma 2.2 and

Definition 3.1, we know that

min
x 6=ε

(‖A⊗ x‖1max
� ‖x‖1max

) = min
i

[
eT ⊗A

]
i

= ann.

Consider x =
[
ε . . . ε e

]T
, then ‖x‖1max

= e, and

‖A⊗ x‖1max
=
∥∥[an1 . . . ann

]∥∥
1max

= ann

To show (22), we will also suppose that B ∈ Mn. Let
ỹ = B ⊗ x̃ with x̃ =

[
ε · · · e� bnn

]T
and suppose that

there is some y∗ = B ⊗ x∗ with ‖y∗‖1max
= e such that

‖A⊗ y∗‖1max
< ‖A⊗ ỹ‖1max

.
We will pick j, κ such that ‖A⊗ ỹ‖1max

= anj ⊗ ỹj and
‖A ⊗ y∗‖1max

= anκ ⊗ y∗κ. Then we have the following
inequalities

anj ⊗ ỹj > anκ ⊗ y∗κ
anκ ⊗ y∗κ ≥ anj ⊗ y∗j .

These can be combined to get

y∗j < ỹj .

But, by Lemma 4.3,

y∗n ≤ y∗j ⊗
n⊗

i=j+1

Zi(B)

< ỹj ⊗
n⊗

i=j+1

Zi(B)

= e.

Which contradicts the statement that ‖y∗‖1max = e, so ỹ
and hence x̃ achieves the minimum. It is easy to see that
x = x̃⊗ bnn also achieves the minimum.

We have a similar result for the max.
Proposition 4.2: Suppose A ∈Mn. Then

max
x 6=ε

(‖A⊗ x‖1max
� ‖x‖1max

)

is satisfied with x = e. Furthermore, if B ∈Mn, then

max
x 6=ε

(‖A⊗B ⊗ x‖1max
� ‖B ⊗ x‖1max

) (23)

is satisfied with the same choice of x.
The proof is very similar in structure to that of Proposition
4.1 and is supplied in [13].

B. Fixed Input Stability

Theorem 4.2: Let A ∈ Mn. Then the linear autonomous
system

xk+1 = A⊗ xk

is stable in the sense of Definition 2.1.
The bulk of the proof is given in [13]. We will present two

lemmata also proven in [13] to supply the proof of Theorem
4.2.

Lemma 4.4: Let A ∈Mn. Then A has cyclicity one.
Lemma 4.5: Let A ∈Mn. Then A is irreducible.
From [9] we get the following theorem which we will

need in our proof of stability.
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Theorem 4.3 ([9]): Let A ∈ Rn×nmax be an irreducible
matrix with eigenvalue λ and cyclicity σ = σ(A). Then there
is an N such that

A⊗(κ+σ) = λ⊗σ ⊗A⊗κ

for all κ ≥ N .
These pieces combine to give us the proof for Theorem

4.2.
Proof: [Proof of Theorem 4.2] Let A ∈ Mn with

eigenvalue λ. By Lemmata 4.5 and 4.4 and Theorem 4.3,
we know that there is some N such that

⊗(l+1) = λ⊗A⊗l

for all l ≥ N . Let x ∈ Rnmax, l ≥ N be given. Let i ≤ n be
given. Consider A⊗(l+1)x = λ⊗A⊗l⊗x. From this we see
that after l steps, A⊗l ⊗ x is an eigenvalue of A, therefore
we see that for all k ≥ 1, [A⊗(k+l) ⊗ x]i � [A⊗(k+l) ⊗ x]1
is a constant value.

V. SUBOPTIMAL SCHEDULING WITH BOUNDS

A. Model Reduction

Since any system in Mn is stable, clearly any system in
our set A ⊂ Mn is stable. If the input, u, is constant, the
effect of the initial condition dies away. This motivates us
to pose an approximation to the system that assumes only
the most recent inputs effect the current state. To simplify
notation, we will denote the sequence of inputs from time
i to time j as Ui,j = (ui, ui+1, . . . , uj−1, uj) with i ≤ j.
Using this notation, we will also denote

A(Ui,j) = Auj
⊗ · · · ⊗Aui

and note that by Theorem 4.1 A(Ui,j) ∈M. For a sequence
U0,k = {u0, . . . , uk}, we will write

xk+1 = A(U0,k)⊗ x0

y(U0,k) = xk+1 � x0

=
k∑
i=0

y(i).

If the system is driven by a sequence U0,k−1 =
(u0, . . . , uk−1), then we have as a solution to (5)

xk = A(U0,k−1)⊗ x0.

We want to build our approximation such that we lower
bound the actual output, so we approximate the current
state using what we call the p-step approximation for the
subsequence Uk−p,k−1.

Definition 5.1: Given a system as in (5) and a sequence
of inputs, U0,k = (u0, . . . , uk), we define the p-step approx-
imation of (x, y) to be

x̂pk =
{
A(Uk−p,k−1)⊗ x` if k > p,
A(U0,k−1)⊗ x0 otherwise

ŷpk =‖Auk
⊗ x̂pk‖1max

� ‖x̂pk‖1max

with x` =
[
ε . . . ε e

]
.

We use x` in order to arrive at the following proposition.

Proposition 5.1: Given a system as in (5) and a sequence
U0,k, the p-step approximation of (x, y) satisfies

ŷpk ≤ yk

for all k > p, and
ŷpk = yk

for all k ≤ p.
Proof: Let a system as in (5) and a sequence U0,k be

given. By Proposition 4.1 and Theorem 4.1

ŷpk =‖Auk
⊗ x̂pk‖1max � ‖x̂

p
k‖1max

=‖A(uk)⊗A(Uk−p,k−1)⊗ x`‖1max

� ‖A(Uk−p,k−1)⊗ x`‖1max

= min
x
‖Auk

⊗A(Uk−p,k−1)⊗ x‖1max

� ‖A(Uk−p,k−1)⊗ x‖1max

≤yk

if k > p, and
ŷpk = yk

when p ≤ k by definition of p-step approximation.
Hence, our approximation gives a lower bound on y given
the last p inputs. This differs from the approximation given
in [12] as that approximation gave an upper bound on y.

This approximation leads to an approximation of (6):

min
U admissible

|q|1−1∑
k=0

ŷpk

subject to x̂pk =
{
A(Uk−p,k−1)⊗ x` if k > p,
A(U0,k−1)⊗ x0 otherwise

ŷpk = ‖Auk
⊗ x̂pk‖1max � ‖x̂

p
k‖1max .

(24)

This problem is easier to solve than (6) because we
drastically reduce the search space of the optimal control
problem.

B. Error Bounds

Let U∗ be the solution to (6) and Ûp∗ the solution to (24).
We will now construct a bound for the difference between
y(U∗) and y(Ûp∗).

Lemma 5.1: Suppose we have the set A ⊂ Mn with a
corresponding set of indices U = {1, 2, . . . ,m} and a quota,
q ∈ Nm. Then we have the following relationship

y(Ûp∗)− y(U∗) ≤ y(Ûp∗)− ŷp(Ûp∗). (25)
Proof: Because our approximation is a lower bound on

y, we have the chain of inequalities:

ŷp(Ûp∗) ≤ ŷp(U∗) ≤ y(U∗) ≤ y(Ûp∗).

This ensures that the left hand side of (25) is non-negative
and leads easily to

y(Ûp∗)− y(U∗) ≤ y(Ûp∗)− ŷp(Ûp∗).

This means that when we have a solution, we know the
optimal solution is between the cost as calculated using the
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approximation and the actual cost of the best sequence of
the approximated problem.

We will define the maximum error of the p-step approxi-
mation much like as in [12]. Given a set A and a sequence
Uk−p,k, we say that

γp(Uk−p,k) = max
x


‖A(Uk−p,k)⊗ x‖1max

‖A(Uk−p,k−1)⊗ x‖1max

‖A(Uk−p,k)⊗ xl‖1max

‖A(Uk−p,k−1)⊗ xl‖1max

 .

From this we define

Γp = max
U

γp(U).

Note that Γp specifies another combinatorial optimization
problem. This problem is no more complex to solve than
the p-step approximation problem. Thus if there is enough
computational power to solve the p-step approximation for
p, then it is possible to calculate Γp.

Lemma 5.2: Given a system as in (5) and a sequence U0,k,
for k > p, yk � ŷpk ≤ Γp. If k ≤ p, then yk � ŷpk = e.

Proof: Let a system as in (5) and a sequence U0,k be
given. Consider the p-step approximation for k > p. Then

yk � ŷpk =

‖A(Uk−p,k)⊗ xk−p‖1max

‖A(Uk−p,k−1)⊗ xk−p‖1max

‖A(Uk−p,k)⊗ xl‖1max

‖A(Uk−p,k−1)⊗ xl‖1max

≤γp(Uk−p,k)
≤Γp.

Now consider the p-step approximation for k ≤ p. Then by
Proposition 5.1

yk = ŷpk

for all k.
These Lemmata lead to the main result of the paper. A

bound on the error of the approximated best solution when
compared to the true best solution exists and this bound
improves as p increases until it reaches 0 at p = |q|1.

Theorem 5.1: If Ûp∗ is the optimal solution to problem
(24), then

y(Ûp∗)� ŷp(Ûp∗) ≤
|q|1⊗

i=p+1

Γp

where
Γp+1 ≤ Γp.

Furthermore,

y(Û∗|q|1)� ŷ|q|1(Û∗|q|1) = 0.
Proof: Suppose Ûp∗ is the optimal solution to problem

(24). Then by Lemma 5.2, yk � ŷk ≤ Γp for k > p, so

y(Ûp∗)� ŷ(Ûp∗) =
|q|1⊗
k=0

(yk � ŷk)

≤
|q|1⊗

k=p+1

Γp.

Let p be given. We will let Ũ0,p+1 be such that
γp+1(Ũ0,p+1) = Γp+1. It was shown in [12] that for any
sequence, U , γp+1(U0,p+1) ≤ γp(U0,p), so

γp+1(Ũ0,p+1) ≤γp(Ũ0,p)
≤Γp.

The final statement of the theorem follows since for
k ≤ p, the approximation is exact. So if p = |q|1, then
the approximation is exact up to k = |q|1.

VI. CONCLUSION

We have studied a scheduling problem posed over a
class of systems in the max-plus algebra. This problem is
motivated by makespan minimization in batch manufacturing
systems. We have shown that this problem is NP-complete
and hence there is a need to derive an approximation
method. We modify the model reduction method presented
in [12] so the solution of the approximated problem gives a
lower bound on the true optimum solution. Furthermore, we
showed that the error created by approximating the problem
using this method is bounded and that the bound improves
as the approximation is refined and eventually reaches zero.
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