
Minimal Itakura-Saito distance and Covariance interpolation

Per Enqvist and Johan Karlsson

Abstract— Identification of power spectral densities rely on
measured second order statistics such as, e.g. covariance es-
timates. In the family of power spectra consistent with such
an estimate a representative spectra is singled out; examples
of such choices are the Maximum entropy spectrum and the
Correlogram. Here, we choose a prior spectral density to
represent a priori information, and the spectrum closest to
the prior in the Itakura-Saito distance is selected. It is known
that this can be seen as the limit case when the cross-entropy
principle is applied to a gaussian process.

This work provides a quantitative measure of how close
a finite covariance sequence is to a spectral density in the
Itakura-Saito distance. It is given by a convex optimization
problem and by considering its dual the structure of the optimal
spectrum is obtained. Furthermore, it is shown that strong
duality holds and that a covariance matching coercive spectral
density always exists. The methods presented here provides
tools for discrimination between power spectrum, identification
of power spectrum, and for incorporating given data in this
process.

I. INTRODUCTION

There has been a recent interest in distance measures for

power spectra and in which way they discriminate. The

choice of distance measure should reflect the application

in mind, and this motivates the use of several different

distance measures. Examples of this are the Kullback-Leibler

([1], [2], [3]) and the Hellinger distance ([4], [5]), which

originated in probability theory, a set of distances quantifying

the degradation of prediction [6], and metrics based on the

Monge-Kantorovic transportation problem [7].

For identification and discrimination of power spectra the

covariances are commonly used. For a finite number of co-

variances there is an infinite number of power spectra which

match these second order moments exactly, and the spectrum

is then chosen from this family of consistent estimates.

Many methods for identification are based on this moment

matching approach and how to make this choice defines the

method. The so called central solution is based on finding

the power spectrum that maximizes the entropy, which is

equivalent to minimizing the Kullback-Leibler distance to

the power spectrum corresponding to white noise.

If a priori information about the power spectrum is

available then this can be used for choosing the spectrum

from the family of consistent estimates. In particular, the

set of degree constrained rational spectra consistent with

the moments can be parameterized by using minimizers of
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the Kullback-Leibler distance to priors [3]. The problem of

parameterizing all such solutions is known as the rational

covariance extension problem.

Another measure that originates in probability theory is

the Itakura-Saito ([8], [9]) distance. It was originally used

in an approximative maximum likelihood derivation of the

maximum entropy method, which is the solution correspond-

ing to a flat prior. Using a more general prior will generate

solutions different from the maximum entropy solutions.

The minimization of the Itakura-Saito distance to the prior

was advocated by Shore and Johnson as the cross-entropy

principle; in [10] the cross-entropy principle is analyzed

for probability densities and in [11] it is used for spectral

analysis. A nice description of this approach is given in [12].

In this paper we revisit the minimization of the Itakura-

Saito distance to an a priori power spectrum. This distance

represents the difference in the asymptotic likelihood be-

tween the two spectra under gaussian assumptions. There

are close connections between the Itakura-Saito distance,

prediction error minimization and the recent advances on

minimizing Kullback-Leibler distance in moment matching

problems, see [13].

The problem of minimizing the Itakura-Saito distance to

a prior subject to moment constraints is a convex infinite-

dimensional problem. We consider its dual, which is finite-

dimensional, and the structure of the optimal solution is

derived. Furthermore, the solution of the dual gives the

unique solution of the Itakura-Saito minimization. If the prior

is rational then the minimizing spectrum is rational with

degree bounded by the sum of the degree of the a priori

spectrum and the number of estimated covariances.

One area of applications where it is important to be able to

determine distances between spectral densities is in speech

processing. Here we propose to use an Itakura-Saito distance

with the known spectra of the phonems as an assumed prior

knowledge and the covariances of the spectra to be classified

for characterizing the unknown spectrum. This is decribed

more in detail in Section VII. First, some concepts are de-

fined in Section II, some distances are defined in Section III,

the Itakura-Saito based moment matching problem is studied

in Section IV, the relation to the Kullback-Leibler one in

Section V, and the effect of scaling in Section VI. Then we

finish with some conclusions in Section VIII and future work

in Section IX.

II. BACKGROUND

Let (. . . , y−1, y0, y1, . . .) be a stationary stochastic real-

valued zero-mean process with covariances rk = E{yℓ+kyℓ}
and power spectral density Φ. The power spectral density Φ
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represents the energy content of the process across frequen-

cies and has the covariances as Fourier coefficients,

Φ(eiθ) =
∞
∑

k=−∞

rkeikθ.

The covariance rk is often estimated using the (biased)

ergodic estimate

1

N

N
∑

ℓ=k+1

yℓyℓ−k

based on a sample

(y1, y2, · · · , yN )

from the stationary process. This is a reliable estimate of the

true covariances as long as k ≪ N .

Consider the Hilbert space L2[−π, π] with the inner prod-

uct

〈a, b〉 =
1

2π

∫ π

−π

a(eiθ)b(e−iθ)dθ.

Then the covariances are given by

rk =
〈

Φ, zk
〉

.

Defining z =
[

1 z · · · zn
]T

, the moments can be

expressed as

〈Φ, z〉 = r,

where r =
[

r0 r1 . . . rn

]T
, and the inner product is

determined componentwise.

Given a covariance sequence r, let Fr denote the set of

power density functions consistent with r, i.e.,

Fr = {Φ ≥ 0| 〈Φ, z〉 = r} .

Furthermore, we assume throughout that the symmetric

Toeplitz matrix of the covariances

T (r) =













r0 r1 rn

r1 r0

. . .

. . .
. . . r1

rn r1 r0













is positive definite and hence the set Fr contains an infinite

number of spectral densities.

III. DISTANCE MEASURES

For two random variables, with sample space Ω, the

Kullback-Leibler divergence is defined as

IKL(p, q) =

∫

x∈Ω

p(x) log
p(x)

q(x)
dx,

where the probability densities are p and q. This quantifies

the average information for differentiating between the ran-

dom variables. This is a non-negative measure, but it is not

symmetric and it does not satisfy the triangle inequality. It

has been frequently used within information theory and is

also known as relative entropy, information gain, information

divergence and directed divergence. Distance concepts for

power spectral densities based on this probability density

divergence are discussed next.

A. Kullback-Leibler Divergence

The Kullback-Leibler divergence was defined in [3] as a

distance measure directly between spectral densities:

S(Ψ||Φ)
△
=

〈

Ψ, log
Ψ

Φ

〉

. (1)

The expression for S is analog to IKL. Both probability

densities and spectral densities are positive, but probability

densities must have an integral equal to one. Positivity for

S is ensured by the additional requirement on the spectral

densities that
∫

Ψ =
∫

Φ. This constraint can be satisfied by

scaling the spectral densities and the distance then compares

the shapes of the two spectra. A particularly interesting fact

about S is that the rational covariance extension problem can

be solved using Kullback-Leibler minimization [3].

B. Itakura-Saito distance

Here we define the Itakura-Saito distance for spectral

densities Ψ and Φ such that the relevant integrals converge.

Assume that Φ is coercive and Ψ and Φ both satisfy the

Szegö condition, i.e., there exists a positive ε such that Φ > ε
on [−π, π] and log Φ, log Ψ ∈ L1[−π, π]. Then,

D(Φ,Ψ) =

〈

Φ

Ψ
, 1

〉

−

〈

log
Φ

Ψ
, 1

〉

− 1

is a distance measure that is non-negative and zero if and

only if Φ and Ψ are the same. It should be noted that this

measure is not symmetric with respect to the two arguments.

This distance measure between spectral densities can be

derived by considering the divergence rate between two

Gaussian vectors when the length of the vectors grows to

infinity [8], [9], [14], [15].

In [8], also another representation of the distance is

provided. If Ψ and Φ are close then the following sum will

converge quickly

D(Φ,Ψ) =

〈

d2(λ)

2
−

d3(λ)

3!
+

d4(λ)

4!
− . . . , 1

〉

,

where d(λ) = log Ψ − log Φ is the logarithmic difference

between the two power spectral densities. This expression is

used to show that this distance is more sensitive to peaks

than to dips in the spectrum Φ.

The Itakura-Saito distance does not satisfy the triangle-

inequality, so it is not a metric, but for some special (optimal)

spectral densities it can be shown that the triangle-inequality

do hold [10].

IV. ITAKURA-SAITO APPROXIMATION WITH MOMENT

CONSTRAINTS

In moment matching based identification of spectral den-

sities, specific choices of power spectra from the set Fr are

made. Here we let an a priori spectral density Ψ determine

the choice of spectrum taken from this set. Namely, we

choose Φ as the spectra in Fr which is closest to Ψ in

the Itakura-Saito distance. This distance provides a natural

measure on how close an estimated sequence r is to the
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spectrum Ψ, and can be used for identification and discrimi-

nation of stochastic processes. The spectral density Φ is thus

determined by the following optimization problem.




min
Φ

〈

Φ

Ψ
, 1

〉

−

〈

log
Φ

Ψ
, 1

〉

− 1

s.t. Φ ∈ Fr.



 (2)

Note that here the spectral density is not constrained to be of

a certain form, just as in the primal problem for Kullback-

Leibler minimization, see [3] or (7) in Section V.

The optimization problem (2) has no finite dimensional

parametrization, but by considering the dual, an optimization

problem with a finite number of parameters is obtained.

Theorem 4.1: Let r be a positive covariance sequence

and let Ψ be a rational positive function. The dual of the

optimization problem (2) is given by




min
Q

J(Q) = 〈R,Q〉 − 〈1, log(1 + QΨ)〉

s.t. 1 + Q(eiθ)Ψ(eiθ) ≥ 0, ∀θ.



 (3)

where

Q(z) =
1

2

n
∑

k=0

qk(zk + z−k), (4)

and R is an arbitrary spectral density in Fr. Furthermore,

there is a unique solution Q to this problem such that 1 +
Q(eiθ)Ψ(eiθ) > 0 for all θ ∈ (−π, π], and

Φ = Ψ/(1 + QΨ)

is the unique solution of the primal problem (2).

Remark 4.1: Another way to write the optimal form of

the spectral density Φ is

Φ =
1

1

Ψ
+ 1

1/Q

,

which is the harmonic mean of Ψ and 1/Q, and corresponds

to a “parallell” connection. But it should be noted that Q can

be negative.

Proof: Form the Lagrangian function

L(Φ;q)
△
=

〈

Φ

Ψ
, 1

〉

−

〈

log
Φ

Ψ
, 1

〉

− 1 − qT (r − 〈Φ, z〉)

where

q =
[

q0 q1 · · · qn

]T
,

and since Φ is symmetric
〈

Φ,qT z
〉

= 〈Φ, Q(z)〉, where Q is

defined in (4). Then the Lagrangian function can be written

as

L(Φ;q) =

〈

Φ

Ψ
, 1

〉

−

〈

log
Φ

Ψ
, 1

〉

− 1 − 〈R,Q〉 + 〈Φ, Q〉 .

Since L is strictly concave and differentiable with respect

to Φ, the unique maximizing Φ is characterized by

δL =

〈

1

Ψ
−

1

Φ
+ Q, δΦ

〉

= 0

for all δΦ. Therefore, Φ̂ = Ψ

1+ΨQ . Then

L(Φ̂;q) = −〈R,Q〉 + 〈1, log (1 + ΨQ)〉

where we used that
〈

1

1 + ΨQ
, 1

〉

+

〈

Ψ

1 + ΨQ
,Q

〉

= 1.

Maximizing L is equivalent to minimizing −L, so the dual

(3) follows.

Recall that a direction d is called a direction of recession

of a constraint D if for any x ∈ D it holds that x + td ∈ D
for all t > 0. Let δQ be a direction of recession of the

constraint 1 + Q(eiθ)Ψ(eiθ) ≥ 0, then δQ is nonnegative

and hence 〈R, δQ〉 > 0. From this it follows that δQ is not

a direction of recession of the function J(Q), since

sup
Q

{

J(Q + δQ) − J(Q) | 1 + Q(eiθ)Ψ(eiθ) ≥ 0
}

> 0.

Therefore, since J is a closed proper convex function and

the domain is closed it follows from Theorem 27.3 in [16]

that the dual problem attains a unique minimum.

The directional derivative of J(Q) in the direction δQ is

δJ(Q, δQ) =

〈

δQ,R −
Ψ

1 + QΨ

〉

. (5)

To show that the dual (3) has an interior optimal solution, we

show that the derivative is infinite as we approach the bound-

ary. Assume that the minimum is attained for a Q0 such that

1+Q0(e
iθ)Ψ(eiθ) ≥ 0 for all θ and 1+Q0(e

iθ0)Ψ(eiθ0) = 0
for some θ0 ∈ (−π, π]. Then, if Qt = Q0 + t for t > 0, then

1+Qt(e
iθ)Ψ(eiθ) > 0 for all θ ∈ (−π, π]. Now δJ(Qt, Dt),

where Dt = (Q0 − Qt)/|Q0 − Qt| = −1, grows to plus

infinity as t goes to zero. Therefore, Q0 can not minimize J
and the optimal Q has to be in the interior. At the optimum

the gradient (5) is zero, and hence Φ ∈ Fr is the global

optimum of (2).

A series of corollaries of Theorem 4.1 follows easily:

Corollary 4.1: If the prior spectral density Ψ ∈ Fr, i.e. it

is consistent with the covariances r, then the optimal Q = 0
and Φ = Ψ.

This is a simple consequence of the uniqueness of the

solution.

A corollary observed by Politis in [17] is:

Corollary 4.2: If the prior spectral density is an all-pole

model with at most n poles, i.e., Ψ = 1/A where the degree

of the pseudo-polynomial A is at most n, then

Φ =
1

A + Q

is the spectral density of an all-pole model of degree n
matching the covariances r0, r1, . . . , rn, i.e. it coincides with

the Maximum Entropy solution.

Note that in this case there is a whole class of prior spectral

densities such that the optimal spectral density is the same.

In general, assume that Ψ1 and Ψ2 are two different priors

generating the same interpolant Φ, i.e.

Ψ1

1 + Ψ1Q1

= Φ =
Ψ2

1 + Ψ2Q2

.

Then the relation

Ψ2 =
Ψ1

1 + Ψ1Q̃
, Q̃ = Q1 − Q2,
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can be used to describe all priors generating the same spectral

density, and extend Corollary 4.2.

Corollary 4.3: If Φ satisfies the moment constraints, then

for all Q s.t. 1 − QΦ ≥ 0 the best approximant of

Ψ =
Φ

1 − QΦ
(6)

measured in the Itakura-Saito distance is Φ.

In particular, an arbitrary spectral density Φ ∈ Fr is the

optimal solution of an Itakura-Saito minimization problem

(2) with the prior spectral density Ψ given by (6).

Corollary 4.4: If the prior spectral density is rational Ψ =
A/B, then

Φ =
A

B + AQ

is also a rational spectral density, where the numerator is

the same as for the prior and the denominator is of degree

at most max{n + deg A,deg B}, matching the covariances

r0, r1, . . . , rn.

If A and B are not coprime, it follows easily also that

neither A and B + AQ will be coprime.

V. RELATIONS BETWEEN KULLBACK-LEIBLER AND

ITAKURA-SAITO DISTANCE MINIMIZATION

Consider minimizing the Kullback-Leibler distance

S(Ψ||Φ) under covariance interpolation constraints:





min
Φ

〈

Ψ, log
Ψ

Φ

〉

s.t. Φ ∈ Fr



 . (7)

In words; Find the covariance matching spectral density of

arbitrary form closest to the prior in the Kullback-Leibler

distance. This interpolation problem was solved using convex

optimization methods in [18], and it is a special case of a

problem studied in [3] where the Kullback-Leibler distance

(1) to a prespecified spectral density Ψ is minimized.

Let R ∈ Fr be an arbitrary spectral density consistent with

the given covariances. It has been shown in [18] that it is

equivalent to solve the dual problem




min
Q

〈R,Q〉 − 〈Ψ, log Q〉

s.t. Q(eiθ) ≥ 0, ∀θ.



 (8)

where Q is defined as in (4). It can be observed that the dual

objective function

ϕΨ(Q) = 〈R,Q〉 − 〈Ψ, log Q〉

does not depend on which R ∈ Fr is chosen. Note also that

it is equal up to a constant to

DΨ(R,Φ) =

〈

R

Φ
, 1

〉

Ψ

−

〈

log
R

Φ
, 1

〉

Ψ

− 1

where Φ = Ψ/Q. Here the inner products are evaluated in the

measure dµ = Ψ dθ, so 〈a, b〉
Ψ

= 〈a, bΨ〉. This is a version

of equation (18) in [13] where Remark 1 in the same paper

is used to reformulate it. For Ψ = 1 it is clear that DΨ is the

Itakura-Saito distance, and for a general Ψ it is a frequency

weighted distance.

The dual problem (8) is then equivalent to
[

min
Φ

DΨ(R,Φ)

s.t. Φ = Ψ/Q, Q(eiθ) ≥ 0, ∀θ.

]

In words; Find the spectral density Φ of the form Ψ/Q closest

to an arbitrary spectral density R ∈ Fr in the weighted

Itakura-Saito distance.

The weighting due to the prior appears also in the primal

(7). Since Ψ is assumed to be fixed, it is equivalent to

maximize 〈Ψ, log Φ〉 = 〈1, log Φ〉
Ψ

which can be seen

as a frequency weighted entropy. In particular, it follows

that for the prior Ψ ≡ 1, i.e., the spectral density of

a normalized white noise process, the maximum entropy

solution is obtained (since it is the unique all-pole model

in Fr).

Also the dual of the Itakura-Saito minimization problem

(3) can be seen to minimize an Itakura-Saito distance, by

noting that

J(Q) = D(R,Φ(Q)) − D(R,Ψ),

where Φ(Q) = Ψ/(1 + QΨ). So in (3) the Itakura-Saito

distance to R is minimized over all spectral densities Φ of

the special form Φ(Q).

VI. SCALING OF THE PRIOR

One of the differences between the Kullback-Leibler and

Itakura-Saito distances is that the former is only defined for

spectra with same energy,
∫

Φ =
∫

Ψ, and hence works more

as a shape recognizer. For the Itakura-Saito distance, on the

other hand, the variance of the spectra affects the distance

directly. Therefore, it is interesting to consider the effect of

scaling the prior spectrum Ψ in the minimization problem

(2).

Let the prior spectrum be chosen as Ψα = αΨ0 for some

positive Ψ0 and α ∈ R+. Given covariances r and the prior

Ψα, the optimization problem (2) have a solution that will

be called Φα. The objective function is modulo a constant

term equal to
∫

Φα

αΨ0

− log(Φα).

The choice of α dictates the relative importance of the

two terms in the cost. When α tends to infinity only the

logarithmic term is important and the solution Φα will then

tend to the maximum entropy solution. When α tends to zero

only the first term is important. Minimizing 〈Φ/Ψ0, 1〉 is a

linear programming problem in Φ. The dual of the limiting

case is
max

Q
〈R,Q〉

s.t. 1 + QΨ0 ≥ 0

and in general the limiting “solution Φ0” is represented

by a measure with at most 2n point masses. Thus by

letting α go from 0 to ∞ the resulting approximation go

from a deterministic spectrum to the most unpredictable

power spectrum, consistent with the covariance estimates.
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The extreme cases corresponds to having large differences

between the prior and the given covariance moments. The

scaling of the prior can be used as a design parameter that

regulate the determinism of the designed model. If the prior

is scaled so that 〈Ψ, 1〉 = r0 an even weighting is obtained

and the shape of the power spectrum will be at focus.

VII. DISCRIMINATION AND MATCHING USING THE

ITAKURA-SAITO DISTANCE

Speech processing is one area in which discrimination

between power spectra is extensively used. Typically a set

of features are determined on which the identification is

performed. Commonly used features based on the spectra are

cepstral coefficients, reflection coefficients or the spectrum

itself. Here we will briefly discuss some aspects of this which

relies on the Itakura-Saito distance for discrimination.

As a first step in discrimination, templates for different

events needs to be determined. One way to do this is by

using clustering algorithms such as the K-means algorithm

[19, pp. 70], which focus on finding a set of templates to

represent a large sample of spectra in a locally optimal way.

For this, one part of the algorithm is to find centroids, i.e. a

spectrum which minimize

min
Ψ

m
∑

ℓ=1

D(Ψ,Φℓ) (9)

As the following proposition show, the minimizer of (9) is

the harmonic mean.

Proposition 7.1: Let {Φℓ}
m
ℓ=1 be power spectral densities.

Then

min
Ψ

1

m

m
∑

ℓ=1

D(Ψ,Φℓ) =

∫

log
(
∏m

ℓ=1
Φℓ)

1

m

m
∑

m

ℓ=1

1

Φℓ

,

and the minimizer is

Ψ =
m

∑m
ℓ=1

1

Φℓ

.

This shows that the accuracy with which a set of spectra

could be approximated by one spectra depends on the ratio

between the geometric and the harmonic means of the

spectra. This and centroids for the Kullback-Leibler distance

and the logarithmic 2-norm can be found in [20]. See [21]

for more recent progress on centroids.

Once a set of power spectra (Ψ1,Ψ2, . . . ,Ψp) representing

a set of events are determined, Itakura-Saito approximation

may be used to quantify how close a covariance sequence r

is to the different template spectra. This is a straightforward

procedure, but it illustrates the use of distances for discrim-

ination.

VIII. CONCLUSIONS

We have investigated an approach for identification of

power spectra subject to moment constraints using a priori

information. The method relies on finding the spectrum

closest to a given prior in the Itakura-Saito distance. This

convex problem is reformulated to a finite-dimensional prob-

lem using duality theory for convex functions. The solution

of this problem gives the desired spectrum and the minimal

distance to the prior. We also study how the solution depends

on scaling, a relation to Kullback-Leibler approximation, and

discuss briefly how to utilize this for discrimination.

IX. FUTURE WORKS

Different distances can of course be used to find the best

approximate in a specified class of systems. Using a global

approach, where the spectral density is only assumed to

satisfy some analytic properties, a duality argument can be

used to show that the best approximant has to have a special

structure. Recent work on the Hellinger distance [4], [5] has

shown that for this distance the natural class of models is

rational functions where the poles appears doubled. If Ψ
is the prior power spectral density the structure of the best

approximants in the Kullback-Leibler, Hellinger and Itakura-

Saito distances are given by

ΦKL =
Ψ

Q
, ΦH =

Ψ

(1 + Q)2
, ΦIS =

Ψ

1 + QΨ
.

From this overview it is evident that for all these distances

the optimal spectral density inherits the zeros of the prior

spectral density. For the Kullback-Leibler and Hellinger

distances any poles of the prior are also poles of the best

approximations, Conversely, for the Itakura-Saito distance

this is not the case.

One advantage with the Hellinger-based approach is that

it generalize nicely to the MIMO case. It is well-known that

the Itakura-Saito distance generalize to matrix valued power

spectral densities.

D(Ψ,Φ) =
1

2

〈

log
detΦ

det Ψ
, 1

〉

+
〈

tr{Φ−1(Ψ − Φ)}, 1
〉

Generalizations to the multichannel case exists [22], [23] and

the results derived in this paper are expected to work well

also in that case.
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