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Abstract

A consensus control framework for configuration of
multiple underactuated planar rigid bodies is developed.
Following the results by Bullo et al. (2000), we propose
a control law that achieves asymptotic consensus
between the planar rigid bodies. Finally, we present
a numerical example to show efficacy of the proposed
approach.

1. Introduction

There are increasingly many researches in the field
of underactuated systems, i.e., systems with fewer ac-
tuators than the system’s degrees of freedom. Several
methods have been successful to solve certain classes of
underactuated systems’ problem, e.g., [1–6].

One example of underactuated systems is underactu-
ated planar rigid body, e.g., hovercraft. Pettersen and
Egeland [7] proposed a continuous periodic time-varying
feedback control law to exponentially stabilize the con-
figuration, both the position and orientation, of an un-
deractuated surface vessel. The proposed feedback law
is robust to model parameter uncertainty since it does
not depend on exact knowledge of the model parame-
ters.

While the result in [7] only provided a continuous pe-
riodic time-varying feedback law, Mazenc et al. [8] pro-
vided a smooth time-varying state feedbacks. The con-
trol law guaranteed global uniform asymptotic stability
of an underactuated surface vessel. The design of this
control law relies on the backstepping approach.

While the last two papers mentioned above considered
the case where the underactuated surface vessel needs
to reach a certain configuration point, in [9–11] they
considered the case for the underactuated surface vessel
to track any desired trajectory.

Aguiar et al. [9] used nonlinear Lyapunov-based con-
trol algorithm and backstepping approach to do the po-
sition tracking of an underactuated hovercraft. The con-
trol law yields global stability and exponential conver-
gence of the position tracking error to a neighborhood
of the origin that can be made arbitrarily small. They
did the experiments using Caltech Multi-Vehicle Wire-
less Testbed (MVWT). The results showed stability and
reasonable performance in spite of large modelling er-
rors.

Ghommam et al. [10] derived a discontinuous feed-
back control law using backstepping approach to solve
the control problem of uniform global stabilization and
tracking of an underactuated surface vessel.

Aguiar et al. [11] proposed a solution to the trajec-
tory tracking and path following for an underactuated
autonomous vehicle in the presence of parametric mod-
eling uncertainty. They combined backstepping tech-
nique, adaptive switching supervisory control and a non-
linear Lyapunov-based tracking control law to design a
hybrid controller. The controller yields global bound-
edness and convergence of the position tracking error
to a small neighborhood, and robustness to parametric
modeling uncertainty.

In the last decade, a number of researches about mul-
tiple underactuated vehicles has increased, e.g. [12, 13].
The problem they tried to solve is the coordinated path-
following problem of multiple underactuated vehicles
along any given paths while keeping a desired inter-
vehicle formation pattern. They combined Lyapunov
technique and graph theory to design the control law.
To the best of our knowledge, there is no result of planar
rigid bodies’ configuration consensus for the underactu-
ated case.

In this paper, we adopt a method in [2] to achieve con-
figuration consensus of two underactuated planar rigid
bodies without referring to any leader or external ref-
erence. Our idea is to use approximate evolution and
adopt the control law from [2] to bring the configura-
tions and velocities of two underactuated planar rigid
bodies close to each other. From that point, we use an-
other control law from [2] to drive the bodies such that
the differences of configurations and velocities go to zero
as time goes to infinity.

The notation used in this paper is fairly standard.
Specifically, R denotes the set of real numbers, R

n de-
notes the set of n×1 real column vectors, and N0 denotes
the set of nonnegative integers. Furthermore, we write
(·)T for transpose.
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2. Problem Setting

Consider the nonlinear dynamical system representing
underactuated planar rigid bodies given by [14]

Mv̇i(t) =




0

mωi(t)υiy
(t)

−mωi(t)υix
(t)





+ e2ui1(t) + (−he1 + e3)ui2(t),

vi(0) = vi0, t ≥ 0, i = 1, 2, (1)

and the kinematic equations of the planar rigid bodies
given by

q̇i(t) =




1 0 0
0 cos θi(t) − sin θi(t)
0 sin θi(t) cos θi(t)



 vi(t),

qi(0) = qi0, t ≥ 0, i = 1, 2, (2)

where M = diag[J,m,m] ∈ R
3×3, J is the moment of

inertia of the rigid bodies about the center of mass, m is
the mass of the bodies, vi(t) , [ωi(t), υix

(t), υiy
(t)]T ∈

R
3 is the velocity of the body i with respect to the

body-fixed frame, ωi is the angular velocity of the body
i, υix

, υiy
are the translational velocity of the body i,

{e1, e2, e3} denotes the standard basis on R
3, h ∈ R is

the distance between the center of mass B and the point
P (see Figure 2.1) to which the two forces ui1 and ui2 are

applied on body i, ui(t) , [ui1(t), ui2(t)]
T ∈ R

2 is the

force input of the body i, qi(t) , [θi(t), xi(t), yi(t)]
T ∈

R
3 denotes the configuration of the planar rigid body

i with respect to the inertial frame, the coordinate
(xi(t), yi(t)) denotes the position of the center of mass
of the planar rigid body i, and θi(t) is the angle between
the positive x-axis of the inertial frame and the body i
frame.

In the synchronization problem our control objective
is to drive the two planar rigid bodies such that their
velocities v1(t), v2(t) go to 0 and their configurations
q1(t), q2(t) converge to each other without referring to
any leader or external reference.

3. Mathematical Preliminaries

In this section, we give some definitions used in this
paper. Furthermore, we recall our system’s local con-
trollability and the system trajectory’s approximate evo-
lution under small-amplitude forcing [2]. In the last sub-
section, we also recall the inversion algorithm [2] to con-
trol the velocity of the body.

3.1. Definitions

First, qi = [θi, xi, yi]
T be equivalently expressed in the

matrix form Qi ∈ SE(2) as

Qi ,




cos θi − sin θi xi

sin θi cos θi yi

0 0 1



 ,

x

y

u1

u2

bx

by

P

B

h

θ

Inertial frame

Figure 2.1: A planar rigid body in the inertial frame
with two forces applied at the point P with distance h
from the center of mass B. The configuration of this pla-
nar rigid body in the inertial frame is given by (θ, x, y).

to simplify the computation in the following sections.
Furthermore, define v̂ ∈ se(2) as

v̂ = l(v) ,




0 −ω υx

ω 0 υy

0 0 0



 ,

for v , [ω, υx, υy]T, where l(·) maps an element in R
3 →

se(2). The inverse map l−1(·) , (·)∨ maps an element
in se(2) → R

3. Hence, we may write v = (v̂)∨. The Lie
bracket on se(2) of the two vectors v, w ∈ R

3 is given by
the matrix commutation

[v, w] =
(
v̂ŵ − ŵv̂

)∨
.

The symmetric product 〈v : w〉 of the two vectors v,
w ∈ R

3 with respect to M ∈ R
3×3 is given by

〈v : w〉 , −M−1(adT
vMw + adT

wMv),

where the adjoint operator on se(2) is given by

ad(ω,υx,υy) =




0 0 0
υy 0 −ω
−υx ω 0



 .

We can define the exponential map exp(·) by the usual
power series [15] as

exp(v̂) ,

∞∑

k=0

v̂k

k!
,

and the inverse map log(·) of the exponential map Q ,

exp(v̂) [15] as

log(Q) ,

∞∑

k=1

(−1)k+1 (Q− I3)
k

k
.
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Note that exp(·) maps an element in se(2) → SE(2) and
log(·) maps an element in SE(2) → se(2). Using the
symmetric product we can reformulate (1) as

v̇i(t) = −1

2
〈vi(t) : vi(t)〉 + b1ui1(t) + b2ui2(t),

vi(0) = vi0, t ≥ 0, i = 1, 2, (3)

where b1 = 1
m

e2, and b2 = − h
J
e1 + 1

m
e3.

3.2. Local Controllability

This section recalls a nonlinear controllability condi-
tion of the individual planar rigid body. The control-
lability condition presented here allows us to use the
inversion algorithm in Section 3.4 below. Specifically,
consider the kinematic and the kinetic equations of in-
dividual planar rigid body as

q̇(t) =




1 0 0
0 cos θ(t) − sin θ(t)
0 sin θ(t) cos θ(t)



 v(t),

q(0) = q0, t ≥ 0, (4)

v̇(t) = −1

2
〈v(t) : v(t)〉 + b1u1(t) + b2u2(t), v(0) = v0.

(5)

The relevant symmetric products for the system (4),
(5) are given by

〈b1 : b1〉 = 0,

〈b1 : b2〉 =
−h
Jm

e3,

〈b2 : b2〉 =
2h

Jm
e2 =

2h

J
b1.

Note that the matrix [b1, b2, 〈b1 : b2〉] has full rank. Fur-
thermore, the bad symmetric products 〈b1 : b1〉 and
〈b2 : b2〉 are given by linear combinations of b1 and b2
and hence it follows from [2] that the system (4), (5) is
small-time locally controllable (STLC) at zero velocity
with second-order symmetric products. Using this fact,
we follow the input design procedures in [2] for each of
the planar rigid body.

3.3. Approximate Evolution Under Small-

Amplitude Forcing

In this section we recall the behavior of the system
(4), (5) under small-amplitude forcing. Let for any given
quantity y(ǫ), yk denote the kth term in the Taylor series
expansion of y(ǫ) about ǫ = 0. For example, we write
v(t, ǫ) = ǫv1(t) + ǫ2v2(t) +O(ǫ3).

Now consider the force inputs for the individual planar
rigid body of the form

uj(t, ǫ) = ǫu1
j(t) + ǫ2u2

j(t), j = 1, 2,

where 0 < ǫ≪ 1 and u1
j(t), u

2
j(t) areO(1). Furthermore,

define c1(t), c2(t) as

c1(t) ,

2∑

j=1

bju
1
j(t), (6)

c2(t) ,

2∑

j=1

bju
2
j(t), (7)

so that c1(t) and c2(t) are O(1). Then, it follows that

2∑

j=1

bjuj(t, ǫ) =

2∑

j=1

bj(ǫu
1
j(t) + ǫ2u2

j(t))

= ǫc1(t) + ǫ2c2(t). (8)

Next, define the first integral function of h(t) ∈ R
3,

as

h̄(t) ,

∫ t

2kπ

h(τ)dτ, 2kπ < t ≤ 2(k + 1)π, k ∈ N0,

with h̄(0) , 0. Likewise, higher order integrals, as for

example gh(t) =
∫ t

2kπ

∫ s

2kπ
g(τ)dτh(s)ds, are defined re-

cursively.

The following proposition describes the behavior of
the system (4), (5) when forced by small (order of ǫ and
order of ǫ2) amplitude inputs as defined in (8).

Proposition 3.1 Approximate Evolution [2]. For
0 < ǫ≪ 1 and for inputs of the form (8), let (Q(t), v(t))
be the solution of the system (4), (5). Assume that the
initial condition for v(·) satisfies v0 = ǫv1

0 + ǫ2v2
0 , where

v1
0 and v2

0 are constants. Then it follows that

v(t, ǫ) = ǫv1(t) + ǫ2v2(t) + ǫ3v3(t) +O(ǫ4),
(9)

(logQ−1
0 Q(t, ǫ))∨ = x(t, ǫ) = ǫx1(t) + ǫ2x2(t) +O(ǫ3),

(10)

where

v1(t) = v1
0 + c1(t),

v2(t) = v2
0 − 〈v1

0 : v1
0〉
t

2
−
〈
v1
0 : c1(t)

〉

+

(
c2 − 1

2
〈c1 : c1〉

)
(t),

v3(t) = −〈v1
0 : v2

0〉t+ 〈v1
0 : 〈v1

0 : v1
0〉〉

t2

4

+

〈
v1
0 :

〈
v1
0 : c1(t)

〉〉

−
〈
v1
0 :

(
c2 − 1

2
〈c1 : c1〉

)
(t)

〉

−
〈
c1(t) : v2

0

〉
+

1

2

〈
〈v1

0 : v1
0〉t : c1(t)

〉

+
〈
c1 :

〈
v1
0 : c1

〉〉
(t)
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−
〈
c1 :

(
c2 − 1

2
〈c1 : c1〉

)〉
(t),

and

x1(t) = v1
0t+ c1(t),

x2(t) = v2
0t− 〈v1

0 : v1
0〉
t2

4
+

(
c2 − 1

2
〈c1 : c1〉

)
(t)

−
〈
v1
0 : c1(t)

〉
− 1

2

[
v1
0 + c1, v1

0t+ c1
]
(t).

This approximate evolution (9), (10) is valid for either
t being small enough, or t bounded and ǫ ≪ 1 [4]. In
the following sections, we assume that ǫ is small enough
so that (9), (10) are valid for 0 ≤ t ≤ 2π.

3.4. Inversion Algorithm

As we saw in the preceding section, the form of ap-
proximate evolution (9), (10) of (4), (5) is very com-
plex. Since the system (4), (5) is STLC at zero ve-
locity with second-order symmetric products, we follow
the approach in [2] and use the following inversion al-
gorithm. This inversion algorithm finds the force inputs
u1(t), u2(t), 0 ≤ t ≤ 2π, to control the body veloc-
ity. Note that a special periodic funtion (11) below in
the inversion algorithm allow us to simplify the form of
approximate evolution (9), (10).

Inversion Algorithm [2]. Let ϕ = (vd−v0)/ǫ2 ∈ R
3,

where vd ∈ R
3 is any desired velocity at time 2π, and

derive u1(t), u2(t) by taking the following steps:

i) Define the scalar function

ψ(t) =
1√
2π

(
α sinαt− β sinβt

)
, (11)

where α, β, α 6= β, are natural numbers.

ii) Let z1, z2, z12 ∈ R be constants such that

ϕ = z1b1 + z2b2 + z12〈b1 : b2〉. (12)

Note that since b1, b2, 〈b1 : b2〉 are mutually inde-
pendent, z1, z2, z12 can be determined uniquely.

iii) Set

c1(t) = b1u
1
1(t) + b2u

1
2(t), (13)

c2(t) = b1u
2
1(t) + b2u

2
2(t), (14)

where

u1
1(t) =

√
|z12|ψ(t), (15)

u2
1(t) =

1

2π
z1 +

1

4π

2h

J
|z12|, (16)

u1
2(t) = −

√
|z12|sgn(z12)ψ(t), (17)

u2
2(t) =

1

2π
z2. (18)

iv) Finally, set

u1(t) = ǫu1
1(t) + ǫ2u2

1(t), (19)

u2(t) = ǫu1
2(t) + ǫ2u2

2(t). (20)

Using (19), (20), we are able to control the body ve-
locity from v0 at time 0 to vd +O(ǫ4) at time 2π.

4. Control Law

In this section we design control laws to drive the
underactuated vehicles given by (2), (3) such that
‖v1(t)‖ → 0, ‖v2(t)‖ → 0, and ‖(logQ−1

1 (t)Q2(t))
∨‖ →

0, as t → ∞. To achieve this objective, we need two
steps. The first step is to make two bodies close to each
other from arbitrary positions and the second step is to
make two bodies converge to each other. For the first
step, we use the control law in Theorem 4.1 and then
we use the control law in Theorem 4.2 for the second
step. While Theorem 4.1 requires the initial velocities
being 0, Theorem 4.2 requires the initial relative errors
of two bodies to be already small. Because of the re-
quirement of Theorem 4.2, we cannot use this theorem
from the beginning if the initial relative configuration
of both bodies is large even if their initial velocities are
0. On the other hand, Theorem 4.1 cannot guarantee to
make two bodies converge to each other.

Our theorems work as follows. First in Theorem 4.1,
using v1(0), v2(0), and (logQ−1

1 (0)Q2(0))∨, the inver-
sion algorithm finds u1(t), u2(t) as in (19), (20). This
control input will last for 2π units of time. At t =
2π, using the approximated values v1(2π), v2(2π), and
(logQ−1

1 (2π)Q2(2π))∨, the inversion algorithm finds
new u1(t), u2(t) that last for another 2π units of time.
We repeat this procedure until the relative error between
the two bodies is sufficiently small. From this point, we
switch to another control law given in Theorem 4.2 to
make the relative error converge to 0.

Theorem 4.1. Consider the nonlinear dynamical
system given by (2), (3) with initial conditions vi0 = 0,
i = 1, 2. Let 0 < ǫ ≪ 1. Then the control law for the
time interval 2kπ ≤ t < 2(k + 1)π, k ∈ N0, given by

ui1(t) = ǫ
√
|zi12(t)|ψ(t) +

ǫ2

2π
zi1(t) +

ǫ2

4π

2h

J
|zi12(t)|,

(21)

ui2(t) = −ǫ
√
|zi12(t)|sgn(zi12(t))ψ(t) +

ǫ2

2π
zi2(t), (22)

where ψ(·) is given by (11),

zi1(t) = mϕi2(2kπ), 2kπ ≤ t < 2(k + 1)π, (23)

zi2(t) = −J
h
ϕi1 (2kπ), (24)

zi12(t) = −J
2

h2
ϕi1(2kπ) − Jm

h
ϕi3 (2kπ), (25)
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and

ϕ1(2kπ) =




ϕ11

(2kπ)
ϕ12

(2kπ)
ϕ13

(2kπ)





=
v2(2kπ) − v1(2kπ)

ǫ2

+ (logQ−1
1 (2kπ)Q2(2kπ))∨, (26)

ϕ2(2kπ) =




ϕ21

(2kπ)
ϕ22

(2kπ)
ϕ23

(2kπ)





=
v1(2kπ) − v2(2kπ)

ǫ2

+ (logQ−1
2 (2kπ)Q1(2kπ))∨, (27)

guarantees v1(2kπ) = O(ǫ4), v2(2kπ) = O(ǫ4), and
(logQ−1

1 (2kπ)Q2(2kπ))∨ = O(ǫ3) for sufficiently large
k.

Proof. The proof is omitted due to space limitations.
�

Remark 4.1. Although it seems that the magnitude
of the control inputs (21), (22) might be large because
of the division by ǫ2 in (26), (27), the magnitude of
control inputs is in fact always at most order of ǫ. This
is because the velocities v1(t), v2(t) are always at most
order of ǫ2.

The control law in Theorem 4.1 can drive both pla-
nar rigid bodies such that their orientations and veloci-
ties at t = 2kπ are close to each other for k sufficiently
large. This control law cannot guarantee asymptotic
zero velocity for both bodies and asymptotic zero rel-
ative configuration errors. Instead, there are errors of
orders O(ǫ4) and O(ǫ3) in the velocities and the rela-
tive configuration, respectively. Using the control law
in Theorem 4.2 below, we show that we can drive both
planar rigid bodies such that their velocities and the dif-
ferences of their orientation go to 0 as t goes to infinity,
given their initial differences are small enough.

There are two differences between Theorems 4.1
and 4.2. The first difference is instead of using fixed ǫ
in the control law as in Theorem 4.1, Theorem 4.2 uses
time-varying ǫ which is getting smaller as k increases.
This affects the magnitude of control inputs which also
become smaller to control the body velocities to zero.
The second difference is the fact that the way of spec-
ifying the desired velocity ϕi(2kπ), i = 1, 2, in Theo-
rem 4.1 is not uniform over the switching instants when
new u1(t) and u2(t) are recalculated.

Theorem 4.2. Consider the nonlinear dynamical
system given by (2), (3) with
‖[[(logQ−1

1 (0)Q2(0))∨]T, [v1(0) − v2(0)]T]T‖ ≪ 1. Then
the control law for the time interval 2kπ ≤ t < 2(k+1)π,

k ∈ N0, given by

ui1(t) = ǫk
√
|zi12(t)|ψ(t) +

ǫ2k
2π
zi1(t) +

ǫ2k
4π

2h

J
|zi12(t)|,

(28)

ui2(t) = −ǫk
√
|zi12(t)|sgn(zi12(t))ψ(t) +

ǫ2k
2π
zi2(t),

(29)

where ψ(·), zi1(·), zi2(·), zi12 (·) are given by (11), (23)–
(25),




ϕ11

(2kπ)
ϕ12

(2kπ)
ϕ13

(2kπ)



 =






v2(2kπ)
2ǫ2

k

− v1(2kπ)
ǫ2

k

+
(log Q

−1

1
(2kπ)Q2(2kπ))∨

4πǫ2
k

, k even,

− v1(2kπ)
ǫ2

k

, k odd,




ϕ21

(2kπ)
ϕ22

(2kπ)
ϕ23

(2kπ)



 =






v1(2kπ)
2ǫ2

k

− v2(2kπ)
ǫ2

k

+
(log Q

−1

2
(2kπ)Q1(2kπ))∨

4πǫ2
k

, k even,

− v2(2kπ)
ǫ2

k

, k odd,

and

ǫk =






‖[[(logQ−1
1 (2kπ)Q2(2kπ))∨]T,

[v1(2kπ) − v2(2kπ)]T]T‖ 1

2 , k even,
ǫk−1, k odd,

ǫk > 0, guarantees that ‖v1(t)‖ → 0, ‖v2(t)‖ → 0, and
‖(logQ−1

1 (t)Q2(t))
∨‖ → 0 as t→ ∞.

Proof. The proof is omitted due to space limitations.
�

Remark 4.2. The difference of ϕi(2kπ), i = 1, 2, for
k even and k odd in Theorem 4.2 is to make the bodies
closer to each other while at the same time make the
body velocities closer to 0.

5. Illustrative Numerical Example

We present a simulation to illustrate the usefulness of
the theory. We use J = 10 and m = 20 for the matrix
M . The initial configuration for body 1 and body 2
are q10 = [π/2, 0, 0]T and q20 = [π/2, 2, 2]T respectively.
The initial velocities are 0 for both bodies.

In this simulation, we use the control law given by
Theorem 4.1 with ǫ = 0.1 for t ∈ [0, 6π). At t = 6π, we
change our control law with the one in Theorem 4.2. We
kept using this control law until t = 24π. We show the
location of both bodies in Figure 5.1. The body 1 and
the body 2 are plot in yellow and in purple respectively.
We use color gradation to make the figure clearer. The
gradation rule is as k increases, the color become more
vivid. We see that both bodies are converge to each
other. In Figure 5.2, we see that the error decreases
exponentially.

6. Conclusion

In this paper, we proposed consensus control frame-
work to synchronize two underactuated planar rigid

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB17.4

5020



−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

y

Figure 5.1: Location of the two planar rigid bodies

bodies. The control laws are based on approximate evo-
lution under small-amplitude forcing. The control laws
have been applied numerically to illustrate efficacy of
the proposed approach.
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