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Abstract— In this paper we will consider the control of
spacecraft in a leader-follower formation using position mea-
surements only. To analyze the formation under non vanishing
disturbances, new definitions of practical exponential stability
are given together with sufficient conditions for systems to
satisfy these properties.

I. INTRODUCTION

A. Background

The formal study of spacecraft formation requires solid the-

oretical roots. In this paper, we therefore provide a theoretical

framework that fits realistic challenges related to this problem.

Indeed, in presence of uncertainties or disturbances, it is often

the case that a nominally asymptotically stable formation turns

out to present a steady-state error in reality. In the case when

this error can be reducible at will by a convenient tuning of

some gains, this stability property is referred to as practical.

Practical stability has been treated in several papers, see [1]

and [2] and references therein. We will here give a very simple

introductory example:

Example 1: Consider the scalar system

ẋ = −θx + d (1)

where θ is a constant parameter and d = d(t) is a non

vanishing, time-varying disturbance. In this case the solutions

are bounded by

|x(t)| ≤ (|x(0) − βd

θ
|)e−θt +

βd

θ
(2)

where βd = supt d(t). We see that for any θ such that θ >
βdδ, the solutions converge exponentially to a ball around the

origin of radius δ = βd/θ.

Tools for a formal analysis of more involved parameterized

time-varying systems will be given in Section II-B. We will

stress that ultimate boundedness as defined in [3] is a weaker

property than practical stability. For a system possessing the

latter property, the vicinity of the origin to which the solutions

converge may be made arbitrary small by convenient tuning of

some parameters of the system, typically the control gains.

B. Previous work

Research on spacecraft formation control is vast, so we will

focus on previous work done on spacecraft formations where a

relative position model similar to the one in Section III-A are

used. For a more thorough treatment of the topic of spacecraft
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formation control, the interested reader is instead referred to

the survey paper [4]. In [5] a full state feedback adaptive learn-

ing control algorithm was developed to give global asymptotic

convergence of position and velocity tracking errors, in the

presence of periodic disturbances and unknown spacecraft

masses. An internal model based approach was taken in [6]

to design a controller that handles parametric uncertainties

and unknown disturbances. The methodology was shown to be

robust to persistent disturbances, such as gravitational pertur-

bations. Assuming boundedness of orbital perturbations and

the leader control force only, an adaptive controller was de-

signed in [7] to prove that the closed-loop system is uniformly

semiglobally practically asymptotically stable (USPAS). A

velocity filter was used to provide sufficient knowledge about

the relative velocity to solve the control problem. These results

were extended in [8] to also include the case of uncertainty in

spacecraft mass. In [9] two controller-observer schemes were

proposed which render the origin uniformly globally expo-

nentially stable (UGES) in the case of no disturbances, and

uniformly globally practically asymptotically stable (UGPAS)

if the disturbances are bounded.

Finally, we note that the results in this paper builds on results

achieved for the control of robot manipulators, e.g. [10].

C. Contribution

The contribution of this paper is twofold. Firstly, we present

a theoretical contribution consisting of new definitions and the-

orems of sufficient conditions for nonlinear time-varying sys-

tems to be exponentially stable with respect to balls that can be

arbitrarily reduced by a convenient tuning. We denote a system

satisfying these properties in the whole state-space uniformly

globally practically exponentially stable (UGPES). For the

sake of completeness, we will also discuss uniform semiglobal

exponential stability (USES) and uniform semiglobal practical

exponential stability (USPES), in which case the domain of

attraction in not the whole state-space, but a compact set that

can be arbitrarily enlarged.

Secondly, the stability of a leader/follower formation is

analyzed using a controller-observer scheme originally de-

signed for the control of robot manipulators. While, in the

nominal case, the solutions of the system are proven to be

exponentially convergent to zero, we will show that the steady-

state error resulting from external disturbances and lack of

measurement can be arbitrarily diminished by a convenient

tuning of some controller gains. In fact, based on knowledge

on the bounds of the disturbances and the acceptable steady

state error, the presented theorems give information on how to

pick the controller gains.
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II. MATHEMATICAL PRELIMINARIES

A. Notation

We use the notation ẋ for the time derivative of a vector

x, i.e. ẋ = dx/dt. Moreover ẍ = d2x/dt2. The solutions of

the differential equation ẋ = f(t, x) with initial conditions

(t0, x0) is denoted by x(t, t0, x0). We use |·| for the Euclidean

norm of vectors. We use λm(A) and λM (A) to denote the

minimum and maximum eigenvalue, respectively, of a matrix

A. A closed ball in R
n of radius δ centered at the origin is

denoted by Bδ , i.e. Bδ := {x ∈ R
n : |x| ≤ δ}.

B. Definitions

Semiglobal and practical exponential stability properties

pertain to parameterized nonlinear time-varying systems of the

form

ẋ = f(t, x, θ) , (3)

where x ∈ R
n, t ∈ R≥0, θ ∈ R

m is a constant parameter

and f : R≥0 × R
n × R

m → R
n is locally Lipschitz in x and

satisfies Carathéodory conditions for any parameter θ under

consideration. θ is a free tuning parameter, that can for instance

be a control gain, see [1] for details.

Definition 1 (UGPES): Let Θ ⊂ R
m be a set of parameters.

The system (3) is said to be uniformly globally practically

exponentially stable on Θ if, given any δ > 0, there exists

a parameter θ⋆(δ) ∈ Θ, and positive constants k(δ) and γ(δ)
such that, for any x0 ∈ R

n and any t0 ∈ R≥0 the solutions of

(3) satisfies, for all t ≥ t0,

|x(t, t0, x0, θ
⋆)| ≤ δ + k(δ) |x0| e−γ(δ)(t−t0).

Definition 2 (USES): Let Θ ⊂ R
m be a set of parameters.

The system (3) is said to be uniformly semiglobally exponen-

tially stable on Θ if, given any ∆ > 0, there exists a parameter

θ⋆(∆) ∈ Θ and positive constants k(∆) and γ(∆) such that,

for any x0 ∈ B∆ and any t0 ∈ R≥0 the solutions of (3)

satisfies, for all t ≥ t0,

|x(t, t0, x0, θ
⋆)| ≤ k(∆) |x0| e−γ(∆)(t−t0)

Definition 3 (USPES): Let Θ ⊂ R
m be a set of parameters.

The system (3) is said to be uniformly semiglobally practically

exponentially stable on Θ if, given any ∆ > δ > 0, there exists

a parameter θ⋆(δ, ∆) ∈ Θ and positive constants k(δ, ∆) and

γ(δ, ∆) such that, for any x0 ∈ B∆ and any t0 ∈ R≥0 the

solutions of (3) satisfies, for all t ≥ t0,

|x(t, t0, x0, θ
⋆)| ≤ δ + k(δ, ∆) |x0| e−γ(δ,∆)(t−t0) .

These properties are strongly related to their asymptotic

counterpart (UGPAS, USAS and USPAS) introduced (and

commented in detail) in [1], [11]. They are however stronger

properties as they impose an exponential behavior of the

solutions in the considered domain of the state-space and a

linear dependency in the initial condition.

C. Lyapunov sufficient conditions

We here present sufficient conditions for the above proper-

ties to hold. They are expressed as a condition on the sign of

a Lyapunov-like function’s derivative, on a restricted region of

the state space.

1) UGPES:

Theorem 1 (Sufficient condition for UGPES): Let Θ be a

subset of R
m and suppose that, given any δ > 0, there exist a

parameter θ⋆(δ) ∈ Θ, a continuously differentiable Lyapunov

function Vδ : R≥0 × R
n → R≥0 and positive constants κ(δ),

κ(δ), κ(δ) such that, for all x ∈ R
n \ Bδ and all t ∈ R≥0,

κ(δ) |x|p ≤ Vδ(t, x) ≤ κ(δ) |x|p , (4)

∂Vδ

∂t
(t, x) +

∂Vδ

∂x
(t, x)f(t, x, θ⋆) ≤ −κ(δ) |x|p , (5)

where p denotes a positive constant. Then, under the condition

that

lim
δ→0

κ(δ)δp

κ(δ)
= 0 , (6)

the system ẋ = f(t, x, θ) introduced in (3) is UGPES on the

parameter set Θ.

Proof: Let δ be any given positive constant. Along the

solutions of (3), we get from (4) and (5) that

|x(t, t0, x0, θ
⋆)| ≥ δ ⇒

V̇δ(t, x(t, t0, x0, θ
⋆)) ≤ −κ′(δ)Vδ(t, x(t, t0, x0, θ

⋆)) ,

where κ′(δ) := κ(δ)/κ(δ). Invoking [11, Lemma 13], we then

get that, for all x0 ∈ R
n, all t0 ∈ R≥0 and all t ≥ t0,

|x(t, t0, x0, θ
⋆)| ≤

(

κ(δ)δp

κ(δ)

)1/p

+

(

κ(δ)

κ(δ)

)1/p

|x0| e−κ′(δ)(t−t0)/p.

In view of (6), we see that the quantity κ(δ)δp/κ(δ) may be

reduced at will by originally choosing δ small enough and the

conclusion follows.

Compared to classical results for Lyapunov stability, con-

ditions (4) and (5) are natural (see [3, Theorem 4.10]). For

perturbed systems, (4) is notably satisfied by the Lyapunov

function associated to the UGES of the origin of the cor-

responding nominal systems. (5) is similar to the Lyapunov

sufficient condition for global ultimate boundedness (cf. e.g.

[3]). Intuitively, one may expect that these two requirements,

when valid for any arbitrarily small δ, suffice to conclude

UGPES. However, we see that an additional assumption (6)

is required, establishing a relationship between the bounds on

the Lyapunov function. Indeed, in the present framework, the

Lyapunov function may here depend on the tuning parameter

θ, and consequently on the radius δ. As clearly shown in

[12], [13], this parametrization of the Lyapunov function may

induce unexpected behaviors if (6) is not assumed.

2) USES:

Theorem 2 (Sufficient condition for USES): Let Θ be a sub-

set of R
m and suppose that, given any ∆ > 0, there exist a

parameter θ⋆(∆) ∈ Θ, a continuously differentiable Lyapunov

function V∆ : R≥0×R
n → R≥0 and positive constants κ(∆),

κ(∆), κ(∆) such that, for all x ∈ B∆ and all t ∈ R≥0,

κ(∆) |x|p ≤ V∆(t, x) ≤ κ(∆) |x|p (7)

∂V∆

∂t
(t, x) +

∂V∆

∂x
(t, x)f(t, x, θ⋆) ≤ −κ(∆) |x|p , (8)
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where p denotes a positive constant. Then, under the condition

that

lim
∆→∞

κ(∆)∆p

κ(∆)
= ∞ , (9)

the system ẋ = f(t, x, θ) introduced in (3) is USES on the

parameter set Θ.

The proof is omitted, but follows along the same lines as

Theorem 1.

3) USPES:

Theorem 3 (Sufficient condition for USPES): Let Θ be a

subset of R
m and suppose that, given any ∆ > δ > 0, there

exist a parameter θ⋆(δ, ∆) ∈ Θ, a continuously differentiable

Lyapunov function Vδ,∆ : R≥0 × R
n → R≥0 and positive

constants κ(δ, ∆), κ(δ, ∆), κ(δ, ∆) such that, for all x ∈
B∆ \ Bδ and all t ∈ R≥0,

κ(δ, ∆) |x|p ≤ Vδ,∆(t, x) ≤ κ(δ, ∆) |x|p (10)

∂Vδ,∆

∂t
(t, x) +

∂Vδ,∆

∂x
(t, x)f(t, x, θ⋆) ≤ −κ(δ, ∆) |x|p ,

(11)

where p denotes a positive constant. Assume also that, given

any ∆⋆ > δ⋆ > 0, there exist ∆ > δ > 0 such that

κ(δ, ∆)δp

κ(δ, ∆)
≤ δ⋆ and

κ(δ, ∆)∆p

κ(δ, ∆)
≥ ∆⋆ .

Then the system ẋ = f(t, x, θ) introduced in (3) is USPES on

the parameter set Θ.

The proof is omitted, but follows along the same lines as

Theorem 1.

III. MODEL

The spacecraft model used in this paper is found in [14],

and can be traced back to [15]. The starting point for this

model is the fundamental differential equation for the two-

body problem

r̈ +
µ

|r|3
r = 0, (12)

where r ∈ R
3 is the relative position of two point masses

m1,m2 ∈ R, and µ = G(m1 + m2) ∈ R, with G ∈ R,

being the universal constant of gravity.

A. Model of follower spacecraft

Equation (12) is generalized to include disturbance forces

fl, ff ∈ R
3 due to aerodynamic drag, third gravitating bodies,

solar radiation, magnetic fields, etc., and actuator forces ul,

uf ∈ R
3 for the leader and follower spacecraft, respectively,

such that

r̈l = − µ

|rl|3
rl +

fl

ml
+

ul

ml
, (13)

r̈f = − µ

|rf |3
rf +

ff

mf
+

uf

mf
, (14)

where ml and mf are the mass of the leader and follower

spacecraft, respectively. By defining pf := rf − rl ∈ R
3 as

the relative position in the leader spacecraft reference frame,

the relative position dynamics can be written in the following

form (cf. [14])

Mf p̈f +Cf (ν̇l)ṗf + Df (ν̈l, ν̇l, rf )pf +nf (rl,rf ) =Uf + Ff ,
(15)

where νl is the true anomaly of the leader spacecraft,

Mf = mfI ∈ R
3×3 (16)

is a diagonal matrix,

Cf (ν̇l) = 2mf ν̇lC̄ ∈ R
3×3 (17)

is a skew-symmetric matrix, and

Df (ν̈l, ν̇l, rf ) = mf
µ

|rf |3
I + mf ν̇2

l D̄ + mf ν̈lC̄ ∈ R
3×3

(18)

with

C̄ :=





0 −1 0
1 0 0
0 0 0



 and D̄ :=





−1 0 0
0 −1 0
0 0 0





as introduced in [7], and

nf (rl,rf ) = mfµ
[

|rl|

|rf |
3 − 1

|rl|
2 0 0

]⊤

∈ R
3. (19)

The composite disturbance force Ff ∈ R
3 and the relative

control force Uf ∈ R
3 are given by

Ff = ff − mf

ml
fl and Uf = uf − mf

ml
ul. (20)

B. Model and Desired Trajectory Assumptions

The true anomaly of the leader spacecraft is the angle

between the eccentricity vector

el =
ṙl × h

µ
− rl

|rl|
∈ R

3 (21)

where h = rl × ṙl ∈ R
3, and the orbital state vector rl given

by (13), so that:

νl =







arccos
e⊤

l rl

|el||rl|
if r⊤l ṙl ≥ 0

2π − arccos
e⊤

l rl

|el||rl|
if r⊤l ṙl < 0

(22)

The eccentricity vector is conserved under forces that obey

the inverse-square law as in (12), but due to the control and

disturbance forces in (13), the eccentricity vector will vary.

We choose the reference trajectory of the leader spacecraft

to satisfy the inverse square law such that the eccentricity is

constant. Then, the desired true anomaly rate and true anomaly

rate of change of the leader spacecraft, denoted ν̇d and ν̈d, are

given by:

ν̇d(t) =
nd(1 + ed cos νd(t))

2

(1 − e2
d)

3

2

(23)

and

ν̈d(t) =
−2n2

ded(1 + ed cos νd(t))
3 sin νd(t)

(1 − e2
d)

3
, (24)

with nd =
√

µ/a3
d ∈ R as the desired mean motion of the

leader, and ad ∈ R and ed ∈ R as the semimajor axis and

the eccentricity of the desired spacecraft orbit, respectively.
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The desired trajectory is an elliptic orbit around the Earth,

and hence ed ∈ (0, 1). We will assume that the control of

the leader spacecraft is sufficiently good, such that even under

disturbances the following hold:

Assumption 1: Define ν̃ := νl−νd, where νl and νd are the

actual and the desired true anomaly, respectively. We assume

that the actuation system of the leader spacecraft keeps ˙̃ν and
¨̃ν bounded, i.e. ˙̃ν ≤ β ˙̃ν and ¨̃ν ≤ β¨̃ν for all t ≥ t0 ≥ 0, where

β ˙̃ν , β¨̃ν are positive constants.

In addition we will make the following assumptions regarding

the desired trajectories of the follower spacecraft:

Assumption 2: The desired relative position pf,d(t), de-

sired relative velocity ṗf,d(t) and desired relative acceleration

p̈f,d(t) are all smooth and bounded functions, i.e. there exists

positive constants βpf,d
, βṗf,d

, βp̈f,d
such that |pf,d(t)| ≤

βpf,d
, |ṗf,d(t)| ≤ βṗf,d

and |p̈f,d(t)| ≤ βp̈f,d
for all t ≥ t0 ≥

0.

Finally, we assume that the disturbances acting on the space-

craft are bounded.

Assumption 3: The disturbances acting on the follower

spacecraft are bounded, i.e. there exist a positive constant βff

such that

|ff (t)| ≤ βff
(25)

and that the difference between thrust and external distur-

bances acting on the leader spacecraft is bounded, that is:

|ul(t) + fl(t)| ≤ β(ul+fl) (26)

for a positive constant β(ul+fl).

IV. CONTROLLER-OBSERVER DESIGN

In this section the controller scheme of [16] as redefined for

output feedback in [10] will be used.

A. Without disturbance

Define ef := pf −pf,d ∈ R
3 as the position error and p̃f :=

pf − p̂f as the observer estimation error. Let the controller of

the follower spacecraft be:

uf =Mf p̈f,d + Cf (ν̇l)ṗf,d + Df (ν̈l, ν̇l, rf )pf

+ nf (rl,rf ) − Kf,d(ṗf,0 − ṗf,r) (27)

ṗf,r = ṗf,d − Λfef (28)

ṗf,0 = ˙̂pf − Λf p̃f , (29)

where Λf = Λ⊤
f ∈ R

3×3 > 0, Kf,d ∈ R
3×3 := kf,dI with

kf,d ∈ R > mfλM (Λf ) +
√

12mfβν̇ . Let the observer be:

˙̂pf = af + Lf,dp̃f (30)

ȧf = p̈f,d + Lf,p2p̃f , (31)

where Lf,d ∈ R
3×3 := lf,dI + Λf and Lf,p2 ∈ R

3×3 :=
lf,dΛf , with lf,d ∈ R > 2

mf
kf,d scalar.

The following Proposition was also given in [9, Proposition

2].

Proposition 1: Let Assumption 2 hold. Assume that ul +
fl = 0, ff = 0 and that ν̇l and ν̈l are known and bounded.

Then the origin of (15), in closed loop with the controller (27-

29) and the observer (30-31) is uniformly globally exponen-

tially stable.

Proof: All the calculations in the proof can be found

in [9]. A shorter version is given here for later reference. By

combining the dynamic equations of the formation with the

equations for the proposed controller, the closed-loop tracking

error dynamics are found to be

Mf ëf + Cf (ν̇l)ėf + Kf,d(ṗf,0 − ṗf,r) = 0, (32)

since pf − pf,d = ef . Now, defining the sliding variables

sf,1, sf,2 ∈ R
3 as

sf,1 := ṗf − ṗf,r = ėf + Λfef (33)

sf,2 := ṗf − ṗf,0 = ˙̃pf + Λf p̃f , (34)

we get the tracking error dynamics

Mf ṡf,1 = MfΛf ėf − Cf (ν̇l)ėf − Kf,d(sf,1 − sf,2), (35)

since ṗf,0 − ṗf,r = sf,1 − sf,2. The observer error dynamics

is

Mf ṡf,2 = −Cf (ν̇l)ėf − Kf,d(sf,1 − sf,2) − Mf lf,dsf,2.
(36)

Let the Lyapunov function candidate be given by (cf. [17] and

[10])

V (x, t) :=
1

2
x⊤W⊤RWx, (37)

where x := (ė⊤f , (Λfef )⊤, ˙̃p⊤f , (Λf p̃f )⊤) ∈ R
12, R :=

diag(Mf , 2Kf,dΛ
−1
f − Mf , Mf , 2Kf,dΛ

−1
f ) ∈ R

12×12 and

W :=









I I 0 0
0 I 0 0
0 0 I I
0 0 0 I









∈ R
12×12. (38)

Note that for Kf,d > MfΛf , we have that

k1 |x|2 ≤ V ≤ k2 |x|2

with k1 = 1
6λm(R) and k2 = 3

2λM (R), where λm(R) = mf

and λM (R) = 2kf,dλm(Λf )−1. This can be verified using

the fact that 1
3 ≤ λm(W⊤W ) and that λM (W⊤W ) ≤ 3,

where λm(W⊤W ) and λM (W⊤W ) denote the minimum

and maximum eigenvalue of W⊤W , respectively. The time

derivative of the Lyapunov function candidate along the error

dynamics (35) and (36) is

V̇ = − x⊤Qx − s⊤f,2(lf,dMf − 2Kf,d)sf,2

− (s⊤f,1 + s⊤f,2)Cf (ν̇l)ėf , (39)

where Q := diag(Kf,d − MfΛf , Kf,d, Kf,d, Kf,d) ∈
R

12×12. By using that lf,d ≥ 2
mf

kf,d and that the true

anomaly rate is bounded, i.e. ν̇ ≤ βν̇ , we get that

V̇ ≤ −(kf,d − mfλM (Λf ) −
√

12mfβν̇) |x|2

≤ −k3 |x|2 , (40)

where k3 is a positive constant. It has also been used

that
∣

∣(sf,1 + sf,2)
⊤Cf (ν̇l)ėf

∣

∣ ≤ |sf,1 + sf,2| |Cf (ν̇l)ėf | ≤√
12mfβν̇ |x|2 where we wrote (sf,1 +sf,2) as y⊤x (y ∈ R

12

is a vector with all elements equal to 1) and used that
∣

∣y⊤x
∣

∣ ≤
|y| |x| =

√
12 |x|. Hence, according to [3, Theorem 4.10], the

origin of the system is UGES.
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B. With disturbances

In the previous section it is assumed that the true anomaly,

ν̇l, and true anomaly rate of change, ν̈l, of the leader spacecraft

are available. Since these parameters can be considered as

velocity and acceleration parameters, we will now treat the

case where the true values of ν̇l and ν̈l are unknown.

Let the controller of the follower spacecraft be:

uf =Mf p̈f,d + Cf (ν̇d)ṗf,d + Df (ν̈d, ν̇d, rf )pf

+ nf (rl,rf ) − Kf,d(ṗf,0 − ṗf,r) (41)

ṗf,r = ṗf,d − Λfef (42)

ṗf,0 = ˙̂pf − Λf p̃f , (43)

with observer (30-31). Note the difference in equation (41)

from that of equation (27) in that the parameters ν̇d, ν̈d, of the

desired trajectory of the leader spacecraft are used, instead of

the actual parameters, ν̇l, ν̈l, of the leader spacecraft orbit. By

using the error of the true anomaly, ν̃ = νl − νd, we get that

the tracking error dynamics are

Mf ëf = − Cf (ν̇l)ėf − Kf,d(sf,1 − sf,2)

− mf

ml
ul + ff − mf

ml
fl − 2mf C̄ ˙̃νṗf,d

− mf D̄ ˙̃ν2pf,d − mf C̄ ¨̃νpf,d. (44)

Similarly the observer error dynamics, using the observer (30)

and (31) become

Mf
¨̃pf = − MfΛf

˙̃pf − Cf (ν̇l)ėf − Kf,d(sf,1 − sf,2)

− Mf lf,dsf,2 + ff − mf

ml
(ul + fl)

− 2mf C̄ ˙̃νṗf,d − mf D̄ ˙̃ν2pf,d − mf C̄ ¨̃νpf,d. (45)

Proposition 2: Let Assumption 1-3 hold. The controller

given by (41)-(43) and observer (30)-(31) in closed loop with

(15) is UGPES on the parameter set Θ = R
2
>0, with θ =

(kf,d, lf,d) ∈ Θ as tuning parameters.

Proof: The proof is done by applying Theorem 1. Using

(37) as the Lyapunov function candidate, we get that its time

derivative along (44) and (45) is:

V̇ ≤− (kf,d − mfλM (Λf ) −
√

12mfβν̇) |x|2

+
√

12
(

βf +
mf

ml
β(ul+fl) + 2mfβ ˙̃νβṗf,d

+ mf (β ˙̃ν2 + β¨̃ν)βpf,d

)

|x| ,

by similar calculations as in the Proof of Proposition 1. Let δ
be any positive constant. Pick lf,d ≥ l⋆f,d := 2

mf
kf,d. Pick

kf,d ≥ k⋆
f,d, where

k⋆
f,d :=2mfλM (Λf ) + 2

√
12mfβν̇

+
2
√

12

δ

(

βf +
mf

ml
β(ul+fl) + 2mfβ ˙̃νβṗf,d

+ mf (β ˙̃ν2 + β¨̃ν)βpf,d

)

(46)

Then, for any |x| ≥ δ we have that

V̇ ≤ −1

2
k⋆

f,d |x|
2

(47)

and we can apply Theorem 1 with p = 2, Vδ = V , κ(δ) =
1
6λm(R) = 1

6mf , κ = 3
2λM (R(δ)) = 3k⋆

f,d(δ)/λM (Λf ) and

κ(δ) = 1
2k⋆

f,d(δ). Hence (4) and (5) of Theorem 1 are fulfilled.

Finally we have

lim
δ→0

κ(δ)δp

κ(δ)
= lim

δ→0

18k⋆
f,d(δ)δ

2

λM (Λf )mf
= 0, (48)

thus (6) is also satisfied and we can conclude UGPES of the

driving subsystem (15), in closed loop with the controller (27),

(28), (29) and observer (30), (31).

V. SIMULATIONS

In this section the performance of the controller-observer

scheme will be illustrated by simulations. The desired orbit

of the leader spacecraft is of eccentricity ed = 0.5, and with

semimajor axis ad = 20000 km. The true anomaly rate and

true anomaly rate-of-change are generated by (23) and (24).

We want to illustrate the robustness of our controller-observer

scheme even under perturbed motion of the leader spacecraft.

For that reason the leader spacecraft is simulated according to

(13) with ul + fl = (0.5 sin 1
10 t, 0.2 sin 1

100 t, 0.3 sin 1
1000 t)

to illustrate a control system that is not able to handle the

periodic forces that an orbiting spacecraft are exposed to.

The true anomaly rate and rate-of-change of the leader space-

craft are achieved by differentiation of (22). The desired

trajectory of the follower spacecraft is given by pd(t) =
(−10 cos ν, 20 sin ν, 0), which means that the follower space-

craft evolves around the leader spacecraft in an ellipse during

their orbit around the Earth. This is a fuel efficient orbit,

as it is close to a natural orbit of the spacecraft. We as-

sume that the follower spacecraft is exposed to similar per-

turbations as the leader spacecraft, and we have chosen that

ff = (0.1 sin 1
100 t, 0.3 sin 1

10 t, 0.4 sin t). The initial position

and velocity of the follower spacecraft is chosen as p(0) =
(−10, 5, 7) and ṗ(0) = (1, 0,−1), where as the initial states

of the observer are p̂(0) = (4,−4, 1) and z(0) = (−1, 4, 2).
The controller and observer gains are as follows: ld = 0.5,

Kd = 20I3×3, Λ = 0.06I3×3. Both spacecraft are of mass

ml = mf = 100 kg. Furthermore, the thrust is assumed

to be continuous and available in all directions of the leader

spacecraft frame, but limited to max uf = 10 N. Figure 1

and 2 show the tracking and estimation errors, respectively.

As seen from Figure 1 the tracking error is big, but, as proven

in the previous section, this error can be arbitrarily diminished

by an appropriate choice of control gains, e.g. by increasing

Kd. The control history is shown in Figure 3. The actuation

of the follower spacecraft would be greatly reduced by a better

controlled leader spacecraft, as we use ν̇d and ν̈d, instead of the

actual parameters ν̇l and ν̈l for the true anomaly rate and rate-

of-change. To further save fuel, one can imagine that control

parameters are changed so as extensive actuation is used only

when high accuracy formation control is needed, e.g. only

during performance of measurement.

VI. CONCLUSION

We have stated definitions for UGPES, USES and USPES

and provided Lyapunov-like sufficient conditions for them
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Fig. 1. Position and velocity tracking errors
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Fig. 2. Position and velocity estimation errors
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Fig. 3. Control history

to hold. Their utility was demonstrated through the stability

analysis of a spacecraft formation under external disturbances.

REFERENCES

[1] A. Chaillet and A. Lorı́a, “Uniform semiglobal practical asymptotic
stability for non-autonomous cascaded systems and applications,”
Automatica, vol. 44, pp. 337–347, 2008.

[2] ——, “Uniform global practical asymptotic stability for non-
autonomous cascaded systems,” European Journal of Control, vol. 12,
no. 6, pp. 595–605, 2006.

[3] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002, ISBN:
0-13-067389-7.

[4] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft
formation flying guidance and control (part II): Control,” in Proc. of

the 23rd American Control Conference, 2004.
[5] H. Wong, H. Pan, M. S. d. Queiroz, and V. Kapila, “Adaptive

learning control for spacecraft formation flying,” in Proc. of the 40th

Conference of Decision & Control, Orlando, Florida, December 2001,
pp. 1089–1094.

[6] A. Serrani, “Robust coordinated control of satellite formations subject
to gravity perturbations,” in Proc. of the 2003 American Control

Conference, 2003, pp. 302–307.
[7] R. Kristiansen, A. Lorı́a, A. Chaillet, and P. J. Nicklasson, Group

Coordination and cooperative control. Springer-Verlag, 2006, ch.
Output Feedback Control of Relative Translation in a Leader-Follower
Spacecraft Formation, pp. 131–151.

[8] ——, “Adaptive output feedback control of spacecraft relative trans-
lation,” in Proc. of the 45th Conference on Decision & Control, San
Diego, California, December 2006.

[9] E. I. Grøtli and J. T. Gravdahl, “Passivity based controller-observer
schemes for relative translation of a formation of spacecraft,” in Proc.

of 2007 American Control Conference, New York, USA, December
2007.

[10] H. Berghuis and H. Nijmeijer, “A passivity approach to controller-
observer design for robots,” IEEE Transactions on Robotics and

Automation, vol. 9, no. 6, pp. 740–754, 1993.
[11] A. Chaillet and A. Lorı́a, “Uniform global practical stability for non-

autonomous cascaded systems,” in MTNS, Kyoto, Japan, July 2006.
[12] P. V. Kokotovic̀ and R. Marino, “On vanishing stability regions in

nonlinear systems with high-gain feedback,” IEEE Transactions on

Automatic Control, vol. 31, no. 10, pp. 967–970, 1986.
[13] R. Sepulchre, “Are basins of attraction easy to enlarge by feedback?”

Plenary lecture at Congress on theoretical and applied mechanics,
2000.

[14] R. Kristiansen, E. I. Grøtli, P. J. Nicklasson, and J. T. Gravdahl, “A
6dof model of a leader-follower spacecraft formation,” in Proc. of the

46th Conference on Simulation and Modeling, Trondheim, Norway,
October 2005, pp. 149–158.

[15] M. d. Queiroz, Q. Yan, G. Yang, and V. Kapila, “Global output feed-
back tracking control of spacecraft formation flying with parametric
uncertainty,” in Proc. of the 38th Conference on Decision & Control,
Phoenix, Arizona, December 1999, pp. 584–589.

[16] B. Paden and R. Panja, “Globally asymptotically stable ’PD+’ con-
troller for robot manipulators,” International Journal of Control,
vol. 47, no. 6, pp. 1697–1712, 1988.

[17] H. Berghuis and H. Nijmeijer, “Robust control of robots via linear
estimated state feedback,” IEEE Transactions on Automatic Control,
vol. 39, no. 10, pp. 2159–2162, October 1994.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB12.5

1035


