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Abstract— In this paper, a decoupled multiple model approach
is used in order to cope with the state estimation of uncertain
nonlinear systems. The proposed decoupled multiple model
provides flexibility in the modelling stage because the dimension
of the submodels can be different and this constitutes the main
difference with respect to the classically used multiple model
scheme. The state estimation is performed using a Proportional
Integral Observer (PIO) which is well known for its robustness
properties with respect to uncertainties and perturbations. The
Lyapunov second method is employed in order to provide
sufficient existence conditions of the observer, in LMI terms,
and to compute the optimal gains of the PIO. The effectiveness
of the proposed methodology is illustrated by a simulation
example.

I. INTRODUCTION

In many real world engineering applications, the knowledge

of the system state is often required not only for control

purpose but also for monitoring and fault diagnosis. In

practice however, the measurements of the system state can

be very difficult or even impossible, for example when an

appropriate sensor is not available or economically viable.

Model-based state estimation is a largely adopted strategy

used in order to cope with this important problem. Typically

a state estimation is provided by means of an observer whose

inputs are the inputs and the outputs of the system and the

outputs are the estimated states. Note that the structure of an

observer is based on the mathematical model of the consid-

ered system. Therefore, the accuracy of the state estimation

depends on the accuracy of the used mathematical model

and the quality of the employed measurements. However, a

mathematical model is an abstract representation of the real

world and it only provides an approximation to dynamic

behaviours of the actual system. Consequently, modelling

errors between the system and its model are unavoidable.

Besides, the employed measurements are also affected by

external disturbances due to the interactions between the

system and its environment.

Hence, many efforts have been made in the past two

decades to improve robustness of the state estimation of

linear systems affected by disturbances and parametric un-

certainties (e.g. in [1]–[3] norm-bounded uncertainties are

considered). However, dynamic behaviour of most of real

systems is nonlinear and consequently a linear model is not
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able to provide a good characterisation of the system in

the whole operating range. On the other hand, the observer

design problem for generic nonlinear models is delicate and

so far this problem remains unsolved in a general way.

Multiple model approach is an appropriate tool for mod-

elling complex systems using a mathematical model which

can be used for analysis, controller and observer design. The

basis of the multiple model approach is the decomposition

of the operating space of the system into a finite number

of operating zones. Hence, the dynamic behaviour of the

system inside each operating zone can be modelled using a

simple submodel, for example a linear model. The relative

contribution of each submodel is quantified with the help of a

weighting function. Finally, the approximation of the system

behaviour is performed by associating the submodels and

by taking into consideration their respective contributions.

Note that a large class of nonlinear systems can accurately

be modelled using multiple models.

The choice of the structure used to associate the submodels

constitutes a key point in the multiple modelling framework.

Indeed, the submodels can be aggregated using various

structures [4]. Classically, the association of submodels is

performed in the dynamic equation of the multiple model

using a common state vector. This model, known as Takagi-

Sugeno multiple model, has been initially proposed, in a

fuzzy modelling framework, by Takagi and Sugeno [5] and

in a multiple model modelling framework by Johansen and

Foss [6]. This model has been largely considered for analysis,

modelling, control and state estimation of nonlinear systems

(see among others [7]–[9] and references therein).

In this paper, an other possible way for building a multiple

model is employed. The used model, known as decoupled

multiple model, has been suggested in [4] and results of the

association of submodels only in the output equation of the

multiple model. Note also that this multiple model has been

successfully employed in modelling [10], [11], control [12]–

[14] and state estimation [15], [16] of nonlinear systems.

The main feature of the decoupled multiple model is that

submodels of different dimensions (e.g. number of states)

can be used. This fact introduces some flexibility degrees in

the modelling stage in particular when the model is obtained

using a black box modelling strategy. Indeed, the dimensions

of the submodels can be well adapted to each operating zone

and consequently the total number of parameters necessary

for describing the system can be reduced.

This paper deals with the design of a Proportional-Integral

Observer (PIO) for a class of nonlinear systems modelled

by a decoupled multiple model with parameter uncertainties.
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The parameter uncertainties are assumed to be unknown,

time-varying and norm bounded. With respect to the classic

proportional observer, the PIO offers more additional degrees

of freedom which can be used for improving its robustness

properties with respect to perturbations and imperfections in

the model (details are given in section III). The PIO design

problem consists in finding the gains of the observer such that

the state estimation error converges toward zero or at least

remains globally bounded for all admissible uncertainties

and perturbations. Furthermore, the PIO design based on the

multiple model representation does not seem to be reported

previously to the best authors’ knowledge.

The outline of this paper is as follows. Discussion about

decoupled multiple model is proposed in section II. In section

III, the PIO design problem is investigated and the gains

of the observer are obtained by LMI optimization. Finally,

in section IV, a simulation example illustrates the state

estimation of a decoupled multiple model.

II. ON THE DECOUPLED MULTIPLE MODEL

REPRESENTATION

In this paper, an uncertain nonlinear system described by

a decoupled multiple model is considered. The state space

representation of this multiple model is given by:

ẋi(t) = (Ai + ∆Ai)xi(t)+ (Bi + ∆Bi)u(t)+ Diw(t) , (1a)

yi(t) = Cixi(t) , (1b)

y(t) =
L

∑
i=1

µi(ξ (t))yi(t)+Ww(t) , (1c)

where xi ∈ R
ni and yi ∈ R

p are respectively the state vector

and the output of the ith submodel; u ∈ R
m is the input,

y ∈ R
p the output and w ∈ R

r the perturbation. The matrices

Ai ∈ R
ni×ni , Bi ∈ R

ni×m, Di ∈ R
ni×r, Ci ∈ R

p×ni and

W ∈ R
p×r are known and appropriately dimensioned. The

parametric uncertainties in the system are represented by

matrices ∆Ai and ∆Bi (details are given in section II-A).

The complete partition of the operating space of the system

is performed using a characteristic variable of the system

called decision variable ξ (t) that is assumed to be known and

real-time available (e.g. the inputs and/or exogenous signals).

Note that the contribution of the submodels are quantified by

the weighting functions µi(ξ (t)) which are associated with

each operating zone. They satisfy the following convex sum

constraints:

L

∑
i=1

µi(ξ (t)) = 1 and 0 ≤ µi(ξ (t)) ≤ 1 , ∀i = 1...L, ∀t. (2)

Thanks to the above properties, the contributions of several

submodels can be taken into account simultaneously and

therefore the dynamic behaviour of the multiple model can

be truly nonlinear instead of a piecewise linear behaviour.

Note that the contributions of the submodels are taken into

account via a weighted sum in the output equation of the

multiple model. Consequently, dimensions of the submodels

can be different and therefore this multiple model form

is suitable for black box modelling of complex systems

with variable structure and/or variable complexity in each

operating zone. The model parameters can be obtained from

a set of measured input and output data using appropriate

black box identification tools proposed for instance in [10],

[11], [17].

Remark 1: It should be mentioned that the outputs yi(t)
of the submodels are intermediary modelling signals only

used in order to provide a representation of the real system

behaviour. The submodel outputs yi(t) are internal signals

of the multiple model. They are not physically available

and consequently no measurement is possible. Hence, they

cannot be employed for driving an observer. Only the global

output y(t) of the multiple model can be used for this

purpose.

A. Model uncertainties

The parametric uncertainties in the system are represented

by the following norm-bounded matrices:

∆Ai = µi(ξ (t))MiFi(t)Ni , (3)

∆Bi = µi(ξ (t))HiSi(t)Ei , (4)

where Mi, Ni, Hi and Ei are known constant matrices of

appropriate dimensions and Fi(t) and Si(t) are unknown,

real and possibly time-varying matrices with Lebesgue-

measurable elements satisfying:

FT
i (t)Fi(t) ≤ I and ST

i (t)Si(t) ≤ I ∀t . (5)

Note that the uncertainties of each submodel are taken into

consideration according to the validity degree of each sub-

model via its associated weighting function µi(ξ (t)). Indeed,

the uncertainties of a submodel can be neglected when its

respective contribution is not taken into consideration for

providing the overall multiple model output.

Notations: the following notations will be used all along this

paper. P > 0 (P < 0) denotes a positive (negative) definite

matrix P; XT denotes the transpose of matrix X , I is the

identity matrix of appropriate dimension and diag{A1, ...,An}
stands for a block-diagonal matrix with the matrices Ai on

the main diagonal. The L2−norm of a signal, quantifying

its energy is denoted and defined by ‖e(t)‖2
2 =

∞
∫

0

eT (t)e(t)dt.

Finally, we shall simply write µi(ξ (t)) = µi(t).

III. ON THE PROPORTIONAL-INTEGRAL OBSERVER

The conventional Luenberger or proportional observer only

uses a proportional correction injection term given by the

output estimation error. In the PIO an additional injection

term z(t), given by the integral of the output estimation error,

is included in the dynamic equation of the observer. Thanks

to this additional degree of freedom some robustness degrees

of the state estimation with respect to the system uncertain-

ties and perturbation are introduced [1], [18], [19]. The PIO

has also been successfully employed in the synchronization

of a chaotic system by [20]. The extension of the PIO design,

based on dissipativity framework, to a particular nonlinear
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system whose non linearity is assumed to satisfy a sector

bounded constraint, has been recently proposed in [21].

In this section, sufficient conditions for ensuring conver-

gence and optimal disturbance attenuation of the estimation

error are established in LMI terms [22] using the Lyapunov

method. Note that the classic observer design cannot be

employed directly in the multiple model framework because

the interaction between submodels must be taken into con-

sideration in the observer design procedure for ensuring the

observer stability for any blend between the submodels.

Firstly new notation of the decoupled multiple model

needed to design a PIO is introduced. The suggested PIO

is then presented and its design is proposed by introducing

some H∞ performances.

A. Augmented form of the decoupled multiple model

Consider the following augmented state vector:

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L (t)

]T
∈ R

n, n =
L

∑
i=1

ni (6)

and the supplementary variable z(t) =
t
∫

0

y(ξ )dξ needed for

the PIO design. Thus, the decoupled multiple model (1) may

be rewritten in the following compact form:

ẋ(t) = (Ã+ ∆Ã)x(t)+ (B̃+ ∆B̃)u(t)+ D̃w , (7a)

ż(t) = C̃(t)x(t)+Ww(t) , (7b)

y(t) = C̃(t)x(t)+Ww(t) , (7c)

where
Ã = diag{A1 · · · Ai · · · AL} , (8)

B̃ =
[

B1
T · · · Bi

T · · · BL
T
]T

, (9)

D̃ =
[

D1
T · · · Di

T · · · DL
T
]T

, (10)

C̃(t) =
L

∑
i=1

µi(t)C̃i , (11)

C̃i =
[

0 · · · Ci · · · 0
]

(12)

with the parametric uncertainties given by:

∆Ã =
L

∑
i=1

µi(t)M̃iFi(t)Ñi , (13)

∆B̃ =
L

∑
i=1

µi(t)H̃iSi(t)Ei , (14)

M̃i =
[

0 · · · Mi
T · · · 0

]T
, (15)

Ñi =
[

0 · · · Ni · · · 0
]

, (16)

H̃i =
[

0 · · · Hi
T · · · 0

]T
. (17)

Finally, the equations (7) can be rewritten in the following

augmented form:

ẋa(t) = (Ãa(t)+C1∆ÃC
T

1 )xa(t)+C1(B̃+ ∆B̃)u(t)

+ D̃aw(t) , (18a)

y(t) = C̃(t)C
T

1 xa(t)+Ww(t), (18b)

z(t) = C
T

2 xa(t) , (18c)

where

xa(t) =

[

x(t)
z(t)

]

, Ãa(t) =

[

Ã 0

C̃(t) 0

]

, D̃a =

[

D̃

W

]

,

C1 =
[

I 0
]T

, C2 =
[

0 I
]T

.

Let us notice that, by using the convex properties of the

weighting functions, the matrix Ãa(t) can be rewritten as:

Ãa(t) =
L

∑
i=1

µi(t)Ai , (19)

where

Ai =

[

Ã 0

C̃i 0

]

. (20)

B. PIO structure

The state estimation of the decoupled multiple model (18) is

achieved by using the following PIO:

˙̂xa(t) = Ãa(t)x̂a(t)+C1B̃u(t)+ KP(y(t)− ŷ(t))

+KI(z(t)− ẑ(t)) , (21a)

ŷ(t) = C̃(t)C
T

1 x̂a(t) , (21b)

ẑ(t) = C
T

2 x̂a(t) (21c)

which has a similar structure to the PIO used in [20]. Notice

that the use of the auxiliary integral signal z(t) in the dynamic

equation is at the origin of the designation Proportional-

Integral Observer. The matrix KI introduces a freedom degree

in the observer design.

C. Design of the PIO

Consider the state estimation error defined by:

ea(t) = xa(t)− x̂a(t) (22)

and its dynamics by:

ėa(t) = (Ãa(t)−KPC(t)C
T

1 −KIC
T

2 )ea(t)+C1∆Ãx(t)

+ C1∆B̃u(t)+ (D̃a−KPW )w(t) . (23)

Finally, (7a) and (23) can be gathered as follows:

ε̇(t) = Aobs(t)ε(t)+ Φw̄(t) , (24)

where

ε(t) =
[

eT
a (t) xT (t)

]T
, (25)

w̄(t) =
[

wT (t) uT (t)
]T

, (26)

Aobs(t) =

[

Ãa(t)−KPC(t)C
T

1 −KIC
T

2 C1∆Ã

0 Ã+ ∆Ã

]

,(27)

Φ =

[

D̃a −KPW C1∆B̃

D̃ B̃+ ∆B̃

]

. (28)

Notice that the proportional gain KP can be used to reduce

the impact of the perturbation on the estimation error ea(t).
On the other hand, the observer dynamics can be improved

with the help of the integral gain KI . Note also that, from

equation (24), ε(t) is stable if and only if the decoupled

multiple model (7) with admissible uncertainties ∆Ã is sta-

ble and the observer gains KP and KI are chosen so that

Ãa(t)−KPC(t)C
T

1 −KIC
T

2 is also stable. In the sequel, the

two following assumptions will be considered:
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Assumption 1: The decoupled multiple model (7) with

admissible uncertainties ∆Ã is stable.

Assumption 2: The input and the perturbation are bounded

energy signals, i.e. ‖u(t)‖2
2 < ∞ and ‖w(t)‖2

2 < ∞.

The robust PIO design problem can thus be formulated as

finding the matrices KP and KI such that the influence of

w̄(t) on the estimation error ea(t) is attenuated and the state

estimation error remains globally bounded for any blend

between the submodels. To this end, the following objective

signal which only depends on the estimation error ea(t) is

introduced:

ν(t) =
[

Y 0
]

ε(t) , (29)

where Y is a matrix of appropriate dimension chosen by the

designer. Finally, the expected performances of the PIO can

be formulated by the following H∞ performances:

lim
t→∞

ea(t) = 0 for w(t) = 0, Fi(t) = 0, Si(t) = 0 , (30a)

‖ν(t)‖2
2 ≤ γ2‖w(t)‖2

2 for w(t) 6= 0 and ν(0) = 0 , (30b)

where γ is the L2 gain from w̄(t) to ν(t) to be minimized.

Theorem 1: Consider the uncertain model (18) and as-

sumptions 1 and 2. There exists a PIO (21) ensuring the

objectives (30) if there exists symmetric positive definite

matrices P1 ∈ R
(n+p)×(n+p) and P2 ∈ R

n×n, matrices LP ∈
R

(n+p)×p and LI ∈ R
(n+p)×p and positive scalars γ , τ i

1 and

τ i
2 such that the following condition holds for i = 1...L

minγ subject to














Γi +ΓT
i +Y TY 0 Ψ 0 P1C1M̃i P1C1H̃i

0 Λi P2D̃ P2B̃ P2M̃i P2H̃i

(∗) (∗) −γ I 0 0 0
0 (∗) 0 φi 0 0

(∗) (∗) 0 0 −τ i
1I 0

(∗) (∗) 0 0 0 −τ i
2I















< 0 ,

where
Γi = P1Ai −LPC̃iC

T

1 −LIC
T

2 ,

Ψ = P1D̃a −LPW ,

Λi = P2Ã + ÃT P2 + τ i
1ÑT

i Ñi ,

φi = −γ I+ τ i
2ET

i Ei

for a prescribed matrix Y . The observer gains are given by

KP = P−1
1 LP and KI = P−1

1 LI ; the L2 gain from w̄(t) to ν(t)
is given by γ =

√

γ .

Proof: The proof is deferred to the appendix.

IV. A SIMULATION EXEMPLE

Consider the decoupled multiple model with L = 2 submod-
els with different dimensions (n1 = 3 and n2 = 2), given by:

A1 =





−0.1 −0.3 0.6
−0.5 −0.4 0.1
−0.3 −0.2 −0.6



 , A2 =

[

−0.3 −0.1
0.4 −0.2

]

,

B1 =
[

0.3 0.5 0.6
]T

, B2 =
[

0.4 0.3
]T

,

D1 =
[

0.1 −0.1 0.1
]T

, D2 =
[

−0.1 −0.1
]T

,

C1 =

[

−0.4 0.3 0.5
0.5 0.3 0.4

]

, C2 =

[

0.4 −0.2
0.3 0.2

]

,

M1 =
[

−0.1 0.2 −0.1
]T

, M2 =
[

−0.2 0.1
]T

,

N1 =
[

0.1 −0.2 0.3
]

, N2 =
[

0.1 0.2
]

,

H1 =
[

0.3 −0.1 0.2
]T

, H2 =
[

−0.1 −0.2
]T

,

E1 = −0.2 , E2 = −0.3 ,

W =
[

0.1 −0.1
]

, Y = I(7×7) .

Here, the decision variable ξ (t) is the input signal

u(t) ∈ [−1,1]. The weighting functions are obtained from

normalised Gaussian functions:

µi(ξ (t)) = ηi(ξ (t))/
L

∑
j=1

η j(ξ (t)), (31)

ηi(ξ (t)) = exp
(

−(ξ (t)− ci)
2/σ2

)

, (32)

with the standard deviation σ = 0.6 and the centres c1 =−0.3
and c2 = 0.3. The perturbation w(t) is a normally distributed

random signal with zero mean and standard deviation equal

to one. The input, the weighting functions and the outputs

are shown in figure 1. The time-varying signals Fi(t), Si(t)
and the perturbation w(t) are plotted in figure 2. Notice that

for 0 < t < 120 no uncertainties in the multiple model are

considered.
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Fig. 1. Input, weighting functions and outputs
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Fig. 2. Fi(t), Si(t) and w(t)

A solution satisfying conditions of theorem 1 is obtained

using YALMIP interface and SEDUMI solver. The gains of

the PIO are:

KP =

[

−3.13 1.21 −2.02 3.68 −0.90 0.50 0.49
0.20 0.86 1.00 −1.51 2.74 −0.08 1.08

]T

,

KI =

[

0.16 −0.12 −0.41 0.31 −0.57 0.65 −0.04
−0.13 0.12 0.41 −0.32 0.56 0.02 0.65

]T

the minimal attenuation level is γ = 0.8654 and τ1
1 = 0.74,

τ1
2 = 1.37, τ2

1 = 7.67, τ2
2 = 2.08.

In the simulation the initial conditions of the multiple

model are x(0) =
[

0.1 −0.1 0.1 −0.1 0.1
]

and the initial condi-
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tions of the observer are equal to zero. Figures 3 and 4 dis-

play the comparison between the states of the submodels and

their estimates. Note that the interaction between submodels

is at the origin of some compensation phenomenons in the

state estimation. For example, if the output of submodel 1 is

only taken into consideration (i.e. µ1(t) ≈ 1) then naturally

a bad state estimation of the submodel 2 is provided by

the observer. However, the overall output estimation of the

multiple model is not truly affected by this bad estimation.

Finally, a comparison between the outputs of the multiple

model and their estimates is shown in figure 5. Note that the

output estimation errors remain globally bounded despite that

model uncertainties and perturbations appear in the model.
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Fig. 3. States of submodel 1 and its estimates
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Fig. 4. States of submodel 2 and its estimates
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Fig. 5. Output, its estimates and the output estimation errors

V. CONCLUSIONS

In this paper a PIO design is presented for a class of

uncertain nonlinear system which can be modelled with

the help of a decoupled multiple model. This model is

suitable for modelling variable structure systems because

the dimension of the submodels can be different in each

operating zone. Sufficient conditions, in LMI terms, for

ensuring H∞ performances of the estimation error are es-

tablished using Lyapunov method. The effectiveness of the

proposed approach is illustrated via a simulation example.

Further research, in a fault diagnosis perspective, will be to

investigate the sensitivity of the state estimation with respect

to perturbations, model uncertainties and faults in order to

establish the sensitivity of the fault symptoms of the system.

APPENDIX PROOF OF THE THEOREM

Lemma 1: For any constant real matrices X and Y with

appropriate dimensions, a matrix function F(t) bounded-

norm, i.e. FT (t)F(t) ≤ I, then the following property holds

for any positive matrix Q

XF(t)Y +Y T FT (t)XT ≤ XQ−1XT +Y T QY .

Consider the following quadratic Lyapunov function:

V (t) = eT
a (t)P1ea(t)+ xT (t)P2x(t) , (33)

where P1 = PT
1 > 0 et P2 = PT

2 > 0. The objectives (30) are

guaranteed if there exists a Lyapunov function (33) such that

[22]:

V̇ (t) < −νT (t)ν(t)+ γ2wT (t)w(t) . (34)

The time-derivative of (33) along the trajectories of (24) and

(7a) is given by:

V̇ (t) = ΩT (t)

[

PAobs(t)+ AT
obsP(t) PΦ

(∗) 0

]

Ω(t) , (35)

P = diag{P1, P2} , (36)

Ω(t) =
[

εT (t) wT (t)
]T

. (37)

Now, by taking into consideration (35), the condition (34)

becomes:

ΩT (t)

[

PAobs(t)+ AT
obs(t)P+

[

Y T Y 0
0 0

]

PΦ

(∗) −γ2I

]

Ω(t) < 0 , (38)

which is a quadratic form in Ω(t). By using the definitions of

Aobs and Φ given respectively by (27) and (28), the inequality

(38) is also guaranteed if:








Γ+ ΓT +Y TY P1C1∆Ã Ψ P1C1∆B̃

(∗) X1 + X2 P2D̃ P2(B̃+ ∆B̃)
(∗) (∗) −γ2I 0

(∗) (∗) 0 −γ2I









< 0, (39)

where

Γ = P1(Ãa(t)−KPC(t)C
T

1 −KIC
T

2 ) , (40)

Ψ = P1(D̃a −KPW ) , (41)

X1 = P2Ã + ÃT P2 , (42)

X2 = P2∆Ã+ ∆ÃT P2 , (43)
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Notice that by using the definition of Ãa(t) and C(t) given

respectively by (19) and (11), Γ can be rewritten as :

Γ =
L

∑
i=1

µi(t)Γi , (44)

Γi = P1(Ai −KPC̃iC
T

1 −KIC
T

2 ) . (45)

At this point, by considering (44) and (43), the nominal and

the uncertain terms in (39) may be dissociated as follows:

L

∑
i=1

µi(t)









Γi + ΓT
i +Y TY 0 Ψ 0

0 X1 P2D̃ P2B̃

(∗) (∗) −γ2I 0

0 (∗) 0 −γ2I









+ Z + ZT < 0, (46)

where

Z =









0 P1C1∆Ã 0 P1C1∆B̃

0 P2∆Ã 0 P2∆B̃

0 0 0 0

0 0 0 0









. (47)

Now, by introducing the definitions of ∆Ã and ∆B̃ given by

(13) and (14) then Z + ZT becomes:

Z + ZT =
L

∑
i=1

µi(t)
{

X̃iỸi + Ỹ T
i X̃T

i

}

, (48)

where

X̃i =









P1C1M̃i P1C1H̃i

P2M̃i P2H̃i

0 0

0 0









, (49)

Ỹi =

[

Fi(t) 0

0 Si(t)

][

0 Ñi 0 0

0 0 0 Ei

]

. (50)

Notice that the dependence of the unknown functions Fi(t)
and Si(t) upon (48) can be removed, by using the lemma 1

with Qi = diag
{

τ i
1,τ

i
2

}

, as follows:

Z + ZT ≤
L

∑
i=1

µi(t)

{

X̃i

[

τ i
1 0

0 τ i
2

]−1

X̃T
i + Ỹi

[

τ i
1 0

0 τ i
2

]

Ỹ T
i

}

. (51)

Finally, using the definition (42) of X1, the inequality (46)

is guaranteed if for i = 1...L the following inequality holds:















Γi +ΓT
i +Y TY 0 Ψ 0 P1C1M̃i P1C1H̃i

0 Λi P2D̃ P2B̃ P2M̃i P2H̃i

(∗) (∗) −γ2I 0 0 0
0 (∗) 0 φi 0 0

(∗) (∗) 0 0 −τ i
1I 0

(∗) (∗) 0 0 0 −τ i
2I















< 0, (52)

where
Λi = P2Ã+ ÃT P2 + τ i

1ÑT
i Ñi , (53)

φi = −γ2I+ τ i
2ET

i Ei . (54)

This condition follows from the use of (51) in (46), the

use of the well known Schur complement and the convex

sum properties of µi(t). Note that asymptotic convergence

towards zero of the estimation error, when no uncertainties

and no perturbations affect the system, is guaranteed by the

negativity of the block (1,1) in (52).

Finally, let us notice that (52) is not a LMI in P1, KP, KI

and γ . However, it becomes a LMI by setting LP = P1KP,

LI = P1KI and γ = γ2. Now, standard convex optimization

algorithms can be used to find matrices P1, P2 LP and LI

minimising γ . This completes the proof of theorem 1.
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