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Abstract— State feedback Lyapunov-based design of direct
model reference adaptive control (MRAC) for a class of non-
linear systems with input and state delays based only on the
lumped-delays without so-called distributed-delay (DD) blocks
are developed. The design procedure is based on the concept
of reference trajectories prediction, and on the formulation of
an augmented error. We propose a controller parametrization
which attempts to anticipate the future states. An appropriate
Lyapunov-Krasovskii type functional is introduced.

Index Terms— Adaptive control, time-delay systems.

I. INTRODUCTION

The adaptive control problem for delay systems has been

investigated by many authors. Most of the developed results

are developed for state delayed systems.

Adaptive signal tracking based on state feedback can

be found in, e.g. [1], and in the papers [2], [3], [4], [5],

based on output feedback. The problem of output reference

model signal tracking by state feedback for linear systems

with bounded multiple delayed nonlinear state perturbations,

and disturbance was considered in [1], where the reference

model was an autonomous dynamic system. The output

adaptive tracking control of a class of linear, minimum-

phase, single-input-single-output (SISO) and MIMO systems

of relative degree one described by functional differential

equations was considered in the framework of functional

differential inclusions in [2], [3]. The author in [4] used tools

of differential geometry for a tracking problem of a special

type of nonlinear plants. In [5] the backstepping technique

was used to form an adaptive control scheme for a class

of SISO parametric strict-feedback nonlinear systems with

unknown state time delays.

Recently a new approach, [6], [7], was developed for the

output model reference adaptive control of linear continuous-

time SISO and MIMO plants with state delay. The main

idea is to treat the state delay element not as a part of the

plant but rather as the input to the system without delay

and then decompose the control law into two components.

The first base component is designed by a standard MRAC

procedure, [8], as for a plant without delay but applied to

the time-delay plant. The second component is formed by

a special adaptively adjusted dynamic system as a function

of the reference signals. This makes it possible to use the

well-understood MRAC design technique.

For input delayed plants, adaptive following control prob-

lems were investigated in a small number of papers: A glob-
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ally stable MRAC Smith-predictor-like solution for SISO

input delayed plants was developed by Ortega and Lozano

[9]. It was assumed that the process is minimum phase

with arbitrary relative degree, though not necessarily stable.

The controller structure was similar to the one proposed by

Ichikawa [10]. More recently, in [11], [12] MRAC controllers

were proposed , also with a Smith-predictor-like structure. In

[12] adaptive control laws were generated by using a high-

order Morse tuner and a Lyapunov-Krasovskii functional. A

model reference adaptive control scheme which can sumil-

taneously achieve adaptive decoupling and model matching,

is proposed in [13] for a class of multi-output plants with

input delay by employing the decoupling principle of MIMO

delay-free systems. Variable structure adaptive model predic-

tive control was considered in [14].

The scope of applicability of these results is mainly limited

because all the adaptive control laws involve finite-time

integrals of the delayed control signals, so-called distributed-

delay (DD) blocks in the form
∫ 0
−h λ (t,s)u(s)ds, where

λ (t,s) is an unknown parameter vector which is adaptively

tuned by some dynamic system described by a differential

equation, λ̇ (t,s) = f (∗). For implementation purposes this

integral is discretized. However even for the much easier

nonadaptive control case, the DD approximation leads to

many difficulties. The problem of safe implementation of

controllers with DD was included in a recent survey paper

[15] as one of the open problems in the control of time-delay

systems.

The present note expands our results from in [16] in which

state feedback tracking of linear systems with input and state

delays, but without external disturbances, is proposed. The

present paper uses methods similar to those in [16], but the

result is stronger since non-linear dynamics, as well as an

external disturbance are handled.

II. PLANT MODEL AND PROBLEM STATEMENT

The class of nonlinear delayed plants with parametric

uncertainty considered in this paper is of the form

ẋ(t) =Ax(t)+ Aτx(t − τ)+ bu(t−h)+ b f (x)+ bd(t) (1)

where, x ∈ R
n is the state vector, u(t) ∈ R is the control

input. The constant matrices A,Aτ ∈R
n×n and b∈R

n×1 have

unknown elements. f (x) and d(t) are unknown functions

which represents the nonlinearity and external disturbance.

The state and input time delays τ ∈ R
+ and h ∈ R

+ are

assumed to be known.

The problem is to design an adaptive feedback control, and

tune, on-line, the controller parameters in order to achieve

desired closed loop specifications.
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The desired specification in this paper is that all signals

of the closed loop system remain bounded and the following

is achieved:

• approximate tracking with small enough asymptotic

error.

• exact asymptotic tracking, i.e. the tracking errors e(t) =
x(t)− xr(t) → 0 as t → ∞ if the input signal of the

reference model r(t) is such that the plant is identifiable.

xr(t) is the state of the stable reference model

ẋr(t) = Arxr(t)+ brr(t −h) (2)

and Ar ∈ R
n×n, br ∈ R

n are known constant matrices, and

r(t) ∈ R is a bounded reference input signal.

To meet this control specification, we assume

(A1) There exist constant vectors θ ∗
x ∈ R

n, θ ∗
τ ∈ R

n and a

nonzero constant scalar θ ∗
r such that the following equations

are satisfied:

A−Ar + bθ ∗T
x = 0, Aτ + bθ ∗T

τ = 0, bθ ∗
r −br = 0 (3)

(A2) The sign of θ ∗
r , sign[θ ∗

r ], is known.

(A3) f (x) = θ ∗T
g g(x(t)) for some unknown constant vector,

θ ∗
g , of arbitrary and constant dimension. g(x(t)) which is of

the same dimension as θ ∗
g , is a vector of known bounded

basis functions.

(A4) d(t) = θ ∗T
d φ(t) for some unknown constant vector,

θ ∗
d , of arbitrary and constant dimension. φ(t) which is of

the same dimension as θ ∗
d , is a vector of known bounded

functions of time.

(A5) The plant is asymptotically stable.

III. CONTROL LAW AND ERROR EQUATION

PARAMETRIZATION

To develop an adaptive law we need to express the closed-

loop system in terms of the tracking error e(t) = x(t)−xr(t).
In view of the assumptions (A1)-(A4) we have from (1) and

(2) the following error equation

ė(t) =Are(t)−bθ ∗T
x x(t)−bθ ∗T

τ x(t − τ) (4)

+ bθ ∗T
g g(x(t))+ bθ ∗T

d φ(t)−brr(t −h)+ bu(t−h)

By adding and subtracting the term ΘT (t)Ω(t) with the signal

vector

Ω(t) =[xT (t), xT (t − τ), −gT (x(t)), −φT (t), r(t −h)]T ,

(5)

and some time varying vector

ΘT (t) = [θ T
x (t), θ T

τ (t), θ T
g (t), θ T

d (t), θr(t)]
T (6)

we obtain from (4)

ė(t) =Are(t)+ bΘ̃T (t)Ω(t)−bΘT(t)Ω(t)+ bu(t−h) (7)

where we introduce, as usually is done in model reference

adaptive control, the parameter error vector

Θ̃T (t) =
[

(θx(t)−θ ∗
x )T , (θτ(t)−θ ∗

τ )T , −(θg(t)−θ ∗
g )T ,

− (θd(t)−θ ∗
d )T , (θr(t)−θ ∗

r )
]T

. (8)

Inspection of (7) shows that for the input delay free case (h =
0), the introduction of the conventional control parametriza-

tion u(t) = ΘT (t)Ω(t) leads to the classical error equation

for the design of the adaptation algorithms, see e.g. [8]. The

presence of the input delay h makes a control parametrization

of this type impossible, because there is a need for the

prediction of plant signals. To overcome the difficulties

of predictiong plant signals, we look for a control law

parametrization of the form

u(t) =ΘT (t)Ωr(t + h) (9)

where the signal vector

Ωr(t) = [xT
r (t), xT

r (t − τ), −gT (xr(t)), −φT (t), r(t −h)]T

(10)

now includes only the known signals which are easily

predictable, and Θ(t), an adaptive gain which is the same

as in (6).

Applying the control (9) to (7) we obtain

ė(t) =Are(t)+ bΘ̃T (t)Ω(t)−bω(t) (11)

where, for convenience, we define the scalar signal

ω(t) =ΘT (t)Ω(t)−ΘT (t −h)Ωr(t) (12)

Let us now introduce the new scalar adaptive parameter

θω (t) while adding and subtracting, in the right part of (11),

the term θω (t)ω(t). Then by using (3), and defining the

parameter error θ̃ω (t) = θω (t)−θ ∗−1
r we obtain

ė(t) =Are(t)+ brθ
∗−1
r Θ̃T (t)Ω(t)

+ brθ̃ω(t)ω(t)−brθω (t)ω(t) (13)

We now introduce the variable xa(t) as the output of the

auxiliary model, which is the stable dynamic system driven

by the input signal ua(t) = θω(t)ω(t) with adjusted gain

θω (t) on the input,

ẋa(t) =Arxa(t)+ brθω(t)ω(t). (14)

Remark 1: We note, that the dynamics of the auxiliary

model (14) is exactly the same as the dynamics of the

reference model (2), and the difference is only in the input

signal.

Using xa(t) and defining the signal of the augmented error

ea(t) as

ea(t) =e(t)+ xa(t) (15)

we transform equation (13) as follows,

ėa(t) =Area(t)+ br
1

θ∗
r

Θ̃T (t)Ω(t)+ brθ̃ω(t)ω(t). (16)

Remark 2: The augmented error equation (16) has the

“standard” form of error parametrization in adaptive control

theory for plant without delays, so that well-understood

adaptive control methods can now be used for the design

of the adaptive algorithms.

In view of (16) and (14) it is clear that the control objective

now transforms as follows:
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The case of approximate tracking: The augmented error

and the auxiliary signal must be bounded with small enough

asymptotic error.

The case of exact tracking: The augmented error ea(t) and

auxiliary signal xa(t) must tend to zero asymptotically;

IV. ADAPTATION ALGORITHMS AND STABILITY

A. Adaptation algorithms

In order to update Θ(t) and θω(t) we choose the adapta-

tion algorithms as

Θ(t) =−Λ(0)−Λ(t)−Λ(t−ν1)−

∫ t

0
Λ(s)ds,

Λ(t) = sign[θ ∗
r ]ΓbT

r Pea(t)Ω(t)

θω (t) =−λ (0)−λ (t)−λ (t−ν2)−

∫ t

0
λ (s)ds,

λ (t) = γbT
r Pea(t)ω(t) (17)

or in differential form

Θ̇(t) =−Λ(t)− Λ̇(t)− Λ̇(t −ν1),

Λ(t) = sign[θ ∗
r ]ΓbT

r Pea(t)Ω(t)

θ̇ω (t) =−λ (t)− λ̇(t)− λ̇(t −ν2),

λ (t) = γbT
r Pea(t)ω(t) (18)

where the matrix P ∈ R
n×n is a constant matrix such that

P = PT > 0 and satisfies

PAr + AT
r P+ Q+ Qe = 0 (19)

for any chosen constant matrix Q,Qe ∈ R
n×n such that Q =

QT > 0, Qe = QT
e > 0, with Γ ∈ R

n×n a constant matrix such

that Γ = ΓT > 0. The time-varying vectors Λ(t) and λ (t) are

“artificial”. These parameters are used only in the process of

the stability proof. The parameters γ > 0, ν1 > 0 and ν2 > 0

are design parameters.

Remark 3: Although only the integral components Λ(t)
and λ (t) (Λ̇(t) = 0, λ̇ (t)= 0 and Λ̇(t−ν1) = 0, λ̇ (t−ν2) = 0

in (18)) of the adaptation algorithm are needed for stability

and exact asymptotic tracking, the use of the proportional

Λ̇(t), λ̇(t) and the proportional delayed Λ̇(t −ν1), λ̇(t −ν2)
terms in the adaptation algorithm (18) makes it possible to

achieve better adaptation performance than with the tradi-

tional I and PI schemes [18]. Our adaptation algorithms

include the traditional I and PI schemes as special cases.

The design parameters ν1 and ν2 are chosen in the same

way as the traditional gains Γ and γ in (17), (18).

B. Stability proof

To design the update laws for the parameter vectors Θ(t)
and θω(t) we use the following Lyapunov-Krasovskii type

functional

V =V1 +V2 +V3

V1 =eT
a (t)Pea(t)+

∫ t

t−τ
eT

a (s)Qeea(s)ds

V2 = |θ ∗
r |

−1
(

Λ̃T Γ−1Λ̃+

∫ t

t−ν1

Λ(s)T Γ−1Λ(s)ds
)

V3 =γ−1
(

λ̃ 2 +
∫ t

t−ν2

λ 2(s)ds
)

(20)

where

Λ̃(t) =Θ̃(t)+ Λ(t)+ Λ(t−ν1)

λ̃(t) =θ̃ω (t)+ λ (t)+ λ (t−ν2) (21)

Using (19), the time derivative of the components of (20)

along the trajectories of the error system (16) is

V̇1|(16) =− eT
a (t)Q(t)ea(t)− eT

a (t − τ)Qeea(t − τ)

+ 2eT
a (t)Pbrθ

∗−1
r Θ̃T (t)Ω(t)

+ 2eT
a (t)Pbrθ̃

T
ω (t)ω(t) (22)

V̇2|(16) =−
[

Λ(t)+ Λ(t −ν1)
]T

Γ−1
[

Λ(t)+ Λ(t −ν1)
]

+ 2Θ̃T (t)Γ−1 ˙̃Λ(t) (23)

V̇3|(16) =− γ−1
[

λ (t)+ λ (t−ν1)
]2

+ γ−1θ̃ T
ω (t) ˙̃λ (t) (24)

In view of (17), (18) and using (22)-(24) we obtain the time

derivative for V

V̇ |(16) =− eT
a (t)Q(t)ea(t)− eT

a (t − τ)Qeea(t − τ)

−
[

Λ(t)+ Λ(t −ν1)
]T

Γ−1
[

Λ(t)+ Λ(t −ν1)
]

− γ−1
[

λ (t)+ λ (t −ν1)
]2

(25)

≤− eT
a (t)Q(t)ea(t)− eT

a (t − τ)Qeea(t − τ) ≤ 0

i.e. V̇ |(16) is (negative) semi-definite. Thus [8], we have

proved that the adaptive control (9) and the update algorithms

(17), (18) guarantee that V (t) and, therefore, ea(t), Θ̃(t),
Θ(t), θ̃ω(t), θω(t)∈L∞. From (20) and (25) we establish that

ea(t) ∈ L2. From (16) and closed-loop signals boundedness,

we have that ėa(t) ∈ L∞ so that ea(t) → 0 as t → ∞. Using

(12) and the closed-loop signals boundedness, i.e.

lim
t→∞

Θ̃(t) =Θo −Θ∗ = Θ̃o

lim
t→∞

θ̃ω(t) =θ o
ω −θ ∗

ω = θ̃ o
ω (26)

where Θo and θ o
ω are some contstant vector and scalar, we

get from (11) the following error equation

ė(t) =Are(t)+ bΘ̃oΩ(t)−bΘoT (Ω(t)−Ωr(t)) (27)

In view of (5) and (10) we have

ΘoT (Ω(t)−Ωr(t)) =θ oT
x e(t)+ θ oT

τ e(t − τ) (28)

Then using (3), (26) and (28) we obtain from (27)

ė(t) =Are(t)+ b
[

−θ ∗T
x e(t)−θ ∗T

τ e(t − τ)+ θ ∗T
g g(e)

]

+ bξ (t) (29)
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where the signal ξ (t) is

ξ (t) =(θ o
x −θ ∗

x )T xr(t)+ (θ o
τ −θ ∗

τ )T xr(t − τ)

+ (θ oT
g −θ ∗T

g )T g(xr(t))+ (θ o
d −θ ∗

d )T φ(t)

+ (θ o
r −θ ∗

r )r(t −h) (30)

Note that the signal ξ (t) is bounded due to Assumptions

(A3) and (A4), the boundedness of r(t) and xr(t) and the

boundedness of Θ̃o from (26).

In view of Assumptions (A1) and (A3) we have from (29)

ė(t) =Ae(t)+ Aτe(t − τ)+ f (e(t))+ ξ (t) (31)

Then the assumption (A5) and the boundedness of ξ (t)
guarantee, that e(t)∈ L∞. From (15) and the fact that ea(t) ∈
L∞ it also follows that xa(t)∈L∞, and therefore all the signals

in the closed loop system are bounded.

If the signal r(t) is such that the plant is identifiable [17],

then Θo = Θ∗ and θ o
ω = θ ∗

ω . Hence, we obtain from (29)

ė(t) =Ae(t)+ Aτe(t − τ)+ f (e(t)), (32)

and then, in view of (A5), we have that e(t) → 0, when

t → ∞.

C. Main Result

We summarize the main result as

Theorem 1: Consider the closed-loop system defined by

the plant in (1) and the controller in (9), (5), (12), (14),

(15) and (17), (18) with Assumptions (A1)-(A5). Then the

following two properties hold:

(i) all signals of the closed-loop system are bounded;

(ii) limt→∞ e(t) = 0 if the reference signal r(t) is such,

that the plant is identifiable.

The general adaptive controller structure is depicted in Figure

1. From the figure it is clear that unlike the standard

MRAC structure which is widely used in the adaptive control

literature for plants without delay, in our feedback path in

Figure 1 the augmented error is used instead of the standard

error e(t) = x(t)−xr(t). Moreover, in the controller structure

the “Adjusted auxiliary model” and “Predictor” blocks are

added. The control generator generates the control signal u(t)
to the plant and the input ua(t) to the auxiliary model.

V. CONCLUDING REMARKS

For a class of nonlinear systems with an external dis-

turbance and with both input and state delays we utilize

the new structure in [16] of adaptive input and state delay

compensation based only on lumped delay blocks without so-

called distributed-delay (DD) blocks. The design procedure

is based on the concept of reference trajectories prediction

and the formulation of an augmented error. The model output

matching between plant and reference model is accomplished

by an adaptive compensator based on the delayed and

predicted reference signals and some auxiliary model driven

by the signal ua(t) = θω (t)ω(t). Note, that the dynamics of

the auxiliary model (14) is exactly the same as the reference

model dynamics (2). An appropriate Lyapunov-Krasovskii
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Fig. 1. The general adaptive controller structure

type functional is introduced for updating the controller

parameters and for the stability analysis.

Much more difficult than the problem treated in this

paper is the case of nonstable plants. The difficulty is

mainly the necessary prediction in the closed loop. One of

several possible approaches is to split the overall design in

two distinct phases. The first phase addresses the so-called

”robust stabilization problem”, which consists of designing

a memoryless state feedback which stabilizes the uncertain

system, i.e. the design of a some gain θ # in order to stabilize

(1), see e.g. [15]. In the second ”adaptive control design”

phase, only the fact that θ # exists is required, see Section

2-4; the exact value of θ # is not necessary to know.
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