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Abstract— Direct identification of filters for Linear Parame-
ter Varying (LPV) systems is considered. In the literature on
filter design, the system whose state has to be estimated is
usually assumed known. However, in most applications, this
assumption does not hold, and a two-step procedure is adopted:
1) an LPV model is identified from a set of noise-corrupted
data; 2) on the basis of the identified model, an LPV Kalman
filter is designed. In this paper, the idea of directly identifying
the LPV filter from data is investigated. In previous works by
the authors, it has been shown that the direct identification
may be more convenient than the two-step design. In some of
these works, optimal filter design techniques for time invariant
systems have been developed. In the present paper, an approach
for the direct identification of optimal filters for LPV systems is
proposed. The approach is developed within a Set Membership
framework and optimality refers to minimizing the worst-case
estimation error.

I. INTRODUCTION

Consider the following discrete time Linear Parameter

Varying (LPV) system:

xt+1 = A (p̃t)xt + Bu (p̃t) ũt + Bλ (p̃t)λt

ỹt = Cy (p̃t)xt + Dyu (p̃t) ũt + Dyλ (p̃t)λt

vt = Cv (p̃t)xt + Dvu (p̃t) ũt

(1)

where xt ∈ R
nx is the state of the system, ũt ∈ R

nu is a

known input, λt ∈ R
nλ is an unknown noise, ỹt ∈ R

ny and

vt ∈ R are outputs, and p̃t ∈ R
np is a time-varying vector

of parameters. The tilde indicates the quantities which are

measured.

The aim of filtering is to obtain a (possibly optimal in

some sense) estimate v̂t of vt using the measurements ũk, ỹk

for k ≤ t.
A huge literature exists on minimum variance filter design,

assuming that the system (1) is known (see e.g. [8], [10], [4]).

However, in most practical situations, the system (1) is not

known, and a two-step procedure is usually adopted:

1) a model of system (1) is identified from the available data

p̃t, ũt, ỹt, ṽt, t ∈ [0, T − 1];
2) on the basis of the identified model, an LPV filter is

designed which, using as inputs p̃t, ũt, ỹt, gives an estimate

of vt for t ≥ T (see e.g. [8]).

Note that except for cases where Cv (p̃t) and Dvu (p̃t) are

actually known, measurements of vt have to be performed.

In [12] a new approach has been proposed. This approach

is based on the direct identification from the available data

of a filter which, using as inputs p̃t, ũt, ỹt, gives an estimate

of vt for t ≥ T . The identified filter is called direct filter or
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direct virtual sensor and can be used when the actual sensor

is no longer available.

The advantages of the direct approach have been shown

in [12] within a statistical framework in both the cases of

Linear Time Invariant (LTI) and Nonlinear Time Invariant

system. In that paper, it has been proven that even in the

most favorable situations, e.g. no modeling errors and the

minimum variance filter is actually computable, the two-

step procedure based on Kalman filter design perform no

better than the direct approach. More importantly, in the

presence of modeling errors, the directly identified filter,

although not absolutely optimal, is the minimum variance

estimator among the selected approximating filter class. A

similar feature is not ensured by the two-step filter, whose

performance deterioration caused by modeling errors may be

significantly larger.

In [13], a Set Membership (SM) framework has been

considered, and an optimal filter identification method for

LTI systems has been proposed.

In the present paper, we propose a filter identification

method for LPV systems. As in [13] we adopt a SM

framework. The noises are assumed unknown but bounded.

A method for the direct design of optimal filters is proposed,

where optimality refers to the minimization of a suitable

worst-case estimation error. The proposed approach is quite

general. Indeed, we show that the LPV Kalman filter is

obtained as a particular case of the SM framework considered

here.

A simulation example regarding the estimation of vehicles

yaw rate is presented to show the effectiveness of the

proposed approach.

II. OPTIMAL FILTERS FOR KNOWN SYSTEM

In this section, we introduce an approach to the filtering

problem for the case that the system (1) is known. The ap-

proach presented here is basic to the direct filter identification

method presented in the next section, where the system (1)

is assumed unknown.

Let us suppose that:

- The matrices A(p̃t), Bu(p̃t), Bλ(p̃t), Cy(p̃t), Dyu(p̃t),
Dyλ(p̃t), Cv(p̃t), Dvu(p̃t) are known for all t.

- (At(p̃t), Ct
y(p̃t)) is n-step observable (see e.g. [16] for

the definition of n-step observability).

- The noise λt is not known.

- Measurements p̃t, ũt, ỹt are available for any time t.

- The output vt is not measured.

The aim is to find a filter of the form

v̂t = f
(
p̃t

)
w̃t (2)
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where w̃t .
=

[
w̃t; ...; w̃t−m+1

]
, w̃t = [ỹt; ũt],

p̃t .
=

[
p̃t; ...; p̃t−m+1

]
, f (p̃t)

.
= [f0 (p̃t) , ..., fm−1 (p̃t)],

with “small” estimation error |vt − v̂t|.
The notation [...; ...; ...] indicates vertical concatenation,

the notation [..., ..., ...] indicates horizontal concatenation.

The notation f t ≡ f (p̃t) will be used when not necessary

to explicit the dependence on the parameters p̃t.

Since the measurements are noise-corrupted no finite

bound on the estimation error can be derived if no assump-

tions are made on the noise λ. We assume that this noise is

bounded as follows.

Assumption on λ:
∥∥λ

t
∥∥

p
≤ δ, t = 0, 1, ...

where λ
t .
=

[
λt; ...; λt−m+1

]

Here ‖·‖p is either a p-norm:

‖λ‖p

.
=

[
m−1∑
t=0

nλ∑
i=1

∣∣λt
i

∣∣p
] 1

p

, 0 < p < ∞,

‖λ‖∞
.
= max

t=0,..,m−1
max

i=1,..,nλ

∣∣λt
i

∣∣
or the pow-norm

‖λ‖pow

.
=

√
1
m

m−1∑
t=0

nλ∑
i=1

(
λt

i

)2
.

Note that, for m → ∞, these norms become the ℓp-norm

and the ℓpow-semi-norm, respectively.

The estimation error of the filter (2) is given by |vt − v̂t|
= |vt − f tw̃t|. We are interested in a filter with uniform

performances with respect to the input ũt, we thus consider

the error sup‖ũt‖
p
=1 |vt − f tw̃t|. This error is not known,

since v depends on λ, which is not known. However, the

tightest bound on it is given by the following worst-case

error.

Definition 1: Worst-case estimation error of a filter f :

EF (f t)
.
= sup

‖λt‖
p
≤δ

sup
‖ũt‖

p
=1

∣∣vt − f tw̃t
∣∣ .

Looking for filters that minimize this error, leads to the

following optimality concepts. Let F be a set of asymptoti-

cally stable filters.

Definition 2: A filter f is optimal within the filter set F
if:

EF (ft)
.
= inf

f∈F
EF (f t), ∀t.

We look for optimal filters f within the following set of

systems:

f ∈ K(m,L, ρ)
.
=

{
f = [f0, f1, ...] : f t ∈ K(m,L, ρ)

}

K(m,L, ρ)
.
= {g = [g0, g1, ..., gm−1], gt ∈ R

1×nw :
‖gt‖∞ ≤ Lρt, t = 0, 1, ...,m − 1}.

K(m,L, ρ) is the set of all LTI systems with impulse

response of length m and of exponential decay L, ρ. If

m < ∞, K(m,L, ρ) is a set Finite Impulse Response (FIR)

systems, otherwise it is a set of Infinite Impulse Response

(IIR) systems.

In order to derive an optimal filter, we need the following

preliminary result. This result uses the definition of n-step

observability of [16].

Lemma 1: Let the system (1) be n-step observable. Then

the following relations hold:

gt
yỹ

t + gt
uũ

t = gt
λλ

t

vt = gt
vyỹ

t + gt
vuũ

t + gt
vλλ

t (3)

where ỹt ∈ R
nny×1, ũt ∈ R

nnu×1, λ
t ∈ R

nnλ×1, gt
y ∈

R
ny×nny , gt

u ∈ R
ny×nnu , gt

λ ∈ R
ny×nnλ , gt

vy ∈ R
1×nny ,

gt
vu ∈ R

1×nnu , gt
vλ ∈ R

1×nnλ .

The matrices/vectors gt
λ are functions of n past values of p̃t:

gt
∗ ≡ g∗

(
p̃t, ..., p̃t−n+1

)
, where ∗ stands for λ, y, u, vy, vu

or vλ.

Proof. Minor modifications of the proof of Lemma 1 in [12].

The representation (3) is used to derive an optimal filter.

Consider the following optimization problem:

ht
o = arg min

h∈K(m̂,Lh,ρh)

∥∥[gt
vλ,0] − hGt

λ

∥∥
ip

(4)

where m̂ = m − n + 1,

Gt
λ

.
=




gt,0
λ · · · gt,n−1

λ 0 0 · · ·

0 gt−1,0
λ · · · gt−1,n−1

λ 0 · · ·
...

...
. . .

. . .
. . .

. . .




(5)

gt
λ = [gt,0

λ ; ...; gt,n−1
λ ], 0 indicates a zero matrix of suitable

dimension, and ‖·‖ip is the induced norm

‖g‖ip

.
= sup

‖λ‖
p
=1

|gλ| . (6)

Note that the optimization problem (4) is convex for any

norm ‖·‖ip. Indeed, a norm is a convex function of its

argument. The argument is a linear function of h. Therefore

‖[gt
vλ;0] − hGt

λ‖ip
is a convex function of h (see e.g. [5]).

Moreover, the constraint h ∈ K(m̂, Lh, ρh) can be written

as a set of linear inequalities. It follows that the optimization

problem (4) is convex. Note also that m̂, m and n are fixed

for all t, then, as new data arrive, the complexity of the

optimization problem (4) does not grow.

Let us define the following filter:

vt
o = fo

(
p̃t

)
w̃t = foy

(
p̃t

)
ỹt + fou

(
p̃t

)
ũt (7)

foy (p̃t)
.
=

[
gt

vy,0
]
+ ht

oG
t
y

fou (p̃t)
.
= [gt

vu,0] + ht
oG

t
u

where w̃t =
[
w̃t; ...; w̃t−m+1

]
, ỹt =

[
ỹt; ...; ỹt−m+1

]
,

ũt =
[
ũt; ...; ũt−m+1

]
, and Gt

y, Gt
u are defined from gt

y, gt
u

analogously to Gt
λ in (5).

The main idea behind the derivation of this filter is the

following: ht
oG

t
λ is an approximation of [gt

vλ,0], see (4).

Therefore, ht
oG

t
λ[λt;0] is an estimate of the signal gt

vλλ
t.

This estimate can be obtained from the first of equations

(3), and used in the second one to estimate vt. If some m
and some h exist such that [gt

vλ,0] = hGt
λ, then the filter

(7) provides the exact estimate of vt. If this is not the case,

the length m can be suitably chosen to obtain a satisfactory

noise filtering.
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Theorem 1: The filter fo is optimal within the set

K(m,L, ρ) with L, ρ < ∞. The worst case estimation error

of fo is given by:

EF (fo

(
p̃t

)
) = δ

∥∥gt
o

∥∥
ip

, t = 0, 1, ... (8)

where gt
o

.
= [gt

vλ,0] − ht
oG

t
λ.

Proof. See [14].

Remarks

1. The filter length m and the constraints on the expo-

nential decay Lh, ρh are parameters of the filter design. In

particular, Lh, ρh allow us to: 1) guarantee the BIBO stability

of the optimal filter fo (see the next remark); 2) choose the

speed of response of the optimal filter fo.

2. The BIBO stability of optimal filter fo (p̃t) is guaran-

teed if 1) m < ∞ or 2) m = ∞, Lh < ∞, ρh < 1. Indeed,

gt
vy, gt

vλ, gt
yy, gt

vu, gt
yu are all FIR, and thus stable systems.

It follows that: in the case 1), fo (p̃t) is also a FIR, and

thus a stable system; in the case 2), since ρh < 1, ht
o is a

stable system, which implies that fo (p̃t) is a stable system

too. BIBO stability of fo (p̃t) directly follows from BIBO

stability of f t
o, ∀t, see e.g. [16].

3. The filter fo is not polarized: If there is no noise,

i.e. Bλ(p̃t) = 0, Dyλ(p̃t) = 0, then gt
yλ = 0, gt

vλ = 0,

EF (f t
o) = 0, vt

o = fo (p̃t) w̃t = gt
vyỹ

t + gt
vuũ

t = vt.

4. The present approach, based on the unknown but

bounded noise framework, is quite general.

Indeed, the LPV Kalman Filter (KF) can be recast in

this framework. Consider the set of filters K(m,L, ρ) where

L < ∞, ρ < 1, and m → ∞. Clearly, the KF belongs to

K(m,L, ρ), since this set includes all stable Linear Time

Varying systems. Moreover, the KF is a minimum variance

filter. On the other hand, in the proof of Theorem 1 it is

shown that vt − vt
o = gt

oλ
t,m. If λ

t,m is white, then

Var
(
vt − vt

o

)
=

∥∥gt
o

∥∥
i2

Var
(
λ

t,m
)

as shown e.g. in [7]. From (4) it follows that fo is a minimum

variance filter too. Therefore, it can be concluded that fo is

a representation of the KF.

Another interesting case is when the induced norm ‖·‖i∞
is used. In this case, fo gives the minimum absolute error

|vt − vt
o|. The filter fo is thus an optimal ℓ1 filter, since it

minimizes the induced norm from ℓ∞ to ℓ∞, see e.g. [7].

III. DIRECT IDENTIFICATION OF OPTIMAL FILTERS FROM

DATA

Let us suppose that:

- The matrices A(p̃t), Bu(p̃t), Bλ(p̃t), Cy(p̃t), Dyu(p̃t),
Dyλ(p̃t), Cv(p̃t), Dvu(p̃t) are not known and thus the

optimal filter (7) is not known.

- (A(p̃t), Cy(p̃t)) is n-step observable.

- The noise λt is not known.

- Measurements p̃t, ũt, ỹt are available for any time t.
- Noise-corrupted measurements ṽt of vt are available for

t ∈ [0, T − 1].
The problem is to estimate the variable vt, for t ≥ T .

In this section, we consider an approach based on the

direct identification from the available data p̃t, w̃t, ṽt, t ∈
[0, T − 1], of a filter which, using as inputs p̃t, ũt, ỹt, gives

an estimate of vt, for t ≥ T . From (7), we have

ṽt = fo(p̃
t)w̃t + dt, t = 0, 1, .., T − 1 (9)

where the term dt = ṽt − vt
o accounts for the fact that the

data are corrupted by noise. Note that dt is composed of two

contributions: dt = ṽt − vt + vt − vt
o = ξt + et

o, where ξt =
ṽt − vt is the noise on the measure of vt, and et

o = vt − vt
o

is the estimation error of the optimal filter fo(p̃
t)w̃t.

The aim is to identify a filter of the form:

v̂t = F̂ (p̃t, w̃t), t ≥ T (10)

with “small” estimation error |vt − v̂t|.
In order to identify such a filter, we look for an optimal

approximation of the filter Fo(p̃
t, w̃t)

.
= fo(p̃

t)w̃t. Then,

we show that the optimal approximation provides an optimal

estimate.

Let us first consider the problem of identifying a function

F̂ that approximates Fo with “small” identification error∥∥∥Fo − F̂
∥∥∥

q
, where ‖·‖q is an Lq norm:

||f ||q
.
=

[∫
Wr

|f (r)|
q
dr

] 1

q

, 0 < q < ∞,

||f ||∞
.
=ess-supr∈Wr

|f (r)|,
Wr is a compact convex set.

Note that the filter Fo(p̃
t, w̃t) is a function of the regressor

w̃t and of the parameters vector p̃t. The dependence on

w̃t is linear, the dependence on p̃t is nonlinear. Two main

approaches can thus be adopted to approximate Fo(p̃
t, w̃t).

The first is to use an approximating function of the general

nonlinear form F̂ (p̃t, w̃t) without using this structural in-

formation. The second is to use an approximating function

of the same form as the filter to approximate: F̂ (p̃t, w̃t) =
f̂(p̃t)w̃t, see e.g. [1], [15], [3]. The first approach is simpler,

from both the mathematical and the programming points

of view, but it does not use the information on the func-

tion structure. This may lead to computational complexity

problems and local minima problems (in the case of non-

convex estimation algorithms). The second one, using the

information on the function structure, allows us to reduce

such problems, but it is more complicate. In this paper, we

introduce some optimality notions and results which hold for

filters of the general form (10), then we show how to identify

a filter with the same structure of Fo.

Consider then a filter of the form (10). Clearly, the iden-

tification error

∥∥∥Fo − F̂
∥∥∥

q
is not known, since the function

Fo and the noise d are not known. In order to guarantee a

bound on

∥∥∥Fo − F̂
∥∥∥

q
some assumptions on Fo and on noise

d have to be made. In this paper, we follow the Nonlinear

Set Membership (NSM) “local” approach of [11], and take

the following assumptions:

Assumptions on Fo:

Fo ∈ F(γ)
.
= {F : F = F̂ + F∆, F∆ ∈ F(γ)}

F(γ)
.
= {g ∈ C1(Wr), ‖g

′(p,w)‖ ≤ γ, ∀[p,w] ∈ Wr}.

F∆ is called residue function and g′ is the gradient of g.
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Assumption on d: ‖d‖∞ ≤ ε, d
.
=

[
d0; ...; dT−1

]
.

In [11] a method for choosing proper values of γ and δ in

such a way that the prior assumptions are validated is given.

A key role in the Set Membership framework is played

by the Feasible Systems Set, often called “unfalsified sys-

tems set”, i.e. the set of all systems consistent with prior

information and measured data.

Definition 3: The Feasible Systems Set is

FSST .
=

{
F ∈ F(γ) :

∣∣ṽt − F (p̃t, w̃t)
∣∣ ≤ ε, t ∈ [0, T − 1]

}
.

The Feasible Systems Set FSST summarizes all the

information (measured data and prior information on Fo and

noise d) that is available up to time T − 1. An important

property in order to derive optimal estimates is that, if prior

assumptions are true, then Fo ∈ FSST .

Let us assume that Fo ∈ FSST . Therefore, the tightest

bound on

∥∥∥Fo − F̂
∥∥∥

q
is given by the following worst-case

error.

Definition 4: Worst-case identification error of a direct

filter F̂ : Eq(F̂ )
.
= sup

F∈FSST

∥∥∥F − F̂
∥∥∥

q
.

Looking for direct filters that minimize the worst-case

error, leads to the following optimality concept.

Definition 5: A direct filter f is optimal in identification

if Eq(f) = inf
F̂

Eq(F̂ ) = rI .

The quantity rI , called radius of information, gives the

minimal identification error that can be guaranteed by any

estimate based on the available information up to time T −1.

Let us define the direct filter:

v̂t = Fc(p̃
t, w̃t) = F̂ (p̃t, w̃t) + f∆(p̃t, w̃t), t ≥ T (11)

f∆(p,w)
.
= 1

2

[
f(p,w) + f(p,w)

]

f (p,w)
.
= min

t=0,..,T−1

(
h

t
+ γ ‖[p,w] − [p̃t, w̃t]‖

)

f (p,w)
.
= max

t=0,..,T−1

(
ht − γ ‖[p,w] − [p̃t, w̃t]‖

)

h
t .
= ṽt − F̂ (p̃t, w̃t) + ε, ht .

= ṽt − F̂ (p̃t, w̃t) − ε.

Theorem 2: The direct filter Fc is optimal in identifica-

tion, for any Lq norm. The worst-case identification error of

Fc is given by:

Eq(Fc) =
1

2

∥∥f − f
∥∥

q
= rI .

Proof. See [11].

According to this result, the direct filter Fc is the best

approximation of the filter Fo. Moreover, Fo is the filter

which, using the knowledge of the system (1), provides the

best estimate of the variable v. We now show that Fc is the

filter that, without using the knowledge of the system (1),

provides the best estimate of the variable v.

Let us consider the estimation error

∣∣∣vt − F̂ (p̃t, w̃t)
∣∣∣.

This error can be written as

∣∣∣et
o + Fo(p̃

t, w̃t) − F̂ (p̃t, w̃t)
∣∣∣,

where et
o = vt − Fo(p̃

t, w̃t). This error is not known, since

Fo and eo are not known. It is only known that Fo ∈ FSST

and that eo is bounded as |et
o| ≤ δt

o

.
= δ ‖gt

o‖ip, see (8).

Here, we assume to know this bound:

Assumption on eo: |et
o| ≤ δt

o.

The tightest bound on

∣∣∣et
o + Fo(p̃

t, w̃t) − F̂ (p̃t, w̃t)
∣∣∣ is

thus given by the following worst-case error.

Definition 6: Worst-case estimation error of a direct filter

f̂ :

ED(F̂ , t)
.
= sup

F∈FSST

sup
|et|≤δt

o

∣∣∣et + F (p̃t, w̃t) − F̂ (p̃t, w̃t)
∣∣∣ .

Looking for estimates that minimize the worst-case error,

leads to the following optimality concept.

Definition 7: A direct filter f is optimal in estimation if

ED(f, t) = inf
F̂

ED(F̂ , t), ∀t ≥ T.

Theorem 3: The direct filter Fc is optimal in estimation.

The worst-case estimation error of Fc is given by:

ED(Fc, t) = δt
o +

1

2

[
f(p̃t, w̃t) − f(p̃t, w̃t)

]
.

Proof. See [14].

Up to now, an approximating function of the general

nonlinear form F̂ (p̃t, w̃t) has been considered. No infor-

mation on the structure of the filter Fo has been used. As

mentioned at the beginning of this section, this may lead

to computational complexity and local minima problems

when estimating F̂ . Using an approximating function of the

same form as Fo may help to significantly reduce these

problems. We here consider the following 4-layers neural

network structure:

• layer 1: ϕ1i = σ (β1ip + µ1i) , i = 1, ..., α
• layer 2: ϕ2i =

∑α
j=1 β2ijϕ1j + µ2i, i = 1, ...,m

• layer 3: ϕ3i = ϕ2iw
i, i = 1, ...,m

• layer 4: ϕ4 =
∑m

i=1 ϕ3i

where β1, µ1, β2, µ2 are parameters to estimate, α is the

number of neurons of the network, and σ (x) = 2/(1 +
e−2x) − 1 is a sigmoidal basis function.

Clearly, this neural network defines a function of the form

ϕ4 = Fnn(p,w) = fnn(p)w (12)

where fnn(p) = [f1
nn(p), ..., fm

nn(p)], f i
nn(p) = ϕ2i =∑

j β2ijσ
(
β1jp + µ1j

)
+ µ2i.

The main motivation for using neural networks is that

they are characterized by strong approximation properties

in high dimensional spaces [2]. Moreover, there exist very

efficient (though not convex) algorithms for the estimation

of the parameters β1, µ1, β2, µ2 (see e.g. [9]).

For the solution of the estimation problem considered in

this section, we propose the following optimal direct filter:

v̂t = Fc(p̃
t, w̃t) = Fa(p̃t, w̃t)+f∆(p̃t, w̃t), t ≥ T (13)
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where Fa is a neural network of the form (12) identified

from the data p̃t, w̃t, ṽt, t ∈ [0, T − 1] and f∆ is defined in

(11) with F̂ = Fa.

To simplify the computation in on-line applications, the

following filter may also be used:

v̂t = Fa(p̃t, w̃t), t ≥ T (14)

provided that the correction function f∆ is small for all

(p̃t, w̃t) ∈ Wr. The neglectability of f∆ can be checked

off-line, using the measured data. If the filters (13) and (14)

have comparable accuracy, a confirmation is obtained that Fa

is a good approximation of Fo. On the other hand, the filter

(13) may give improvements over the filter (14) in the case

that: 1) the neural network estimation algorithm got stuck in

a local minimum, 2) the number of neurons α has not been

properly chosen, 3) the basis function σ is not suitable.

As final remark of this section, we note that the filters

considered are Nonlinear Finite Impulse Response (NFIR)

systems. A NFIR system is guaranteed to be BIBO stable,

but it can be characterized by a large order, and thus by a

large number of parameters. If it is of interest to obtain a

low order filter, the approach proposed in this section can be

applied to identify an optimal direct filter in auto-regressive

form

v̂t = a(p̃t−1)v̂t−1 + b(p̃t)w̃t. (15)

An optimal filter of this form exists if the NFIR optimal filter

(7) admits an LPV state-space realization, see e.g. [16]. The

main advantage of the auto-regressive representation is that a

significantly lower order (number of parameters) is required.

A drawback is that the auto-regressive term a(p̃t)v̂t may

give instability problems.

IV. EXAMPLE

An example of filter design for vehicles yaw rate is

presented.

The knowledge of such a variable is used by Vehicle

Dynamics Control (VDC) systems to improve stability of

the vehicle motion in emergency situations. In order to

generate the required control actions, commercially available

VDC systems use the values of yaw rate, lateral acceleration

and vehicle longitudinal velocity, measured by appropriate

sensors. The cost of the yaw rate sensors alone amounts to

about 1/3 of the overall cost of the VDC system. Thus, the

availability of an accurate yaw rate virtual sensor could allow

a significant reduction in the VDC systems production costs

and consequently leading to a larger diffusion of active safety

systems on commercial cars, even in the segments B and C

cars. The problem of estimating the yaw rate of a real car is

here approached by means of the direct filter design method

presented in Section III.

The lateral dynamics of a vehicle can be described by a

fourth order LPV model, known as a single track model, see

e.g. [6]. The vehicle is modeled as a rigid body of mass m
and moment of inertia Jz around the vertical axis. The state

vector is formed by the yaw rate ψ̇(t), the side-slip angle

β(t), the front axle lateral force Ff (t) and the rear axle

lateral force Fr(t). The manipulated input is the steering

angle δ(t) and d(t) is an unknown disturbance torque. The

constant parameters involved in the model are the distances

between the front and rear axles, a and b, respectively;

the cornering stiffness of the axles cf and cl, and the tire

relaxation lengths lf and lr. p is the vehicle speed, and

corresponds to the time varying parameter.

It is assumed that an accelerometer provides a measure-

ment of the lateral acceleration of the vehicle ay , and the

objective is to recover the yaw rate for stability control

purposes.

The system is described by the following equations set:

mp(t)β̇(t) = Ff (t) + Fr(t) − mp(t)ψ̇(t)

Jzψ̈ = aFf (t) − bFr(t) + d(t)

lf/p(t)Ḟf (t) = −cf

(
β(t) + aψ̇(t)/p(t) + Ff (t) + δ(t)

)

lr/p(t)Ḟr(t) = −cr

(
β(t) − bψ̇(t)/p(t) + Fr(t)

)

ay(t) = (Ff (t) + Fr(t)) /m.
(16)

A set of 2500 data has been generated from a discrete

time equivalent of the single track model, using a sample

time Ts = 2ms, with parameters m = 432.8 kg, Jz =
2697 kgm2, a = 1.13 m, b = 1.57 m, lf = 1 m,

lr = 1 m, cf = 76000 Nm/rad, cr = 95000 Nm/rad.

The system is driven by a random Gaussian steer angle

filtered to a maximum band of 25 Hz, d(t) is white noise

of standard deviation 10 and p(t) is a sum of sinusoids, with

maximum frequency 2.5 Hz, taking values between 20 m/s
and 40 m/s.

The data set has been partitioned in two sets:

Dm = {(pt, δt, at
y, ψ̇

t
), t = 0, . . . , T − 1}

Ds = {(pt, δt, at
y), t = T, . . . , N − 1}

with T = 1500 and N = 2500.

In this example, the problem of estimating the variable vt

= ψ̇(Tst), t = T, ..., N − 1 using the measurements ỹt =
ay(Tst), ũt = δ(Tst), p̃t = p(Tst), t = 0, ..., N − 1, ṽt =
ψ̇(Tst) + ξt, t = 0, ..., T − 1, is considered, where ξt is a

white noise of standard deviation 1e − 3.

Optimal filters of the form (7) and of lengths m =
[4, 5, . . . , 50] have been designed for a discrete equivalent

of model (16), solving the problem (4) for p = 2. These

filters are called OF .

Optimal direct filters of the form (11) and of lengths

m = [10, 20, . . . , 50], identified using data set Dm, have

been designed. Two approaches have been considered.

In the first, the optimal filter Fc has been designed using a

function F̂ of the general nonlinear form. A two layer neural

network with 5 neurons in the hidden layer and sigmoidal

activation function has been taken. The filters obtained by

this approach are called UF .

In the second, the optimal filter Fc has been designed

using a function F̂ = Fa, where Fa is a neural network

of the structured form (12), with 3 neurons in the first layer

and sigmoidal activation function. The filters obtained by this

approach are called SF .

All the filters have been applied to the set Ds. The RMS

errors obtained on the set Ds by the OF filters are reported
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Fig. 1. RMS errors of the optimal filters OF .

in Figure 1. The RMS errors obtained on the set Ds by

the direct filters UF and SF are reported in Table 1. The

estimates provided by the filter OF and the direct filter SF
for m = 30 are compared to the true signal v in figure 2.

From these results, we can see that the estimates provided

by the optimal filters OF are very accurate, despite the large

amplitude of the noise d. The estimates of the direct filters

UF and SF , though presenting deterioration with respect

those of the filters OF , are still satisfactory. Clearly, this

deterioration was expected, since 1) the direct filters do not

use the knowledge of the system, 2) the measurements of v
are corrupted by the noise ξ (this noise does not affect the

estimates of the filters OF ), 3) a relatively small number of

data has been used to identify the direct filters.

It can finally be observed that the filters SF are more

accurate than the filters UF . This shows that using the

information on the LPV structure, as done for the filters of

the form (13), allows sensible improvements of the estimates.

m 10 20 30 40 50

UF 0.0103 0.0097 0.0069 0.0046 0.0122

SF 0.0051 0.0032 0.0026 0.0024 0.0041

Table 1: RMS errors of the optimal direct filters.

V. CONCLUSIONS

Direct identification of filters for LPV systems has been

considered. Within a Set Membership framework, a method

for the design of optimal filters from data has been presented.

An example of filter design for an automotive problem

has been presented to demonstrate the capabilities of the

proposed approach.
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