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An Impossibility Theorem on Feedback Based on Stochastic Embedding

Chanying Li and Lei Guo

Abstract—Feedback is a key concept in control systems.
A fundamental theoretical problem has been to understand
the maximum capability of feedback in controlling uncertain
dynamical systems. This needs not only to answer what the
feedback can do, but also to answer, the more difficult and
basic question, what feedback cannot do. An impossibility
theorem on feedback will describe the fundamental limitations
of the feedback principle in dealing with uncertainties by all
possible feedbacks laws. In this paper, we will use a stochastic
embedding approach to address this problem. This approach is
based on extensions of the Cramer-Rao inequality to uncertain
nonlinearly parameterized dynamical systems, which will then
lead to a new impossibility theorem on the feedback capability
for the control of a basic class of discrete-time nonlinearly
parameterized uncertain dynamical systems.

I. INTRODUCTION

It is well known that feedback is a key concept in control
systems, which is mainly used to deal with uncertainties
in the dynamical systems to be controlled. Robust control
and adaptive control are two typical techniques for feedback
design in the presence of structural uncertainties. It is con-
ceivable that adaptive control has the ability to deal with
larger class of uncertainties since an on-line estimation loop
is usually included in the feedback control design.

There has been much progress in adaptive control of
linear systems (cf. e.g., [1],[2],[3],[4]), or nonlinear systems
with nonlinearity having linear growth rate (cf. e.g.[11],
[20]). Furthermore, it is also possible to design globally
stablizing adaptive controls for a wide class of nonlin-
ear continuous-time systems[5], but fundamental difficulties
arise for adaptive control of nonlinear discrete-time systems,
partly because the high gain or nonlinear damping methods
that are crucial in the continuous-time case are no longer
effective in the discrete-time case. Similarly, for sampled-
data control of nonlinear uncertain systems, the design of
stabilizing sampled-data feedback is possible if the sampling
rate is high enough (cf.e.g., [17] and [18]), but difficulties
will again emerge if the sampling rate is a prescribed value
(may not be small enough), even for nonlinear systems with
nonlinearity having a linear growth rate (cf.[19]) .

Given the above difficulties that we encountered in the
adaptive control of discrete-time (or sampled-data) nonlinear
systems, one may curious to know whether or not such
difficulties are caused by the inherent limitations of the
feedback principle. To investigate this fundamental problem,
we have to place ourselves in a framework that is somewhat
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beyond those of the traditional robust control and adaptive
control. This is because we need to answer not only what
feedback can do, but also the more difficult question what
feedback cannot do. This means that we need to study
the fundamental limitations of the full feedback mechanism
which includes all (nonlinear and time-varying) feedback
laws.

An initial step in this direction was made in [6], where
the following basic model is considered :

Yer1 = Of (ye) + v + wiya, (D

where 6 is an unknown scalar parameter, {w;} is a Gaussian
white noise sequence, and where f(-) is a known nonlinear
function having a nonlinear growth rate characterized by !

|f ()] = ©(zl")

It was found that the system is globally stabilizable by
feedback if and only if b < 4 (see, [6], [13]). Obviously,
this critical case on the feedback capability gives a di-
rect“impossibility theorem” on the maximum capability of
feedback for the case where b > 4. It is worth pointing out
that such “impossibility theorem” obviously holds also for
any (more general) class of uncertain systems that includes
the basic model class as a subclass. In subsequent works,
this “impossibility theorem” was extended to systems with
multiple unknown parameters by introducing a polynomial
criterion(see, [10],[11]). More recently, [15] proved that the
polynomial rule of [10] does indeed provide a necessary
and sufficient condition for global feedback stabilization of
a wide class of nonlinear systems with bounded multiple
unknown parameters and with bounded noises, by using a
purely deterministic method, which is usually quite compli-
cated in the study of the impossibility theorems.

However, all the above mentioned impossibility results on
feedback consider linearly parameterized models, i.e., the
unknown parameter enters into the systems in a linear way.
To investigate the more general nonlinearly parameterized
systems, we will use a stochastic embedding approach in
this paper. It will lead to a new impossibility theorem on
the feedback capability for the control of a basic classes of
discrete-time uncertain nonlinearly parameterized dynamical
systems. This theorem shows that the key factor in determin-
ing the capability and limitations of the feedback mechanism
is the growth rate of the sensitivity function (with respect to
the uncertain parameter).

with b > 1. )

' f(x)] = ©(|z|®) means 0 < l;rginf @i < limsup
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This paper is organized as follows. In the next section,
we will present the main results of the paper, followed by a
description of the stochastic embedding approach in Section
III. The proof of the main results will be given in Section
IV, and some concluding remarks will be given in Section
V.

II. MAIN RESULT

To explore the fundamental limits of the feedback capa-
bility, we consider the following nonlinearly parameterized
control system :

Yer1 = (O, y¢) + up + wep, 3)

where § € RP,p > 1, is an unknown parameter vector in
the p-dimensional Euclidean space, y;, u; and w; are the
system output, input and noise signals, respectively, f(-,-) :
RPT! — R is a known nonlinear function. We first assume

that the noise sequence satisfies the following condition:
Al) The noise sequence is an arbitrarily bounded se-

quence with an upper bound w > 0, i.e.,

sup |wy| < w. 4)
t>1

To establish our main result of the paper, we need a structural
condition on the nonparametric function f(-,-) as follows.

A2) The sensitivity function of § defined by f/(6,z) =
0
910, x) £ (f1(0,x),--- , f,(0,x))" exists, which

0
has tﬁe following growth rates as x — oo ,

1f(0,2) =0(z|"), 1<i<p (5

uniformly in €, where the exponents b; are arranged
in a decreasing order by > by > --- > b, > 0, with
by > 1.

We would like to know if the above uncertain systems can
be stabilized by feedback in the same averaging sense. First,
we state two standard definitions(cf.e.g., [12]).

Definition 2.1: A sequence {u;} is called a feedback
control law if at any time ¢ > 0, u, is a (causal) function of
all the observations up to the time t: {y;, i < t}, i.e.,

Ut :ht(y07"' 7yt) (6)

where h;(+) : IR*T — IR! can be any Lebesgue measurable
(nonlinear) mapping.

Definition 2.2: The system (3) is said to be not globally
stabilizable by feedback, if for every feedback control law
{ht(-)}, there always exist some yo € R, # € RP, and
some noise sequence {w;} satisfying Al), such that the
corresponding outputs of the closed-loop system are not
bounded, i.e.,

sup |y:| = oo. @)
>0

The main result of this paper is the following impossibility
theorem on feedback.
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Theorem 2.1: The uncertain system (3) under the As-
sumptions A1)-A2) is not globally stabilizable by feedback
if there exists some x € (1, ;1) such that

P(z) <0, ®)
where P(z) is a polynomial defined by

P(z) = aP™' —baP 4 (b + by + -+ by)aP!

—bgaP 3 — = bpx.
The proof of this theorem is given in Section IV.

Remark 2.1: Note that if the parameter # were known,
then the System (3) could be stabilized by the simple
feedback law u; = —f(0,y:). Hence, the above limit
on the capability of feedback is mainly caused by the
uncertainty of the parameter #, and by the limitations of
identification to be given by Proposition 3.1 in the next
section. Furthermore, Theorem 2.1 shows that such a limit of
feedback is determined by the growth rate of the sensitivity
function 9f (0, -)/00, since the criterion polynomial P(z) is
determined by its growth exponents b;. For example, in the
scalar parameter case where p = 1, the above polynomial
reduces to

P(JJ) Zl‘z—b1$+b1

and it is easy to see that there is 2 € (1, b1 ) such that P(z) <
0 if and only if b; > 4, which means that in the case where
b1 > 4, no globally stabilizing feedback exists. Theorem
2.1 extends the existing impossibility results in [6][13] from
linear parametric case to the present nonlinear parametric
case.

Remark 2.2: If there exists some 6* € RP and some t* >
1 such that for any ¢t > t*, we have P/(0) < P/(6*), where
t—1
PlO) 2T+ M > £1(0,60)f7(0,61),
i=0
then it can be shown in a similar way that Theorem 2.1 holds
for the polynomial

P(x) = aP™ —byaP 4 (by —b)aP ™' -+
+(bp—1 — bp)x + bp. )

Furthermore, in the case where the function f(6,x) is
reduced to a linearly parameterized function 67 f(x) with
6 € RP, the assumption P/(f) < P/(0*) is automatically
satisfied since the matrix P/(0) is free of 6. In this case, it has
been shown in [15] that, the condition P(z) > 0,z € (1,b1),
is also sufficient for global feedback stabilization of this class
of uncertain systems with bounded disturbances, where P(x)
is defined by (9).

Remark 2.3: If, instead of the A2), the sensitivity function
has a linear growth rate: || f/(0,z)|| = O(||z]|) , as  — oo,
then it can be shown [16] that the system (3) is globally
stabilizable by feedback.

Remark 2.4: 1If the unknown parameter 6 belongs to a
compact set, a similar proof shows that Theorem 2.1 is also
true.
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III. STOCHASTIC EMBEDDING

Theorem 2.1 is a deterministic result in nature, but it will
be established using a stochastic embedding approach in the
paper. It is interesting to note that the stochastic embedding
approach used in most of the existing literature (see, e.g.
[9]) normally arrives at an assertion that is hold outside an
exceptional set of probability zero. Here, we will arrive at a
pure deterministic assertion for our impossibility theorem.

We start with the following more general nonlinearly
parameterized model:

Yer1 = f(0,0¢) + wiya, (10

where 6 € R? p > 1 is an unknown parameter vector, ¢y =
(yt,ut;* -+ ;Y0,uo), ur and w; are the system regression
vector, feedback law and noise signal respectively, and where
f(,-) € ¢1 . R2G+D+P . R is a differentiable nonlinear
function.

Let (92, F,P) be a probability space, § € RP be a
random vector and {w;}{2,; be a stochastic process on
this probability space. The stochastic embedding idea is to
construct a special class of 6 and {w; }$2, on this probability
space, such that their sample pathes are consistent with
those of our assumptions and they are easily applicable to
some Cramer-Rao-like inequalities for dynamical systems.
This can be done by choosing a suitable class of probability
density functions(p.d.f.) as follows.

Let us take 6 € RP to have the following p— dimensional
Gaussian p.d.f. p(#) defined by N(0,1):

— Lijop2 11
p(0) = Wexp{—§|\ 17} a1

Also, let us take {w:} to be an independent sequence

which is independent of 6§ with w; having a Gaussian p.d.f.

1
qt(z) defined by N (0, t2> :

t 2212
z2)=——=exp|—— |, 12
Obviously, {w,} satisfies A1) almost surely for large enough
t, since

lim w; =0, a.s.
t—o0

We will show that in the above stochastic framework, for
every feedback control u; € fty £ o{yi,0 < i < t}, there
always exists an initial condition yo and a set D C Q with
positive probability such that for any w € D, #(w) € RP and
{w¢(w)} is bounded, and that the corresponding output signal
1y of the closed-loop control system has a dynamical lower
bound. This will naturally gives the corresponding results in
the deterministic framework of this paper.

To get the above result, we need a key lemma on a
conditional Cramer-Rao inequality for dynamical systems
(see, eg., [7], [11]). To this end, we first define some
notations which will be used throughout the sequel.

fi 2 f(0,0¢), where ¢, is defined in (10).
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E,y £ E{y|r}, where x,y are random vectors.
F(0,00) 2 BIf(0, ¢0)| FY);

P(0) £ 1+ Myt* 2 ELf(0,6:) f (0, 60| F7;
Qu41(0) 2 P(0) + ELf'(0,60)| FY1ET[f'(0, 60)| FY,

where F} £ o{y1,---,y:} and M; > 0 is some random
variable.

We first give a Cramer-Rao inequality like result for
the best prediction of the uncertain function f(6,¢;) given
{yh e 7yt}-

Proposition 3.1: Let 6 be a parameter vector with p.d.f.
p(0) defined in (11), and be independent of {wy, } which is an
i.i.d. random sequence with p.d.f. ¢(z) defined in (12). Then
for the dynamical equation (10) with arbitrarily deterministic
initial value yg, we have

Ez[f(ea ¢t) - f(97 ¢t>]2
1

> S EIf(0.00P  (O)Ef'(0,60).  (13)

where = 2 {y1,- -,y }.

Based on this Proposition, we now try to get a dynamical
lower bound to the output process. For this, we need the
following additional assumption.

A3)  For any € > 0, there exists some function h(e) such

that for any ¢ € R**2 and ||¢|| > h(e), the set
A, defined by

Ac 2 {0 € RV 1 [£(6,¢) < emax|f'(0,)l},
(14)
satisfies L(A.) < Ke for all large ¢, where L(-)
denotes the Lebesgue measure on R? and K > 0
is some constant.

Proposition 3.2: Under the conditions of Proposition 3.1
and A3), if the regression |¢:|| > h WS for all ¢,

where § is some constant we defined latter, then there exists
some set D C Q with P(D) > 0, such that on this set,

1 1det Qr+1(0)
Ki(t+1)*+4 |2 det P(6)

—(Ki(t+1)* +4)Ky — ‘;’] ,

2
Y1 2

15)

holds for all ¢t > 1, where K7, Ko > 0 are some constants.

The proofs of Propositions 3.1 and 3.2 are given in the
next section. Proposition 3.2 is a key result to be used in
establishing the impossibility theorem stated in the last sec-
tion. It can be further simplified under additional conditions
on the nonlinear structure f(-, ).
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IV. PROOF OF THE MAIN RESULTS

To prove Theorem?2.1, we need to prove Propositions 3.1
and 3.2. The proof of Propositions 3.1 is composed of
several lemmas to be given below. The first lemma below is
a standard conditional Cramer-Rao inequality (see, e.g.[7],

[11]).

Lemma 4.1: Let © be random vector, and let # be a
parameter vector with p.d.f. p(f) defined in (11). Then
for any measurable vector function g(x,) having partial
derivatives of first order w.r.t. 6, and let E,g(z,6) and

0 0
E, 9(z,6) exist. Then we have

Bl
Eylg(x,0) — Ezg(z,0))?
- —1
> Erag(wﬁ) B, dlogp(xz,0) 07 logp(x,)
00 o6 o6
+99(z,0)
XE”780 .

Applying this lemma to the dynamical system defined by
(10), we can further get the following result.

Lemma 4.2: Under the conditions of Proposition 3.1, we
have for t > 1

Em[f(av d)t) - Ea:f(ev d)t)]Q
> SELO6)ERO] B 0,0), (16)
where = 2 {y,--- ,9;} and
Fy(9) =
kzt: dlog q(yake_ fr=1) Zt: 97 log q(gz; —fee1) | I
=1

with p(-) and ¢(-) being the p.d.f. of the parameter 6 and
noise wy respectively.

Proof. Directly applying Lemma 4.1, we have

Ex[f(ea ¢t) - Eccf(gv ¢t)}2
L 0000 {E [alogm,a) 0 1ogp(x7e>} }
00 00 00
af(95¢t)
xExiag
_ o 0f(0, )
E7 50 X
. [9llogp(x]6) +logp(d)]
v 00
97 [log p(a]6) +logp<a>]H L 0(6.00)
00 00
Note that by the Bayes rule and the dynamical equation (10),
p(l0) = p(yr,y2- - ,ul0)
= p(110,50)p(y216, 0, 1)
'p(yt|07y07 T 7yt—1)
= q(y1 — fo)-aly2 — fr) - aye — fe-1).
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Then, by the matrix Schwarz inequality

" Ologq(yk — fr1) = Ologp(h)
(Z 20 T

k=1

" dlogq(yr — fr_1) = dlogp(0) ’
'(Z 20 BT )

k=1

t
O0logq(yr — fr—1)
=2 (kz_l o0 '

i 9" log q(yx — fr—1)  Ologp(#) 97 logp(6)
00 00 00 ’

k=1

and the fact that [11]
dlogp(f) 97 logp(d) _
00 00 B
we can arrive at (16) directly by noting that

B 92 logp(0)

062 -
which can be easily verified by the definition of p(f). W

9 log p(6)
062

_Er

I, a.s.

Lemma 4.3: Under the conditions of Proposition 3.1, we

have
t—1

Fi0) <M S /0,607 (0.60) + 1

k=0

where F;(0) is defined in Lemma 4.2 and M; > 1 is some
random variable.

) k 2
Proof. Since qi(yx — fr—-1) \/Texp{ —(yr —
feo1)?) k=1,2 ,t, we have
dlogq — fr_ k2
s =) O B )

= Krwrf'(0, bp_1).

Note that by the definition of ¢;(z) in (12), for some random

variable M7 > 1,
t
> wi
Wy, < Ml.
k=1

Hence, by the matrix Schwarz inequality, we have

(B (3 )

t t
< (Z f'(0,01-1) (9a¢21)> <Z w,%)
k=1
< Mytt Zf L ék-1)fT(0,6%_,)  on Dy,
which gives the lemma by the definition of F(6). |

To prove Proposition 3.2, we first prove the following
lemma.
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Lemma 4.4: There exists a set D C {2 with positive
porobability such that on D

Blyfa|F) < (4+ Kt + 1)) (97, + K2) +1
for any ¢ > 0, where K7, Ko > 0 are some constants.

Proof. To prove this lemma, we define

a2 0w 110,00 < s 60}
1
—_— >
0<d< KPP t>0,
where, f*(¢;) £ maxg|f'(0,6)], P £ sup p(0) =
cRP
1
W’ and K is defined in A3).
Recursively define ©;41 £ 0, — Ayt =0,1,---, where

Op=RP . Let Oy 2 lim; .00 O;, D 2 {w:0 € Oy}
So, by Assumption A3) and the condition of this lemma,

we have L(A;) < Lé, and
(t+1)2

P{w:0 €A}

M8

P{w:0€ A}

)
PKZ(t+1)2 <1

t=0

i
o

IN

which implies
PD)>1-P({w:0e|JA}) >0

Next, note that E[X|F}] is a.s. bounded for any integrable
random variable X by [21, p.145]. Now, let w* € D be any
fixed point. Then by the definitions of D and A, we have
Bo[f(0,y0) = F(O(w"), de)]*(w")

E,[(6 — 0(w*))" f'(€, 60)]*(w")
Byl6 - 0(w)]? - max 17 (&, do)lI (")

DI
(t + 1)* Mo (w*)
S 20,60,

where My(w*) is a constant. Consequently, by noting that
|we|?> < Ky, a.s. for some random constant Ko > 0, we
have for any w* € D,

[Bayiia) (@)
B, f2(8,¢0)(w") + 1
)(w?)

IN

4
C D 120060800~ 0

IN

<

S 2f2(0(w>k)a¢t
2B, [f (01, 1) — F(O(W*), o)) (w*) + 1
< (24 2R o)) 1
B ( 2M2 ; + 2 > [es1(w*) — wepr (W*)]* +1
= (4 4M2 t+ 2k ) (Y71 (W) + K2) + 1
< (4 Ky ( t+1 )(yt+1(W*)+K2>+17

WeA04.6

4M.
where K; = 22 is a constant. Hence the proof is
completed. |

Proof of Proposition 3.2: First of all, it is easy to see that

Elwi1|FY] = Fwir1 = 0 by (12). By (10) we know that
verr = [0, 6) = F(0,00)] + f(0,08) +wigr, (A7)
where f (6, ¢x) are defined as in Proposition 3.1. Conse-
quently, by the fact E[f(0,¢r) — f(0,¢x)|F’] = 0 and
Elwit1|F] = 0 it follows that for any u; € 7/,
E[yt2+1|]:ﬂ
= E{[f(0,¢r) — f(0,00)P|F} + [7(0, dn)
+E[wt2+1|-7:t ]
> B{[f(0,0x) — F(0 o0)]*| 7Y} (18)
Then by Proposition 3.1, we have on D,
Ezyt2+1
1 1
> (L0, 00P OB 0,00+ 1) -

ldet{Pt(Q) + Ezf/(gv d)t)E;fl(e? d)t)} _ 1
2 detPt(H) 2
Ldet Qe1(0) 1

2 detP(0) 2
This together with Lemma 4.4 shows that (15) is true. W

Proof of Theorem 2.1 In the stochastic framework, note
that every feedback law u; = h¢(yo,- - ,y¢) in the form of
(6) in Definition 2.1 is measurable /. By Proposition 3.2,
for every feedback law wu,, there at least exists some sample
point w* € D C Q with f(w*) and w¢(w*) for all ¢ > 1 such
that for arbitrary yo, the inequality (15) holds for y7,; (w*).

For simplicity, we continue to use 6 and {w;} to denote
the parameter 6(w™) and noise sequence w;(w™) as above.
In fact we can prove A2) implies A3), and hence the by
Proposition 3.2, the corresponding output sequence satisfies
on D

1 1det Qr+1(0)
Ki(t+1)*+4 |2 det P(0)

—(Ki(t+1)* +4)Ky — ‘;’] ,

2
Y1 2

where
Py(0) £ I+M1t4tziE (0,917 (0, 3:) | F7).
and .
Qur1(0) = Pi(0) + ELf' (0, y0) [ FV1ET (0, ye) | Y.

Since f/(8,y;) = O(y’*) uniformly in 6, we have
E[fi(0,y0)\F?] = O ("),

then by a similar proof as for Lemma 2.4.1 in [11] and
the p.d.f of w;, we know that under our assumption {|yt\}
bounded, for some 6’ > 0 and t > 1, if |y;| > |y;—1|*10 i =
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1,2,--- ,t, then the matrix determinants will satisfy for large
lyo| > 1,

det(Py) = Oty [P +00),
e [ye—pa [ = O(det(Qeq1))-

Furthermore, let A € (1,b1) be a solution of inequality
(9). By almost the same proof as that for (81)-(85) in [11],
we can prove by an induction that for some random variable
p >0,

Y41 = plyel,

whenever |yg| > 1 is large enough. Hence {y;} diverges to
infinity exponentially fast. The proof is completed. |

V. CONCLUDING REMARKS

The primary motivation of this paper is to explore the
fundamental limitations of the feedback principle in stabi-
lizing discrete-time nonlinear dynamical systems with pa-
rameterized uncertainties. By using a stochastic embedding
approach, we have in this paper established an impossibility
theorem on the feedback in controlling a basic class of
uncertain dynamical systems. A remarkable observation is
that the key factor that determines the fundamental limi-
tations of the feedback principle is the growth rate of the
sensitivity function of the uncertain parameter. Evidently,
such an impossibility theorem naturally gives an limitation
on adaptive control of discrete-time nonlinear systems. For
further investigation, it would be interesting to investigate
more general nonlinearly parameterized dynamical systems.
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