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Abstract— High-dimensional regression problems are becom-
ing more and more common with emerging technologies. How-
ever, in many cases data are constrained to a low dimensional
manifold. The information about the output is hence contained
in a much lower dimensional space, which can be expressed by
an intrinsic description. By first finding the intrinsic description,
a low dimensional mapping can be found to give us a two step
mapping from regressors to output. In this paper a method-
ology aimed at manifold-constrained identification problems
is proposed. A supervised and a semi-supervised method are
presented, where the later makes use of given regressor data
lacking associated output values for learning the manifold. As
it turns out, the presented methods also carry some interesting
properties also when no dimensional reduction is performed.

I. INTRODUCTION

With new applications emerging, for instance within

medicine and systems biology, system identification and

regression using high-dimensional data has become an in-

teresting field. A central topic in this context is dimension

reduction.

Sometimes, the system itself is such that the data are im-

plicitly constrained to a lower-dimensional manifold, embed-

ded in the higher dimension. In such cases, some regression

algorithms do not suffer of the high dimensionality of the

regressors. However it is common that regression algorithms

assume that the underlying system behaves smoothly. For

manifold-constrained systems this is commonly a restriction.

A less conservative condition is the semi-supervised smooth-

ness assumption [3]. Using the semi-supervised smoothness

assumption the underlying system is assumed to behave

smoothly along the manifold but not necessary from one

part of the manifold to another, even though they are close

in Euclidean distance. The semi-supervised smoothness as-

sumption motivates the computation and use of an intrinsic

description of the manifold as regressors and not the original

regressors. Finding the intrinsic description is a manifold

learning problem [15], [13], [1].

The resulting method is a two-step approach, where in

the first step an intrinsic description of the low-dimensional

manifold is found. Using this description as new regressors,

we apply a regression in a second step in order to find

a function mapping the new regressors to the output (see

Figure 1).

This strategy for regression with manifold-constrained

data was previously discussed in [12]. However, since an

unsupervised manifold learning approach was used to find

the intrinsic description, no guarantee could be given that

the new low-dimensional regressors would give an easy

identification problem. For instance, a high-dimensional lin-

ear problem could be transformed into a low-dimensional

nonlinear problem.

To overcome this problem, the manifold learning step can

be modified to take into account the fact that the intrinsic

description in the next step will be used as regressors in

an identification problem. In this paper we have chosen

to extend a nonlinear manifold learning technique, Locally

Linear Embedding (LLE) [13]. LLE finds a coordinatization

of the manifold by solving two optimization problems. By

extending one of the objective functions with a term that

penalizes any deviation from a given functional relation

between the intrinsic coordinates and the output data, we

can stretch and compress the intrinsic description space in

order to give an as easy as possible mapping between the new

regressors, the intrinsic description, and the output. Also, as

the regressors, in themselves, contain information about the

manifold they are constrained to, all regressors at hand can

be used to find the intrinsic description. To that end, both a

supervised and a semi-supervised extension of LLE will be

proposed.

As it turns out, the idea of stretching and compressing

the regressor space can be useful, not only for dimension

reduction purposes, but also for nonlinear system identifica-

tion problems where no dimensional reduction is performed.

In this way, we can move the nonlinearities from the identi-

fication problem to the problem of remapping the regressor

space, and thus simplifying the identification step.

Fig. 1. Overview of the identification steps for a system having regressors
constrained to a manifold. X is the regressor space with regressor data
constrained to some low-dimensional manifold. Z is a space, with the
same dimension as the manifold, containing the intrinsic description of
the manifold-constrained regressor data. Y is the output space. Common
identification schemes try to find the function f : X → Y by using the
original regressors. However, the same information about the outputs can be
obtained from the low-dimensional regressor space Z. With a wise intrinsic
description, the low-dimensional function f2 will be considerably easier to
find than f .

Manifold learning algorithms have previously been used

for classification, see for example [19]. An extension to

the Support Vector Machines (SVM) to handle regressors

constrained to manifolds has also been developed [2]. For
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regression, dimension reduction has been used to find low-

dimensional descriptions of data see [9], [10], [4], [11].

However, not so much has been done concerning regression

with regressors constrained to manifolds. An extension of

the manifold-adjusted SVM classification framework to re-

gression is presented as well in [2]. Related ideas to the

ones presented in this paper have also independently been

developed by [17].

The paper is organized as follows: The problem is moti-

vated and stated in Sections II and III, respectively. LLE

is presented in Section IV and extended in Sections V

and VI. The extensions are exemplified and compared to

various regression methods in Section VII. We finish with

conclusions in Section VIII.

II. MANIFOLD-CONSTRAINED DATA

Data constrained to manifolds often appear in areas such

as medicine and biology, signal processing and image pro-

cessing etc. Data are typically high-dimensional with static

constraints giving relations between certain dimensions.

A specific example could be high-dimensional data com-

ing from a functional Magnetic Resonance Imaging (fMRI)

scan [14], [16], [7]. For instance, suppose that the brain

activity in the visual cortex is measured using an MRI

scanner. The activity is given as a 80×80×22 array, each

element giving a measure of the activity in a small volume

(voxel) of the brain at a specific time. Furthermore, suppose

that we would like to estimate in what direction a person

is looking. Since this direction can be described using only

one parameter, the measurements should (assuming that we

can preprocess the data and get rid of most of the noise)

be constrained to some manifold. For further discussions on

fMRI data and manifolds, see [14], [16], [7].

Another example of data constrained to a manifold is

images of faces [18]. An image can be seen as a high-

dimensional point (every pixel becomes a dimension) and

because every face has a nose, two eyes etc. the faces, or

points, will be constrained to some manifold.

There is also a connection to Differential Algebraic Equa-

tions, DAEs [8]. In DAEs, systems are described by a combi-

nation of differential equations and algebraic constraints. Due

to the latter constraints, the variables of a system governed

by a DAE will naturally be forced to belong to a manifold.

III. PROBLEM FORMULATION

Let us assume that we are given a set of estimation data

{yest,t , xest,t}Nest
t=1 generated from

yt = f0(xt)+ et ,

where f0 is a smooth unknown function, f0 : R
nx → R

ny ,

and et is i.i.d. white noise. Let xest,t be constrained to some

nz-dimensional manifold defined by

g(xt) = 0, ∀t, g : R
nx → R

nx−nz . (1)

Given a new set of regression vectors xpre,t , t = 1, . . . ,Npre,

satisfying the constraint, what would be the best way to

predict the associated output values? We will in the following

use subindex:

• “est” for data for which both regressors and associated

outputs are known.

• “pre” for data with unknown outputs whose values

should be predicted.

To facilitate, we use the notation x = [x1, . . . ,xN ], for a matrix

with the vectors xi as columns and x ji for the jth element

in xi. Throughout the paper it will also be assumed that the

dimension of the manifold given by (1) is known. Choosing

the dimension can be seen as a model structure selection

problem, similar to e.g. model order selection.

IV. LOCALLY LINEAR EMBEDDING

For finding intrinsic descriptions of data on a manifold,

we will use the manifold learning technique Locally Linear

Embedding (LLE) [13]. LLE is a manifold learning technique

which aims at preserving neighbors. In other words, given

a set of points {x1, . . . ,xN} residing on some nz-dimensional

manifold in R
nx , LLE aims to find a new set of coordinates

{z1, . . . ,zN}, zi ∈ R
nz , satisfying the same neighbor-relations

as the original points. The LLE algorithm can be divided

into two-steps:

Step 1: Define the wi j:s – the regressor coordinatization

Given data consisting of N real-valued vectors xi of

dimension nx, the first step minimizes the cost function

ε(w) =
N

∑
i=1

∥

∥

∥

∥

∥

xi −
N

∑
j=1

wi jx j

∥

∥

∥

∥

∥

2

(2a)

under the constraints
{

∑
N
j=1 wi j = 1,

wi j = 0 if ‖xi − x j‖ > Ci(K) or if i = j.
(2b)

Here, Ci(K) is chosen so that only K weights wi j become

nonzero for every i. In the basic formulation of LLE, the

number K and the choice of lower dimension nz ≤ nx are

the only design parameters, but it is also common to add a

regularization

Fr(w) ,
r

K

N

∑
i=1

[wi1, . . . ,wiN ]







wi1

...

wiN







N

∑
j:wi j 6=0

||x j − xi||2

to (2a), see [13].

Step 2: Define the zi j:s – the manifold coordinatization

In the second step, let zi be of dimension nz and minimize

Φ(z) =
N

∑
i=1

∥

∥

∥

∥

∥

zi −
N

∑
j=1

wi jz j

∥

∥

∥

∥

∥

2

(3a)

with respect to z = [z1, . . . ,zN ], and subject to

1

N

N

∑
i=1

ziz
T
i = I (3b)

using the weights wi j computed in the first step. The solution

z to this optimization problem is the desired set of low-

dimensional coordinates which will work as an intrinsic
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description of the manifold for us. By expanding the squares

we can rewrite Φ(z) as

Φ(z) =
N

∑
i, j

(δi j −wi j −w ji +
N

∑
l

wliwl j)z
T
i z j

,
N

∑
i, j

Mi jz
T
i z j =

nz

∑
k

N

∑
i, j

Mi jzkizk j = Tr(zMzT )

with M a symmetric N × N matrix with the i jth element

Mi j. The solution to (3) is obtained by using Rayleigh-

Ritz theorem [6]. With νi the unit length eigenvector of M

associated with the ith smallest eigenvalue,
[

ν1, . . . ,νnz

]T
= argmin

z
Φ(z) s.t. zzT = NI.

LLE is an unsupervised method that will find an intrinsic

description without using any knowledge about yt . However,

since our purpose is to use the intrinsic description as new

regressors, there might be better coordinatizations of the

manifold, that could be found by taking observed output

values into account.

V. SMOOTHING USING WEIGHT DETERMINATION BY

MANIFOLD REGULARIZATION (WDMR)

In this section, we extend LLE by including the knowledge

of observed outputs in order to get a description that will

facilitate a subsequent identification step. The result will

be a smoothing filter with a weighting kernel adjusted to

the manifold-constrained regressors. To avoid poor intrinsic

descriptions, we modify the optimization problem (3) in the

second step of the LLE algorithm into

min
z

λTr(zMzT )+(1−λ )||yest − f2(z)||2F (4)

subject to zzT = NestI.

Here, || · ||F is the Frobenius norm and f2 is a function

mapping from the intrinsic description, zt , to the output, yt ,

see Figure 1. The parameter λ is a design parameter which

can be set to values between 0 and 1. λ = 1 gives the same

intrinsic description as LLE and λ = 0 gives an intrinsic

description satisfying f2(zt) = yt . The function f2 can be:

• Chosen beforehand.

• Numerically computed, by for example alternating be-

tween minimizing (4) w.r.t. zt and f2. However, it is

unclear if optimizing over f2 would improve the results

or if there is enough flexibility with a fixed f2.

We choose to fix f2(zt) = zt
1 and believe that the intrinsic

description will adapt to this. Using this particular choice,

the constraint on zt can be relaxed since the second term

of (4) (1− λ )||yest − f2(z)||2F will keep zt from becoming

identically zero. The problem is then simplified considerably

while many of the properties are still preserved.

The zt coordinate now acts as an estimate of yt and we

therefore write

ŷ = argmin
z

λTr(zMzT )+(1−λ )||yest − f2(z)||2F (5)

1The ny first components of zt if nz > ny. In the continuation we assume
nz = ny. However, expressions can be generalized to hold for nz > ny with
minor adjustments.

which can be shown to be minimized by

ŷT
est = (1−λ )(λM +(1−λ )I)−1

yT
est.

ŷest becomes a smoothed version of yest. The filtering method

takes into account that the output is associated with some

regressors and aims to make two outputs close to each other

if associated regressors are close. The design parameter λ

reflects how much we rely on the measured outputs. For a

λ = 1, the information in the measured output is considered

worthless. Using a λ = 0, the output is thought to be noise-

free and obtained as the estimate from the filter.

A nice way to look at the two-step scheme is by seeing the

term Tr(zMzT ) in (5) as a regularization (cf. ridge regression

[5]). The regularization incorporates the notion of a manifold

and makes outputs similar if their regressors are close on the

manifold, well consistent with the semi-supervised smooth-

ness assumption. Since the scheme produce a weighting-

kernel defined by (λM +(1−λ )I)−1
we name the algorithm

Weight Determination by Manifold Regularization (WDMR).

We summarize the WDMR filter in Algorithm 1.

Algorithm 1 WDMR smoothing filter

Let Nest be the number of estimation regressors. For a chosen

K, r and λ ,

1) Find the weights wi j minimizing

Nest

∑
i=1

∥

∥

∥

∥

∥

xi −
Nest

∑
j=1

wi jx j

∥

∥

∥

∥

∥

2

+Fr(w),

subject to

{

∑
Nest
j=1 wi j = 1,

wi j = 0 if |xi − x j| > Ci(K) or if i = j.

2) With Mi j = δi j − wi j − w ji + ∑
Nest
k wkiwk j the filtered

output is given by

ŷT = (1−λ )(λM +(1−λ )I)−1
yT

est.

VI. REGRESSION USING WEIGHT DETERMINATION BY

MANIFOLD REGULARIZATION (WDMR)

In this section we examine the possibilities to extend LLE

to regression. The WDMR filter is a smoothing filter and can

therefore be used to reduce noise from measurements. With

new regressors at hand, the filtered outputs can be utilized to

find estimates of the outputs. To generalize to regressors with

unknown outputs nearest neighbor or an affine combination

of the closest neighbors could for example be used.

With xt constrained to some manifold, however, also

the regressors xt themselves, regardless of knowledge of

associated output yt , contain information about the manifold.

We could therefore use this information and include all

regressors at hand, even though the output is unknown,

when trying to find an intrinsic description. As we will see,

including regressors with unknown outputs also gives us a

way to generalize and compute an estimate for their outputs.

Hence we apply the first step of the LLE algorithm (2) to

all regressors, both xest and xpre. The optimization problem

(3) in the second step of the LLE algorithm takes the form
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min
zest,zpre

λTr([zest zpre]M

[

zT
est

zT
pre

]

)+(1−λ )||yest− f2(zest)||2F (6)

subject to [zest zpre][zest zpre]
T = (Nest +Npre)I.

As for the WDMR filter, f2(zt) = zt is an interesting

choice. Relaxing [zest zpre][zest zpre]
T = (Nest + Npre)I using

the same motivation as in the WDMR filter, (6) has a solution
[

ŷT
est

ŷT
pre

]

=(1−λ )

(

λM+(1−λ )

[

INest×Nest 0Nest×Npre

0Npre×Nest0Npre×Npre

])−1[
yT

est

0Npre×ny

]

.

Notice that we get an estimate of the unknown outputs

along with the filtered estimation outputs. The algorithm

is as for the WDMR filter, an algorithm for computing

a weighting-kernel. The kernel account for the manifold

and is well consistent with the semi-supervised smoothness

assumption. We summarize the WDMR regression algorithm

in Algorithm 2.

Algorithm 2 WDMR Regression

Let xt be the tth element in [xest,xpre], Nest the number of

estimation regressors and Npre the number of regressors for

which a prediction is searched. For a chosen K, r and λ ,

1) Find the weights wi j minimizing

Nest+Npre

∑
i=1

∥

∥

∥

∥

∥

xi −
Nest+Npre

∑
j=1

wi jx j

∥

∥

∥

∥

∥

2

+Fr(w),

subject to

{

∑
Nest+Npre

j=1 wi j = 1,

wi j = 0 if |xi − x j| > Ci(K) or if i = j.

2) With Mi j = δi j −wi j −w ji + ∑
Nest+Npre

k wkiwk j the esti-

mated output is given by
[

ŷT
est

ŷT
pre

]

=(1−λ )

(

(λM)+(1−λ )

[

INest×Nest 0Nest×Npre

0Npre×Nest0Npre×Npre

])−1[
yT

est

0Npre×ny

]

.

VII. EXAMPLES

To illustrate the WDMR smoothing filter and regression

algorithm, four examples are given. The three first examples

illustrates the ability to deal with regressors on manifolds and

the last example shows the algorithm without making use

of the built-in dimension reduction property. Comparisons

with classical identification approaches, without any dimen-

sional reduction, and LapRLSR [2], adjusted for manifold-

constrained data, are also given.

Example 1: Consider the system

x1,t = 8νt cos8νt ,

x2,t = 8νt sin8νt ,

yt =
√

x2
1,t + x2

2,t = 8νt .

Assume that the output yt is measured with some measure-

ment error, i.e.,

ym
t = yt + et , et ∼ N (0,σ2

e )

and that a set of regressor data is generated by the system

by ν-values uniformly distributed in the interval [2,3.2].
The regressors, [x1,t x2,t ], are situated on a one-dimensional

manifold, a spiral. Figure 2 shows 25 regressors along with

associated measured outputs. Even though the dimensionality

is not an issue in this particular example, the manifold-

constrained regression data makes it a suitable example.

−20

0

20

−20

0

20

2

2.5

3

3.5

x1,est
x2,est

ym e
s
t

Fig. 2. Estimation data for Example 1. The measured outputs, showed
with ’∗’, were measured from the underlying system (dashed line) using
σe = 0.07.

Using 25 labeled regressors (output measurements dis-

torted using σe = 0.07), the WDMR framework was applied

to predict the outputs of 200 validation regressors. The

performance of the prediction was evaluated by computing

the mean fit2 for 50 examples, like the one just described.

The result is summarized in Table I. For all 50 experiments

K = 11, r = 10 and λ = 0.9. A comparison to LapRLSR

[2], which also adjusts to manifolds, is also given. Figure 3

shows the prediction computed in one of the 50 runs.

−20

0

20

−20

0

20

2

2.5

3

3.5

x1,val
x2,val

ŷ v
a
l

Fig. 3. Validation regressors together with predicted outputs for Example 1.
The function from which the estimation data was measured is shown with
a dashed line.

2 f it = (1− ‖y−ŷ‖
‖y− 1

N ∑t yt‖
)×100
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Figure 4 shows the weighting kernel associated with a

validation regressor for WDMR regression. It is nice to see

how the kernel adapts to the manifold.

0 10 20 30 40

0

0.1

0.2

euclidian distance
0 40 80 120 160

0

0.1

0.2

geodesic distance

Fig. 4. Weighting kernel associated with a validation regressor used in
Example 1. Left figure: Kernel as a function of Euclidean distance. Right
figure: Kernel as a function of geodesic distance.

To test the smoothing properties of the WDMR frame-

work, a WDMR smoothing filter (K = 4, r = 10 and λ = 0.7)

and a Gaussian filter (weighting together 3 closest neighbors

and the measurement itself) were applied to 50 labeled

regressors (output measurements distorted using σe = 0.1).

Figure 5 shows the filtered outputs. The Gaussian filter

runs into problems since it weights together the 3 closest

neighbors, not making use of the manifold. The WDMR

filter, on the other hand, adjusts the weighting kernel to the

manifold and thereby avoid to weight together measurements

from different parts of the manifold.

2 2.2 2.4 2.6 2.8 3 3.2
2

2.4

2.8

3.2

ŷ,
y

ν

Fig. 5. Outputs filtered by WDMR and a Gaussian filter in Example 1.
WDMR filter (thin solid line), Gaussian filter (thick solid line) and noise
free outputs (dashed line).

Example 2: To exemplify the behavior for a high-

dimensional case, the previous example was extended as

follows. x1,t and x2,t from Example 1 were used to compute

[x̃1, x̃2, x̃3, x̃4, x̃5, x̃6]

= [x2ex1 , x1ex2 , x2e−x1 , x1e−x2 , log |x1|, log |x2|],
(t has been neglected for simplicity) which were used as the

new regressors. Using the same estimation and validation

procedure (Nest = 25, Nval = 200, σe = 0.07) as in Example 1,

WDMR regression was applied to predict the unknown

outputs of the validation regressors. The result is shown in

Table I using (K = 16, r = 10, λ = 0.999).

Note that in this example the LLE algorithm reduces the

dimension from six to one compared to from two to one in

the previous example.

Example 3: We mentioned fMRI data as an example of

manifold-constrained data in the introduction. The dimen-

sionality and the signal-to-noise ratio make fMRI data very

tedious to work with. Periodic stimulus is commonly used to

be able to average out noise and find areas associated with

the stimulus. However, in this example, measurements from

an 8× 8× 2 array covering parts of the visual cortex were

gathered with a sampling period of 2 seconds. To remove

noise, data was prefiltered by applying a spatial and temporal

Gaussian filter. The subject in the scanner was instructed to

look away from a flashing checkerboard covering 30% of the

field of view. The flashing checkerboard moved around and

caused the subject to look to the left, right, up and down.

Using an estimation data set (40 time points, 128 dimensions)

and a validation set of the same size, the WDMR regression

algorithm was tuned (K = 6, r = 10−6,λ = 0.2). The output

was chosen to 0 when the subject was looking to the right,

π/2 looking up, π looking to the left and −π/2 looking

down. The tuned WDMR regression algorithm could then

be used to predict the direction in which the subject was

looking. The result from applying WDMR regression to a

test data set is shown in Figure 6.

t(s)0 20 60 80

−π/2

0

π/2

π

Fig. 6. WDMR regression applied to brain activity measurements (fMRI)
of the visual cortex in order to tell in what direction the subject in the
scanner was looking, Example 3. Dashed line shows the direction in which
the subject was looking (adjusted in time for the time delay expected) and
solid line, the predicted direction by WDMR regression.

Example 4: Previous examples have all included dimen-

sional reduction. However, nothing prevents us from apply-

ing the WDMR framework to an example where no dimen-

sional reduction is necessary. The dimensional reduction is

then turned into a simple stretching and compression of the

regressor space. Data was generated from

ym
t = 0.08x4

t + et (7)

where xt was sampled from a uniform distribution
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TABLE I

RESULTS FOR EXAMPLE 1, 2 AND 4. THE MEAN FIT (BASED ON 50

EXPERIMENT) FOR WDMR REGRESSION, AFFINE COMBINATION, NARX

WITH SIGMOIDNET OF DIFFERENT ORDERS (ONLY THE BEST

PERFORMING NARX IS SHOWN) AND LAPRLSR.

Ex. WDMR affine NARX LapRLSR
Regression comb.

1 75.7% 54.7% 57.0% 66.6%
2 80.2% 72.3% 41.9% 57.4%
4 74.5% 51.1% 74.7%

U(−10,10) and et ∼ N (0,σ2
e ), σe =

√
30. Table I shows

the result applying WDMR regression with Nest = 10, K =
24, r = 106 and λ = 0.9.

To exemplify the smoothing properties of the WDMR

filter, 35 measurements were generated using (7) with σe =√
60. Figure 7 shows the measured output along with the

filtered version.

−10 −5 0 5 10
−200

0

200

400

600

800

xest

ym e
st
,ŷ

e
st

Fig. 7. Measured outputs together with filtered outputs (WDMR filter)
for Example 4. ∗ marks the 35 measurements, ◦ marks the filtered
measurements. Dashed line: the function which was used to generate the
measurements.

VIII. CONCLUSIONS

The paper discusses an emerging field within system

identification. High-dimensional data sets are becoming more

and more common with the development of new technologies

in various fields. However, data are commonly not filling up

the regressors space but are constrained to some embedded

manifold. Finding the intrinsic description of the regressors,

this can be used as new regressors when finding the mapping

between regressors and the output. Furthermore, in order

to find an as good intrinsic description of the manifold as

possible, we could use all regression vectors available, even

if the associated output might be unknown.

Proposed is a two-step approach suitable for manifold-

constrained regression problems. The first step finds an

intrinsic description of the manifold-constrained regressors,

and the second maps the new regressors to the output. A

filter and regression version of the approach were discussed

and exemplified with good results.

The approach showed promising results even without

utilizing the built in dimensionality reduction property. The

first step is then turned into a stretching and compression of

the regressor space. This can be seen as a relocationing of

the nonlinearity to the regression space.
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