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Abstract— Many of the distributed power control algorithms
for wireless networks in the literature ignore the fact that
while the algorithms necessitate communication among users,
propagation delays exist in the network. This problem is of
vital importance, since propagation delays are omnipresent in
wireless networks. The Foschini-Miljanic algorithm is provably
stable if there are no time-delays in the execution of the
algorithm. However, since the interference measurements are
fed back to the transmitter by its corresponding receiver, time-
delays are inevitably introduced into the system. This work
presents a more realistic version of the well known Foschini-
Miljanic algorithm for Distributed Power Control since it
considers the time-delays introduced to the system due to
propagation delays. In both the continuous and discrete time
cases we prove global stability of the system in the presence of
propagation delays.

I. INTRODUCTION

Power is a valuable resource in wireless networks, since

the batteries of the wireless nodes have limited lifetime.

As a result, power control has been a prominent research

area for all kinds of wireless communication networks (e.g.

[1], [2], [3], [4], [5], [6]). Increased power ensures longer

transmission distance and higher data transfer rate. However,

power minimization not only increases battery lifetime but

also, the effective interference mitigation that increases the

overall network capacity by allowing higher frequency reuse.

Adaptive power control in wireless networks allows devices

to setup and maintain wireless links with minimum power

while satisfying constraints on Quality of Service (QoS).

The authors in [2] proposed a power control algorithm,

the now well known as the Foschini-Miljanic (FM) algo-

rithm, that provides for distributed on-line power control of

wireless networks with user-specific Signal-to-Interference-

and-Noise-Ratio (SINR) requirements. Furthermore, this al-

gorithm yields the minimum transmitter powers that satisfy

these requirements. This seminal work triggered off for

numerous publications ( [3], [4] and [7], to name a few)

by various authors that extended the original algorithm to

account for additional issues, such as constrained power

and admission control. The original algorithm along with all

the extensions assume that the interference measurements at

the receiver are available instantaneously at the transmitter

and hence, there exists no delay while communicating these

measurements. However, this is not realistic, since there are

always propagation delays in the communication pairs while

information is exchanged.

Our work is focused on power adaptation in an envi-

ronment where there exist propagation delays between the

communicating pairs. That is, we consider the fact that the

interference measurement is not available at the transmitter

instantaneously but with some time-delay. This considera-

tion is important and reasonable since there are inevitable

propagation delays, something that makes the model of the

network more realistic. We consider the same distributed

power control algorithm as in [2], but we introduce time-

delays at the interference measurements of the receiver

that are fed back to the transmitter. Within this setting

we prove stability for the continuous-time and discrete-

time FM algorithm. More specifically, using the multivariate

Nyquist criterion [8] and by determining the set in which the

spectrum of the multivariate system lies, we prove that both

the continuous and discrete time FM algorithms are globally

asymptotically stable (GAS) for arbitrarily large delays.

These results indicate that the FM algorithm, compared to

other power control algorithms [9], is suitable to be used in

any network without requiring any bound on time-delays.

The rest of this paper is organized as follows. In the

next section, the system model along with the necessary

preliminary results are presented, while in section III a brief

review of the FM algorithm, both continuous and discrete

time, is given. In section IV the stability of those algorithms

in the presence of time delays is proven. In section V, we

continue with illustrative examples of the results presented.

Finally, the conclusions are drawn in section VI.

II. NOTATIONS AND PRELIMINARIES

A. Notations

σ(A) denotes the spectrum of matrix A, λ (A) denotes an

element of the spectrum of matrix A, and ρ(A) denotes its

spectral radius. |A| is the elementwise absolute value of the

matrix (i.e. |A|, [|Ai j|]), A≤B is the element-wise inequality

between matrices A and B and A < B is the strict element-

wise inequality between A and B. A nonnegative matrix

(i.e. a matrix whose elements are nonnegative) is denoted

by A ≥ 0 and a positive matrix is denoted by A > 0. det(A)
denotes the determinant of matrix A and diag(xi) the matrix

with elements x1, x2 , . . . on the leading diagonal and zeros

elsewhere.
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B. System Model

We consider a planar network where the links are assumed

to be unidirectional and each node is supported by an omni-

directional antenna. This can be represented by a graph

G = (N ,L ), where N is the set of all nodes and L is

the set of the active links in the network. Each node can

be a receiver or a transmitter only at each time instant

due to the half-duplex nature of the wireless transceiver.

Each transmitter aims to communicate with a single node

(receiver) only, which cannot receive from more than one

nodes simultaneously. We denote by T the set of transmitters

and R the set of receivers in the network.

The channel gain on the link between transmitter i and

receiver j is denoted by gi j and incorporates the mean

path-loss as a function of distance, shadowing and fading,

as well as cross-correlations between signature sequences.

All the gi j’s are positive and can take values in the range

(0,1]. The power level chosen by transmitter i is denoted

by pi and the intended receiver is also indexed by i. ν
denotes the variance of thermal noise at the receiver, which

is assumed to be additive Gaussian noise. The link quality

is measured by the Signal-to-Interference-and-Noise-Ratio

(SINR). The interference power at the ith receiver, Ii, includes

the interference from all the transmitters in the network (apart

from the communicating transmitter) and the thermal noise,

and is given by

Ii = ∑
j 6=i, j∈T

g ji p j + ν. (1)

Therefore, the SINR at the receiver i, Γi, is given by

Γi =
gii pi

∑ j 6=i, j∈T g jip j + ν
. (2)

Due to the unreliability of the wireless links, it is necessary

to ensure Quality of Service (QoS) in terms of SINR in wire-

less networks. Hence, independently of nodal distribution

and traffic pattern, a transmission from transmitter i to its

corresponding receiver is successful (error free) if the SINR

of the receiver is greater or equal to γi (Γi ≥ γi), called the

capture ratio and is dependent on the modulation and coding

characteristics of the radio [10]. Therefore we require,

gii pi

∑ j 6=i, j∈T g jip j + ν
≥ γi (3)

C. Preliminary results

Equation (3) after manipulation, is equivalent to the fol-

lowing

pi ≥ γi

(

∑
j 6=i, j∈T

g ji

gii

p j +
ν

gii

)

. (4)

In matrix form, for a network consisting of n communication

pairs, this can be written as

p ≥ ΓGp+ η (5)

where

Γ = diag(γi)

p =
(

p1 p2 . . . pn

)T

Gi j =

{

0 , if i = j,
g ji

gii
, if i 6= j.

ηi =
γiν

gii

Let,

C = ΓG (6)

so that (5) can be written as

(I −C)p ≥ η (7)

The matrix C has nonnegative elements and it is reasonable

to assume that is irreducible, since we are not considering

totally isolated groups of links that do not interact with each

other. By the Perron-Frobenius theorem [11], we have that

the spectral radius of the matrix C is a simple eigenvalue,

while the corresponding eigenvector is positive component-

wise. The necessary and sufficient condition for the existence

of a nonnegative solution to inequality (7) for every positive

vector η is that (I−C)−1 exists and is nonnegative. However,

(I−C)−1 ≥ 0 if and only if ρ(C) < 1 [12] (Theorem 2.5.3),

[13] .

Therefore, the necessary and sufficient condition for (7)

to have a positive solution p∗ for a positive vector η is that

the Perron-Frobenius eigenvalue of the matrix C is less than

1. That is, there exists a set of powers such that all the

senders can transmit simultaneously and still meet their QoS

requirements (minimum SINR for successful reception).

In this work, it is assumed that there exist separate,

contention-free channels that enable the receivers to send

their interference measurements to their respective transmit-

ters.

III. REVIEW OF THE FOSCHINI-MILJANIC

ALGORITHM

The Foschini-Miljanic algorithm, [2], succeeds in attaining

the required SINRs for all nodes in the network if a solution

exists and fails if there does not exist a solution.

A. The Continuous-Time Algorithm

The following differential equation is defined in [2] in

order to model the continuous-time power dynamics:

d pi(t)

dt
= ki

(

−pi(t)+ γi

(

∑
j 6=i, j∈T

g ji

gii

p j(t)+
ν

gii

))

(8)

where ki ∈R, ki > 0, denotes the proportionality constant, g ji

denotes the channel gain on the link between transmitter j

and receiver i and γi denotes the desired SINR. It is assumed

that each transmitter i has knowledge of the interference at

its receiver only, Ii(t) = ∑ j 6=i, j∈T

g ji

gii
p j(t)+ ν

gii
.

In matrix form this is written as

ṗ(t) = −KHp(t)+ Kη (9)
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where K = diag(ki) and

Hi j =

{

1 , if i = j,

−γi
g ji

gii
, if i 6= j.

For this differential equation, it is proved that the system

will converge to the optimal set of solutions, p∗ > 0, for

any initial power vector, p(0) > 0. Therefore, the distributed

algorithm (8) for each communication pair, leads to global

stability of the system.

B. The Discrete-Time Algorithm

As in [2], in the discrete time, we define the time coordi-

nate so that unity is the time between consecutive power

vector iterations. In correspondence with the differential

equation (9), the discrete time Foschini-Miljanic algorithm

is written as, [2],

p(n + 1)−p(n) = −KHp(n)+ kη (10)

The distributed power control algorithm is then given by

pi(n+1) = (1−ki)pi(n)+kiγi

(

∑
j 6=i, j∈T

g ji

gii
p j(n)+

ν

gii

)

(11)

It has been shown that whenever a centralized “genie” can

find a power vector, p∗, meeting the desired criterion, then so

long as the proportionality constant (ki) is appropriately cho-

sen (ki ∈ (0,1]), then the iterative algorithm (11) converges

from any initial values for the power levels of the individuals

transmitters.

IV. MAIN RESULTS

For the derivation of the main results, the following

Lemma is essential:

Lemma 1: Let A be a nonnegative square matrix (A ∈
RN×N , A ≥ 0) and B be a diagonal complex matrix (B ∈
CN×N) whose spectral radius ρ(B) ≤ 1, then

ρ(AB) ≤ ρ(A).

Proof: As background for the proof of this lemma, we

need the following result [11]:

Theorem 1: Let A ∈ CN×N and B ∈ RN×N , with B ≥ 0. If

|A| ≤ B, then

ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Note that AB≤ |AB| ≤ |A||B|. Since A is a nonnegative matrix

with real entries, then |A| = A. In addition |B| ≤ I, where I

is the identity matrix of appropriate dimensions. Therefore,

|A||B| ≤ A. Thus, from Theorem 1,

ρ(AB) ≤ ρ(|AB|) ≤ ρ(|A||B|)≤ ρ(A).

A. The Continuous-Time Foschini-Miljanic Algorithm with

Time-Delays

Since the transmitter uses information (interference) pro-
vided by the receiver, unavoidably, there exists a time-
delay on the information used while updating the power.
Consequently, for a more realistic algorithm we introduce
delays to the continuous-time FM algorithm and analyze the
stability conditions for this system. The differential equation
(8), when the time-delay is introduced becomes

d pi(t)

dt
= ki

(

−pi(t)+ γi

(

∑
j 6=i, j∈T

g ji

gii
p j(t −Ti)+

ν

gii

))

. (12)

The following theorem states that if the system is stable

when there are no delays into the network, then it is also

stable for arbitrarily large time-delays, Ti > 0, and for any

proportionality constant, ki > 0. Note that, at pi(t) = 0, from

(12) d pi(t)/dt > 0 restricting the power to be nonnegative,

thus fulfilling the physical constraint that the power pi ≥ 0.

Hence, we should not worry about saturation issues in the

system.

Theorem 2: If the spectral radius of matrix C in (6) is less
than 1, then the following power control algorithm

d pi(t)

dt
= ki

(

−pi(t)+ γi

(

∑
j 6=i, j∈T

g ji

gii
p j(t −Ti)+

ν

gii

))

, i ∈ T

for γi, g ji, ν > 0, is asymptotically stable for arbitrarily large

delays, Ti > 0, for any initial state pi(0) > 0 and for any

proportionality constant, ki > 0.

Proof: Taking Laplace transforms of differential equation
(12),

sPi(s)− pi(0) = −ki

[

Pi(s)− γi

(

∑
j 6=i, j∈T

g ji

gii

e−sTi Pj(s)+
ν

sgii

)]

(s+ ki)Pi(s)− ki

[

γi

(

∑
j 6=i, j∈T

g ji

gii
e−sTi Pj(s)

)]

= pi(0)+
kiν

sgii

which can be written as

Pi(s)−
kie

−sTi

s+ ki

[

γi

(

∑
j 6=i, j∈T

g ji

gii

Pj(s)

)]

=
sgii pi(0)+ kiν

sgii(s+ ki)

In matrix form this is written as

(I −T (s)C)P(s) = f(s) (13)

where

T (s) = diag(
kie

−sTi

s+ ki

)

fi(s) =
sgii pi(0)+ kiν

sgii(s+ ki)

The closed-loop system is stable if det(I−T (s)C) has no zero

in the closed right-half plane. From the multivariate Nyquist

criterion, [8], it is sufficient to show that the eigenvalues of

T ( jω)C do not encircle the +1 point. Note that
∣

∣

∣

∣

ki

jω + ki

∣

∣

∣

∣

ω∈R+

≤ 1, ∀ ki > 0

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB14.4

2993



and |e− jωTi |ω∈R+ = 1 ∀ Ti > 0. Therefore,
{

ki

jω + ki

e− jωTi : ω ,ki,Ti ∈ R+

}

⊆ S

where S is the unit ball, i.e. S = {x :‖ x ‖≤ 1}. Since,

−1 −0.5 0 0.5 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

T(jω)

S={x: ||x|| ≤ 1}

Fig. 1. The union of T ( jω) is bounded by the unit ball. This
is illustrated by an example in this figure for ki = 2 and Ti = 2
({

2
jω+2 e−2 jω : ω ,∈ R+

}

⊆ S

)

.

σ(CT ( jω)) = σ(T ( jω)C), then it is sufficient to prove that

the spectral radius of CT ( jω) is smaller than 1. From Lemma

1, we establish that

ρ(CT ( jω)) ≤ ρ(C).

Using the fact that ρ(C) < 1, then ρ(CT ( jω)) < 1. There-

fore, the spectrum is bounded within the unit ball and

does not encircle the point +1. Therefore the closed-loop

system is stable for arbitrarily large delays and for any

proportionality constant (ki).

Remark 1: Theorem 2 proves that (12) is globally asymp-

totically stable if and only if the Perron-Frobenius eigenvalue

of matrix C is less than 1. However, a sufficient condition

to establish stability to the system without requiring the

knowledge of the whole matrix C, could be ‖C ‖∞< 1, i.e.

gii

∑ j 6=i, j∈T g ji

> γi ∀ i. (14)

Since ρ(C) ≤‖ C ‖∞, this condition is more conservative.

This condition is equivalent to H being a diagonally dom-

inant matrix with all main diagonal entries being positive.

Hence, this guarantees that all the eigenvalues of matrix

H have positive real part, [11]. It, therefore, provides an

upper bound on the achievable target SINR levels in a given

network, and hence, leads to a soft capacity constraint for the

underlying system. The return for this conservatism is that

the only extra information required at each transmitter is a

measure of the sum of the channel gains at its receiver by

all other transmitters. Hence, we are able to use a distributed

way of updating the desired SINR levels and keep the

network functioning. In case a communication pair cannot

reach its desired SINR and cannot be compromised by a

lower SINR level, then the transmitter may wish to either

back-off until condition (14) is satisfied for a reasonable

SINR level, or go closer to the receiver, if possible (i.e.

increase gii).

B. The Discrete-Time Foschini-Miljanic Algorithm with

Time-Delays

With similar arguments, we now study the behavior of
the Discrete Time Foschini-Miljanic Algorithm when we
introduce delays. The difference equation now becomes

pi(n+1) = (1− ki)pi(n)+ kiγi

(

∑
j 6=i, j∈T

g ji

gii

p j(n−ni)+
ν

gii

)

(15)

where ni ∈ N denotes the time delays.

We prove that the stability is maintained whatever

the delay introduced into the network, provided that the

proportionality constant lies within the interval ki ∈ (0,1].
Note that, since ki ≤ 1, from (15) it is obvious that pi(n+1)
is always nonnegative. Thus the physical constraint that the

power pi ≥ 0 is fulfilled.

Theorem 3: If the spectral radius of matrix C in (6) is less
than 1, then the discrete time algorithm

pi(n+1) = (1− ki)pi(n)+ kiγi

(

∑
j 6=i, j∈T

g ji

gii
p j(n−ni)+

ν

gii

)

, i ∈ T

for γi, g ji, ν > 0, is asymptotically stable for arbitrarily large

delays (ni ∈ N) to the system, for any initial state pi(0) > 0

and for ki appropriately chosen (ki ∈ (0,1]).

Proof: Taking z-Transforms to the discrete time algorithm
(15), we have

zPi(z)− pi(0) = (1− ki)Pi(z)+ kiγi

(

∑
j 6=i, j∈T

g ji

gii
Pj(z)z

−ni +
νz

gii(z−1)

)

(z−1)

[

(z−1+ ki)Pi(z)− kiγi

(

∑
j 6=i, j∈T

g ji

gii

Pj(z)z
−ni

)]

= kγi
zν

gii

+(z−1)pi(0)

In matrix form this is written as

(z−1)F(z)P(z) = f (z) (16)

where

fi(z) = kγi
zν

gii

+(z−1)pi(0),

Fi j(z) =

{

z−1 + ki , if i = j,

−kiγi
g ji

gii
z−ni , if i 6= j.

Note that z = 1 cannot be a solution to

(z−1)F(z)P(z) = f (z). (17)

F(z) can be written as F(z) = (z−1)I +K −KD(z)C where

D(z) = diag(z−ni). So, the stability condition is equivalent to

the following: the eigenvalues of

[(e jθ −1)I + K]−1KD(e jθ )C (18)
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should not encircle the point +1, as θ varies from 0 to 2π .

In order to establish that the spectral radius of

D̃(e jθ ) = [(e jθ −1)I + K]−1KD(e jθ ) (19)

is upper-bounded by 1, it is sufficient to find the conditions

for ki for which
∣

∣

∣

∣

ki

e jθ −1 + ki

∣

∣

∣

∣

≤ 1 ∀ i ∈ T . (20)

Since ki > 0, inequality (20) can be written as

ki ≤ |e jθ −1 + ki|

= |(cosθ + ki−1)+ j sinθ |

=

√

(cosθ + ki−1)2 + sin2 θ

Thus,

k2
i ≤ (cosθ + ki −1)2 + sin2 θ

= cos2 θ + 2(ki−1)cosθ +(ki −1)2 + sin2 θ

= (ki −1)2 + 2(ki−1)cosθ + 1

Hence,

(ki −1)(2−2cosθ ) ≤ 0

But, since |cosθ | ≤ 1 ∀θ ∈ [0,2π ], then 2 − 2cosθ ≥ 0.

Therefore, this inequality holds for ki ≤ 1. Again, since

σ(CD̃(e jθ )) = σ(D̃(e jθ )C), then it is sufficient to prove

that the spectral radius of CD̃(e jθ ) is smaller than 1 (i.e.

ρ(CD̃(e jθ )) < 1). From Lemma 1, we establish that

ρ(CD̃(e jθ )) ≤ ρ(C).

Since ρ(C) < 1, then ρ(CD̃(e jθ )) < 1. Therefore, the spec-

trum is bounded within the unit ball and does not encircle

the point +1. Therefore the closed-loop system is stable for

arbitrarily large delays and for ki ≤ 1.

Remark 2: From (18), since |D(e jθ )| = I, the stability

condition is equivalent to establishing that the spectral radius

of

C̃(e jθ ) = C[(e jθ −1)I + K]−1K (21)

is smaller than 1. Since [(e jθ − 1)I + K]−1K is a diagonal

matrix, by Lemma 1, we can equivalently find the conditions

on ki for which
∣

∣

∣

∣

kiρ(C)

e jθ −1 + ki

∣

∣

∣

∣

< 1 ∀ i ∈ T . (22)

Since ki > 0 and ρ = ρ(C) > 0, inequality (22) can be written

as kiρ < |e jθ −1 + ki|. Thus,

k2
i ρ2 < (ki −1)2 + 2(ki −1)cosθ + 1, (23)

which is equivalent to the following inequality

k2
i (ρ

2 −1)+ 2ki−2 < 2(ki −1)cosθ . (24)

For ki ≤ 1, the worst case is obtained when cosθ = 1.

Therefore, from inequality (24), we get ρ < 1. When ki ≤ 1

then, if the system is stable, the algorithm will converge in

a distributed manner.

For ki > 1, the worst case is obtained when cosθ = −1.

Therefore, from inequality (24), we obtain that

ki ∈

(

0,
2

1 + ρ(C)

)

⋃

(

2

1−ρ(C)
,+∞

)

However, for values of ki > 2 the system (17) becomes open-

loop unstable. Therefore for

ki ∈

(

0,
2

1 + ρ(C)

)

,

if the system is stable (i.e. ρ(C) < 1) then the algorithm is

locally asymptotically stable. Global stability of the system

requires to prove stability for the algorithm while restricting

negative powers, which is part of an ongoing research.

This result is useful whenever there is a centralized

controller/base station that has knowledge of the network

and is able to disseminate this information to the users. In

such a case the system converges faster to the optimal power

vector.

V. ILLUSTRATIVE EXAMPLE

Consider an ad-hoc network consisting of four commu-

nicating pairs, i.e. eight mobile devices in total. For this

example we have that γi = 3 and ν = 0.04 Watts. The initial

power pi(0) for each transmitter is 1 Watt. The network is

described by matrix C and it is schematically shown in Figure

2.

C =









0 0.5405 0.3880 0.1131

0.2143 0 0.0101 0.0323

0.0522 0.0070 0 0.0271

0.0084 0.0016 0.0385 0









S1

R1

g11

S2

R2

g22

S3

R3

g33

S4 R4

g44

g12

g13

g14

Fig. 2. Example of a wireless ad-hoc network of n = 8 nodes, consisting of
four communication pairs {Si → Ri}. The grey dotted arrows are included
to indicatively show the interference caused to the receivers by S1.

For this setup, the Perron-Frobenius eigenvalue of C is

0.3759, so the power control algorithm is stable, even though

‖C ‖∞> 1.

For the same network, utilizing the discrete-time FM

algorithm, the system is asymptotically stable, provided the

proportionality constant is appropriately chosen such that
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ki ∈ (0,1]. This is demonstrated in the simulation below,

Figure 3, for a proportionality constant ki = 1 and different

time-delays for each communication pair. In a distributed
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Time
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o
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Powers of individual users

 

 

S
1

S
2

S
3

S
4

Fig. 3. Discrete-time FM algorithm with delays (T = {15,2,17,14}). The
algorithm asymptotically converges to the desired SINR in a distributed
manner.

implementation of the algorithm where all transmitters sat-

isfy (14), assuming that the nodes acquire the information

required for updating their desired SINRs, the first commu-

nicating pair has to reduce the data rate, and hence require

smaller SINR, such that

∑
j

C(i, j) < 1, i.e., γ1 < 2.8802.

When there are no delays into the system, then for the

network described by matrix C, the maximum proportionality

constant for which the system is locally asymptotically stable

is given by

k <
2

1 + ρ(C)
=

2

1.3659
= 1.4643.

In order to indicate the validity of the result, we run simula-

tions for the network in which all users have a proportionality

constant k = 1.4 (Figure 4) and then k = 1.5 (Figure 5).

VI. CONCLUSIONS

In this paper, we focused on power adaptation in an en-

vironment where there exist propagation delays between the

communicating pairs. More specifically, we introduced de-

lays to both the continuous-time and discrete-time Foschini-

Miljanic algorithm. Using the multivariate Nyquist criterion

we proved global asymptotic stability for both algorithms in

the presence of arbitrarily large delays. In the continuous-

time case, the proportionality constants should be positive,

while in the discrete-time case, the proportionality constants

should lie in the half-open interval (0,1].
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Fig. 4. Proportionality constant k = 1.4. The system converges to the
desired SINR and to the minimum power vector.
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Fig. 5. Proportionality constant k = 1.5. The system diverges, but not to
infinity since the lower bound of the powers is restricted to be positive.
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