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Abstract— CONWIP or constant work in process is an im-
portant manufacturing systems production discipline whereby
within a CONWIP loop, there is a cap on the maximum amount
of work in process that is permitted at any time. This allows
for some mobile storage within the loop, albeit a bounded
amount. Enforcement of the discipline is carried out at the
entrance of the loop. The presence of a loop wide constraint
creates indirectly a significant degree of solidarity among the
machines within the loop. This property is exploited to develop
a model of storage dynamics involving a number of (virtual)
macro machines having some common states and interacting
through some unknown parameters which are then estimated.
Numerical results are presented and an application in minimal
CONWIP loop storage sizing for a given demand rate and
service level requirement is reported.

INTRODUCTION

There is a rich literature on decomposition methods for the
analysis and optimization of unreliable manufacturing lines
[3] ,[4], [5],[6],[7],[8]. Most of these papers have analyzed
so-called Kanban (card in japanese; introduced by Toyota)
related production disciplines whereby one machine cannot
get ahead of the next machine downstream by more that a
certain maximum amount of parts designated as the Kanban
parameter at that stage. In effect, Kanban parameters define
the permissible buffer spaces between machines; buffering
partially alleviates starvation (absence of parts) or blocking
problems (no space for moving a finished part) that can be
experienced by operational machines in the vicinity of a
failed machine, thereby enhancing line productivity at the
cost of some system storage. While the Kanban principle
leads to a a highly decentralized production control architec-
ture, CONWIP, or Constant Work in Process (wip) introduces
an alternative more centralized competing architecture by
treating a string of machines as a unique Kanban cell within
which the wip level is bounded above by some constant
z, machines otherwise always producing at their maximum
allowable rate. When machines never fail, and demand rate
is less than line production rate, total wip saturates at z
and remains constant. However, in practice, machine failures
will induce a fluctuating total wip. It is also possible to
combine Kanban and CONWIP as in [1], [2] to generate
high performance hybrid policies. The above policies are
special instances of the lean manufacturing paradigm and the
optimization of their defining parameters has been the subject
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of much research [15]. While Monte-Carlo simulation and
perturbation analysis can be useful optimization tools in that
respect, the associated computation times tend to become
prohibitive in long transfer lines. Alternatively, analysis
based, approximate decomposition/aggregation methods can
lead to efficient optimization schemes.
Except for the notable exception of the decomposition ap-
proach in [9], based on which extensions for analyzing
hybrid CONWIP/Kanban architectures were developed in
[1], [2], there is a paucity of published results on de-
composition/aggregation methods for CONWIP controlled
transfer lines. In [9], the decomposition is achieved first
by assuming that, despite machine failures, total internal
wip is always at saturation level z, and then replacing that
strong system wide storage levels coupling constraint over
time by a much weaker one stating that long term average
wip is equal to z. The method is accurate for large loops
with wip limits that are neither "too large", nor" too small".
Our objective here is to propose alternative and hopefully
improved approximate methods for the performance evalua-
tion of CONWIP policies, and which could serve as building
blocks for the evaluation of more complex hybrid production
control architectures.
One of the important performance measures of CONWIP
controlled transfer lines is the mean amount of total work
in process for a given fixed rate of parts production. Our
approximate computation of mean total work in process
flows from treating the CONWIP controlled portion of the
transfer line as a Kanban controlled macro cell, thus situating
the approximation within the class of aggregation methods.
The input/output behavior of the CONWIP macro cell is
affected on the one hand, by the reliability statistics of the
first machine, and on the other hand by the probability, also
called coefficient of availability, that work in process be
available at the output of that macro cell. The latter quantity
is complex to compute as it involves having to model
every machine and intermediary work in process within the
line. The so-called machine decoupling approximation, and
demand averaging principle, both of which form the basis
of the approximate Kanban performance analysis in [8], are
liberally used in the process.
The rest of the paper is organized as follows: in Section I, we
define our CONWIP controlled model of an n machine ho-
mogeneous unreliable transfer line (machines with identical
reliability statistics and identical maximum production rates)
and provide examples of some of the Monte Carlo simulation
trajectories which have enhanced our understanding and
inspired our analysis. In Section II, we focus on building a
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Markovian model of the last machine in the CONWIP macro
cell with the aim of computing the coefficient of availability
of wip at its output. Unfortunately, this model is affected
by the unknown coefficients of availability conditional on
the state of the line, for all other intermediary stocks.
We are then led to develop in Section III the Markovian
models of each one of these stocks. They are associated with
nth order linear differential equations (Forward Kolmogorov
equations) which are coupled through a total of (n− 1)2

unknown coefficients of availability at the various storage
bins in the loop, and conditional on the various transfer line
operational states . In Section IV, we develop our aggregate
Markovian model of the total wip in the system. It can
produce an answer once provided with the coefficient of
availability at the last bin in the CONWIP macro cell. In
Section V, we give the details of our solution steps. In
Section VI, we compare our theoretical results against Monte
Carlo simulations for a number of transfer lines and illustrate
the application of the analysis to the problem of minimally
sizing the storage parameter of a CONWIP loop to secure a
given service level at a certain demand. In Section VII, we
summarize our conclusions and discuss directions for future
work.

I. MATHEMATICAL MODEL OF THE TRANSFER LINE:
DEFINITIONS AND ASSUMPTIONS

We consider a manufacturing transfer line consisting of
n machines, Mi i = 1, · · · ,n, each associated with a work
in process variable xi. All machines in the line, except the
last one, are assumed to be involved in a single CONWIP
(constant work in process) loop, in essence a loop control
discipline attaching a single Kanban level to the group of
machines in the loop. We assume that the transfer line
produces a single type of parts and it is subjected to a
constant rate of demand of d parts per unit time. Under
these circumstances, and for a given CONWIP level z, we
are interested in two indices of performance: mean total
wip in the loop, and coefficient of availability of wip at the
(n−1)thstage.
Given a CONWIP loop, the CONWIP discipline is such that
the first machine in the loop and the last one become strongly
correlated when the total amount of wip enclosed reaches
the set maximum level. At that stage, the first machine can
only process the exact amount of parts that leave the last
machine. Thus, much more correlated machine behavior can
result as opposed to plain Kanban policies, and it is at the
entry point of the loop, i.e. at the first machine, that total
work in process regulation is enforced. This largely explains
our intuition that an aggregate Kanban controlled macro
cell model with adequately defined parameters stood a good
chance of yielding a fairly accurate characterization of mean
total work in process in the CONWIP loop.

A. Machines and policy parameters

Machines Mi i = 1, · · · ,n, are assumed to have an opera-
tional and a failure state, and to randomly evolve between
these states according to a two state continuous time Markov

chain. For machine Mi, maximal production rate, failure
rate and repair rate are respectively given by: k, pi and ri.
Production rates and number of parts produced are treated as
continuous variables (fluid model). In addition, no backlog
is permitted anywhere in the flow line except at the buffer
associated with the last machine. Furthermore, a CONWIP
policy is enforced on the first n−1 machines whereby total
work in process in the loop cannot exceed z. Given work
in process xi(t) in buffer i, we can make the following
observations:
- if xi(t) > 0, then machine Mi+1 has access to parts.
- if on the other hand xi(t) = 0, this can mean one of two
things: either machine Mi is off, and in that case machine
Mi+1 is starved and consequently its production ceases, or
Mi is operational, in which case Mi+1 and Mi share the same
production rate.

B. A few helpful simulation based observations

Fig. 1. Simulation trajectories of work in process for a three machine
CONWIP loop

Understanding of CONWIP loop dynamics can be en-
hanced through some Monte Carlo simulation based ob-
servations as shown in Fig. 1. One notices that under our
production rate assumptions, if machines remain operational
for a long time, all work in process (wip) tends to accumulate
at the (n−1)th stage of the loop, while the first (n-2) storage
bins remain empty (but active!). Also, once the loop is
blocked (total amount of wip has reached the maximum z),
it will remain so, even through any single machine failure,
unless that machine happens to be M1. As a result, the
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loop will be blocked with high probability; internal wip
levels will be zero most of the time, resulting in a high
degree of coupling of internal machines and thus pointing
at aggregation as a promising direction for approximation.
Also, the reliability statistics of M1 appear to play a special
role. Furthermore, when an internal machine fails, wip starts
immediately accumulating upstream of it, while the wip at
the (n−1)th stage starts emptying until it eventually finishes
(loop blocked and (n− 1)th buffer empty). At that stage,
the whole line ceases production. Thus CONWIP in effect
provides for mobile storage as failures occur, while transfer
line sections on either side of a failure, appear to act as
aggregates.

C. Definitions
ai (Coefficient of availability of wip xi) : it is the proba-

bility that wip xi be available for machine Mi+1 (i=1..n-1).
Note that unlike the Kanban case for which this coefficient
is equivalent to the probability that wip xi be positive, in the
case of CONWIP, it also includes the case where xi is zero
and all machines upstream of xi are operational.

D. Assumptions

• Common machine repair rate: r1=r2=....=rn=r.
• Common machine maximum production rate: The max-

imum production rate of all machines is k.
• Exclusion of coincident machine failures : In order to

minimize the impact of that approximation, we replace
the original failure rates pi by p̃i rates, properly adjusted
so that the transfer line remains to falls operational with
the same probability (see [14] for details).

• CONWIP loop always blocked except when M1 fails:
we make this assumption based on our observation over
simulations, that a blocked CONWIP loop remains so
through any machine failure except machine M1. It will
be quite crucial when modeling total wip dynamics in
Section IV.

II. A MARKOVIAN MODEL OF WIP xn−1

In our approximate modeling, we shall aim at representing
the part of the transfer line upstream of wip xn−1 as an
aggregate multi state Markovian machine, called the effective
machine upstream of xn−1, and denoted M̃n−1. As described
below, it has n discrete states or equivalently modes, which
evolve according to a Markov chain and interact with the
continuous wip state xn−1 to generate combined hybrid
Markovian dynamics. The dynamics will be associated with
particular Forward Kolmogorov differential equations which
will constitute our predictive model of that part of wip
behavior. We shall denote by α̃n−1 the discrete state of
effective machine M̃n−1.
α̃n−1 = 1: Here all machines in the CONWIP loop are
operational. From that mode, one can jump to single machine
failure situation, i.e. states 0i below with rate p̃i.
α̃n−1 = 0i, i = 1..(n−1) : State 0i of M̃n−1, is defined by
the situation where all machines except Mi are operational.
M̃n−1 leaves from that state to state 1 upon repair of machine
Mi, i.e. with rate ri.

A. Defining the hybrid state x̃n−1 dynamics

In what follows, we build on the effective Markovian
machine model M̃n−1, to obtain the Kolmogorov differential
equations associated with the hybrid state Markov process
x̃n−1. The latter is constructed by concatenation of continuous
state xn−1 with the discrete M̃n−1 machine state α̃n−1 . At
this point however, we must recognize that the time evolution
of xn−1 is dictated by both the random production rate of
M̃n−1, and the random instantaneous demand on xn−1, i.e. the
production rate of machine Mn. The latter is quite complex
to describe and would involve another random continuous
variable namely xn. This is where the demand averaging
principle [8] is invoked. It stipulates that as far as computing
mean quantities, it is sufficient to replace this complex
random demand process by any other one which would result
in the same long term demand. In particular, we find it conve-
nient to replace the demand by a constant d̃n−1, only on these
intervals of time on which stock xn−1 is available. This leads
to d̃n−1 = d

an−1
, where it is recalled that d is the constant

rate of demand for parts, while an−1 is obtained through a
provably convergent iterative calculation, on the associated
Forward Kolmogorov equations (see [8] for further details).
The evolution of xn−1 must occur in accordance with the
assumed (CONWIP) production discipline and the demand
for parts function (assumed constant at the final inventory/
backlog bin), and as a result its dynamics will also depend
on the region of wip space in which current wip lies. Three
regions with distinct dynamics can be defined as follows:
0<xn−1<z: In this region, xn−1 is constrained to evolve with
a piecewise constant rate of change dictated by the mode of
M̃n−1. We shall designate by vα̃n−1

n−1 , the associated velocity.
More specifically:
- α̃n−1 = 1: dxn−1/dt =v1

n−1= (k− d̃n−1).
-α̃n−1 =0i, i = 1, ..,(n−1):
dxn−1/dt =v0i

n−1 = (−d̃n−1)+ k*Pr[
⋃n−2

l=i (xl > 0)|Mio f f ].
The rightmost term above is the probability that any of the
wips past failed machine Mi be strictly positive (so as to
be able to supply machine Mn−1), conditional on machine
Mi being off. When multiplied by k, it becomes the mean
production rate conditional on machine Mi being off. In this
region, one defines the following hybrid probability density
functions, for i = 1, ..,(n−1)
f n−1
1 (λ , t)dλ = Pr[(λ < xn−1(t) ≤ λ +dλ )∩ (α̃n−1 = 1)].

f n−1
0i (λ , t)dλ = Pr[(λ < xn−1(t) ≤ λ +dλ )∩ (α̃n−1 = 0i)].

xn−1= z: Under our modeling assumptions, the only way to
remain at this level is if all machines in the CONWIP loop
are on, i.e. if α̃n−1=1. This corresponds to a blocked loop
with all wip concentrated at the last stage of the loop. Wip
remains fixed at z until the next jump of α̃n−1, which happens
at rate ∑

n−1
i=1 p̃i. Associated with that region is the probability

mass: Pn−1
z (t) =Pr[xn−1(t) = z].

xn−1 = 0 : Under our modeling assumptions, the only way
to reach this situation is if α̃n−1=0i, for some i = 1, ..,n. It
corresponds to an empty inactive last buffer in the CONWIP
loop. Wip remains at zero until the next jump of α̃n−1
towards state 1, which happens at rate ri (machine Mi is
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repaired). Associated with that region are the probability
masses:
Pn−1

0i (t)= Pr[(xn−1(t) = 0)∩ (α̃n−1 = 0i)], i = 1..n−1.

B. Forward Kolmogorov equations for hybrid state x̃n−1

Based on the dynamics of hybrid state x̃n−1 developed in
A , and the associated functions/ variables, one can develop
the corresponding Kolmogorov differential equations. For
details on the rules for setting up boundary conditions for
this class of hybrid state non diffusion Markov processes,
please refer to ([12], [11]). These equations are quite similar
to those corresponding to the intermediate storage dynamics
in Section III below, and thus are omitted here for lack of
space.

III. A MARKOVIAN MODEL OF INTERMEDIATE WIP x j ,
j = 1..n−2

We designate by M̃ j for j = 1..n− 2 the effective macro
machine upstream intermediate wip x j. In the following, we
define its states for some fixed j, j = 1..n−2.
Here parallel to the definitions in section 2, we define the
macro machine modes α̃ j = 1 and α̃ j = 0i, i=1..(n-1). Also,
we designate by v j

α̃ j
the velocity of x j in mode α j, and we

introduce hybrid probability densities f j
α j(λ , t).

A. Defining the hybrid state x̃ j dynamics

x̃ j is constructed by concatenation of continuous state x j
with the M̃ j machine discrete state α̃ j . Three regions with
distinct dynamics can be defined as follows:
0<x j<z:
- for α̃ j = 1: dx j/dt =v j

1 = (d̃n−1 − k).
The above is in view of the fact that unless machine M1 is
down, we are always assuming that the loop is blocked and
production at M1 proceeds at the rate at which wip is being
drawn out of buffer xn−1. This rate is set to be a constant set
at d̃n−1, in accordance with the demand averaging principle,
whenever xn−1 is active (which is always the case when all
machines are operational) . Finally, M j+1 pulls parts from
M j at rate k.
- for α̃ j =0i, i = 1, .., j−1:
dx j/dt = v j

0i = −k + k ∗Pr[
⋃ j−1

l=i (xl > 0)|Mio f f ].
This is in view of the fact that machine M j will pull wip at
rate k provided that any one of the buffers between the failed
machine Mi and machine M j is non empty, while machines
in the loop past Mi are all operational, and thus will pull
parts at rate k. The rightmost term corresponds to the mean
rate of production of machine M j conditional on Mi being
off.
- for α̃ j =0 j: dx j/dt =v j

0 j = −k
- for α̃ j =0( j +1):
dx j/dt =v j

0( j+1)= k ∗ Pr[
⋃ j

l=1(xl > 0)|M( j+1)o f f ] + (d̃n−1) ∗
Pr[(xn−1 > 0)|M( j+1)o f f ] ∗Pr[

⋂ j
l=1(xl = 0)|M( j+1)o f f ].

The right hand side term is the mean rate of production at
machine M j. Indeed, if any of the buffers upstream of it are
non empty, it will be k; if on the other hand, the latter are
all empty, and given that we assume for all failures except

that of machine M1 the CONWIP loop remains blocked,
it will be by virtue of the demand averaging principle,
d̃n−1, provided also buffer (n− 1) is non empty. Note that
the calculation of probability Pr[

⋂ j
l=1(xl = 0)|M( j+1)o f f ] is

based on that of its complement Pr[
⋃ j−1

l=1 (xl > 0)|Mio f f ]
under assumptions of events independence: Pr[

⋃ j−1
l=1 (xl >

0)|Mio f f ] = ∑
j−1
l=1 Pr[(xl > 0)|Mio f f ]

−∑
j−1
q=1,s=2,s 6=q(Pr[(xq > 0)|Mio f f ]∗Pr[(xs > 0)|Mio f f ])

Note also that since machine M j+1 is down in this mode, the
rate of extraction of wip from buffer j is zero.
- for α̃ j =0i, i = ( j +2), ..,(n−1):
dx j/dt =v j

(0i) = k ∗Pr[
⋃ j−1

l=1 (xl > 0)|Mio f f ]+ d̃n−1

∗Pr[xn−1 > 0)|Mio f f ]∗Pr[
⋂ j−1

l=1 (xl = 0)|Mio f f ]− k.
The same arguments as for the above case hold here, except
that there is a non zero rate of extraction of parts k which
needs to be accounted for.
x j = z: Under our modeling assumptions, the only way to
remain at this level is if all machines in the CONWIP
loop except M j+1 are operational , i.e. α̃ j=0( j + 1). This
corresponds to a blocked loop with all wip concentrated at
the jth buffer. Wip remains fixed at z until the next jump of α̃ j
which occurs at rate r( j+1), as machine M j+1 gets repaired.
Associated with that region is the probability mass: P j

z (t)
=Pr[x j(t) = z].
x j = 0 : Here, it is crucial to distinguish the case of an empty
but active jth buffer from that of an empty inactive (no supply
of parts) buffer. The first situation can be reached from macro
machine M̃ j state α̃ j = 1, or α̃ j = 0i, i = ( j + 2), ..,(n−1).
The second situation can be reached from states α̃ j = 0i,
i = 1, .., j. It is a behavior peculiar to CONWIP loops , that
once x j has reached the zero level, it cannot leave it unless
machine M j+1 fails. Under our modeling assumptions, this
means that x j = 0 can only be left at rate p̃( j+1) from discrete
state α̃ j = 1.
Associated with that region are the probability masses:
P j

0i(t)= Pr[(x j(t) = 0)∩ α̃ j = 0i], i 6= ( j +1)
P j

1 (t)= Pr[(x j(t) = 0)∩ α̃ j = 1].

B. Forward Kolmogorov equations for hybrid state x̃ j

0<x j<z:

∂ f j
1 (x, t)
∂ t

= −v j
1 ∗

∂ f j
1 (x, t)
∂x

− (
n−1

∑
i=1

p̃i)∗ f j
1 (x, t)+(

n−1

∑
i=1

ri ∗ f j
0i(x, t)) (1)

∂ f j
0i(x, t)
∂ t

= −v j
0i ∗

∂ f j
0i(x, t)
∂x

− ri ∗ f j
0i(x, t)+ p̃i ∗ f j

1 (x, t)∀i = 1, ..,(n−2) (2)

x j = 0:

d
dt

P j
0i(t) = −v j

0i ∗ f j
0i(0

+, t)+ p̃i ∗P j
1 (t)

− ri ∗P j
0i(t),∀i = 1, .. j, j +2, ..,(n−2) (3)
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d
dt

P j
1 (t) = −v j

1 ∗ f j
1 (0+, t)− (

n−1

∑
i=1

p̃i)∗P j
1 (t)

+
n−1

∑
i=1,i 6= j+1

(ri ∗P j
0i(t)) (4)

x j = z:

d
dt

P j
z (t) = v j

0( j+1) ∗ f j
0( j+1)(z

−, t)− r j+1 ∗P j
z (t) (5)

1) Boundary conditions: The following equations are
associated with probability flow balancing at x j = z and
x j = 0.
At x j = z:

−v j
1 ∗ f j

1 (z−, t) = r j+1 ∗P j
z (t) (6)

f j
0i(z

−, t) = 0∀i = 1..n−1, i 6= ( j +1) (7)

At x j = 0:

p̃ j+1 ∗P j
1 (t) = v j

0( j+1) ∗ f j
0,( j+1)(0

+, t) (8)

2) Total probability mass =1
In the steady state, the above system of Kolmogorov partial
differential equations becomes a system of coupled differ-
ential equations which can be solved to obtain the relevant
performance measures. The coupling of the differential equa-
tions is weak, and takes place through a number of unknowns
equal to 2(n−1)2, i.e., a contribution of 2(n−1) unknowns
per stage in the CONWIP loop. In section V, we capitalize
on this particular structure to propose an efficient solution
procedure.

IV. A MARKOVIAN MODEL OF xT

We designate by M̃T the effective aggregate Markovian
machine upstream total wip xT =∑

n−1
i=1 (xi(t)), and as in sec-

tion 2 and 3, the macro machine modes α̃T = 1, α̃T =0i,
(i = 1..(n− 1)), and associated xT velocities vα̃T

T . Also we
introduce hybrid probability f T

α̃T
(λ , t).

A. Defining the hybrid state x̃T dynamics

Three regions with distinct dynamics can be defined as
follows:
0<xT <z: We designate by vα̃T

T , the velocity associated with
mode α̃T . More specifically:
- α̃T = 1: dxT /dt =v1

T = (k -d̃n−1).
The above is a mathematical expression of the fact when
all machines in the CONWIP loop are operational, and the
loop is not blocked, total wip increases at maximum rate
k and decreases at the rate at which xn−1 decreases. The
latter rate is considered to be constant at d̃n−1 (this is from
the demand averaging principle combined with the fact that
xn−1 is always active when all machines are active).
-α̃T =01: dxT /dt =v01

T = (−d̃n−1 ∗Pr[(xn−1 > 0)|M1o f f ]).
-α̃T =0i, i = 2, ..,(n−1):
dxT /dt =v0i

T = (k− d̃n−1 ∗Pr[(xn−1 > 0)|Mio f f ]).
The rightmost term above is the mean wip rate of extraction
from xn−1 conditional on machine Mi being off, according to
the demand averaging principle. In this region, one defines
the following hybrid probability.

xT = z: Under our modeling assumptions, this level is reached
from all states of effective machine M̃T except state α̃T = 01,
i.e. whenever machine M1 fails. It corresponds to a blocked
CONWIP loop. xT will remain at this level unless effective
machine state α̃T = 1 and jumps to α̃T = 01. This occurs at
rate p̃1. Associated with that region is the probability mass:
PT

z (t) =Pr[xT (t) = z].
xT = 0 : Under our modeling assumptions, the only way
to reach this situation is if α̃T =01. It corresponds to a
completely empty CONWIP loop with all machines but M1
operational. xT remains at zero until repair of M1 is achieved
in which case α̃T jumps from 01 to 1; this occurs at rate
r1. Associated with that region are the probability masses:
PT

0 (t)= Pr[(xT (t) = 0)].

B. Forward Kolmogorov equations for hybrid state x̃T

0<xT <z:

∂ f T
1 (x, t)
∂ t

= −vT
1 ∗

∂ f T
1 (x, t)
∂x

− (
n−1

∑
i=1

p̃i)∗ f T
1 (x, t)+(

n−1

∑
i=1

ri ∗ f T
0i(x, t)) (9)

∂ f T
01(x, t)
∂ t

= d̃n−1 ∗
∂ f T

01(x, t)
∂x

− r1 ∗ f T
01(x, t)+ p̃1 ∗ f T

1 (x, t)
(10)

∂ f T
0i(x, t)
∂ t

= −vT
0i ∗

∂ f T
0i(x, t)
∂x

− ri ∗ f T
0i(x, t)+ p̃i ∗ f T

1 (x, t)

,∀i = 2..n−1 (11)

xT = 0:

d
dt

PT
0 (t) = d̃n−1 ∗ f T

1 (0+, t)− r1 ∗PT
0 (t) (12)

xT = z:

d
dt

PT
z (t) = −

n−1

∑
i=2

(vT
0i ∗ f T

0i(z
−, t))+(vT

1 )∗ f T
1 (z−, t))

− p̃1 ∗PT
z (t) (13)

1) Boundary conditions: The following equations are
associated with probability flow balancing at xT = z and
xT = 0.
At xT = z:

p̃1 ∗PT
z (t) = d̃n−1 ∗ f T

01(z
−, t) (14)

At xT = 0:

r1 ∗PT
0 (t) = (−vT

1 )∗ f T
1 (0+, t) (15)

f T
0i(0

+, t) = 0,∀i = 2..n−1 (16)

2) Total probability mass =1 :
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V. ITERATIVE CALCULATION OF SYSTEM SOLUTION

Our proposed solution technique relies on the following
observations on the structure of the Kolmogorov equations
of the various subsystems: except for the particular case of
the coefficient of availability a(n−1) that we shall discuss sep-
arately, provided probabilities Pr[x j > 0|Mio f f ], and Pr[x j =
0|Mio f f ], ∀i = 1, ..,(n−1), j = 1, ..,(n−1) , are assumed to
be known, all subsystems, namely those associated with x̃ j,
j = 1, ..,(n−1), and xT can be solved independently, i.e. as
systems of nth order differential equations. Thus, if the vector
of these unknown probabilities is initialized sufficiently close
to its true value, one could hope that through successive
iterations, one would converge to a fixed vector associated
with the overall solution.
Further remarks are that the xT subsystem only depends
on a(n−1), and has by itself no impact on the rest of the
subsystems,while the calculation of a(n−1) can be carried
out via a fixed point (provably convergent) algorithm valid
for stocks fed through isolated multi state machines and
subjected to a constant demand: a(n−1) is initialized at 1
and will uniformly decrease towards its true value ( see
[8] for further details). Thus summarizing, the idea of the
proposed algorithm is as follows: Start with an initial guess
of the unknown vector of coupling probabilities; solve for
an−1 through the fixed point algorithm applied to the x̃(n−1)
dynamics; feed the result to the separate x j subsystems,
j = 1, ..,(n − 2), to generate a new candidate vector of
unknown probabilities; repeat the process until convergence
is (hopefully) achieved.
Once convergence in the x j subsystems, j = 1, ..,(n−1), is
achieved, use the result to compute mean total storage in the
system by solving for the x̃T dynamics. Further details can
be found in [14].

VI. NUMERICAL RESULTS

In the following, we report on a comparison of predictions
of our CONWIP loop approximate aggregate model against
results obtained from Monte Carlo simulations. Percentage
errors are given for the corresponding quantities. Three
transfer lines subjected to a demand rate of d = 1 part
per unit time,including a 3 machine, a 4 machine and a 5
machine CONWIP loop with an extra machine outside the
CONWIP loop have been studied. The lines are completely
homogeneous with failure rate p = 0.05, repair rate r = 0.75
, and maximum production rate k = 2.8. In Subsection VI-
A below, we report on the main performance indicators
of the CONWIP loops; more specifically, mean total wip,
and coefficient of availability of wip at last loop stage (a
measure of service level) are reported. In Subsection VI-B,
we illustrate the application of this analysis in the minimal
sizing of CONWIP parameter z for achieving a given service
level (a(n−1)) at a given demand rate.

A. Main performance indicators of the CONWIP loop

The table below summarizes the performance of hybrid
dynamic model x̃T construed as a predictor of total wip

dynamics, for 3, 4, or 5 machine CONWIP loops, with a vari-
able total available storage specified level z. Notice that for
5 machine loops, Monte Carlo simulations on a Pentium(R)4
(CPU 2.60 GHz), took about two days of cpu time, while our
approximate mathematical model requires just a few minutes
to produce an answer. Both mean total wip level and service
level as computed from theory and Monte Carlo simulations
are presented with percentage errors. One notices in general

TABLE I
MEAN TOTAL WIP AND SERVICE LEVEL

MC Simulation Theory Percentage
with tolerance based Error
within 0.009 estimate

n−
1

z an−1 E[xT ] an−1 E[xT ] an−1 E[xT ]

3 1 0.8580 0.9354 0.9002 0.9391 -4.92 -0.40
3 2 0.9242 1.9012 0.9494 1.9016 -2.73 -0.02
3 3 0.9566 2.8762 0.9702 2.8786 -1.42 -0.08
3 5 0.9881 4.8696 0.9915 4.8625 -0.34 0.15
3 10 0.9995 9.8666 0.9996 9.852 -0.01 0.15
4 2 0.9038 1.9004 0.9350 1.9319 -3.45 -1.66
4 8 0.9972 7.8645 0.9987 7.8625 -0.15 0.03
5 1 0.7998 0.9368 0.8392 0.9560 -4.93 -2.05
5 9 0.9971 8.8661 0.9988 8.8545 -0.17 0.13

an excellent agreement between predictions and the results
of Monte Carlo simulations, in particular for mean total wip.
Worst case percentage relative errors are on the order of 2,
and only so in rare cases corresponding to a combination
of small available storage and long lines. These cases also
coincide with more significant relative errors in the Monte
Carlo simulations themselves. Worst case percentage errors
for coefficient of availability are on the order of 5 with a
mean around 2. The worst cases combine small storage with
long lines. Furthermore, one notices that all errors have the
same sign pointing at some small bias, probably due to the
way joint probabilities are computed in the dynamics.

B. Minimal sizing of CONWIP parameter z for securing a
given service level

In the following, we give an example of how one can
use the above analytical model for minimally sizing the
storage parameter z so as to secure a given level of service
(coefficient of availability of work in process feeding last
machine, a(n−1)), for a given level d of required parts
production per unit time. The idea is simple: a(n−1) is
a monotone increasing function of z. Therefore, one can
perform a dichotomic search on some segment of z values
for which it is known that the minimum value is too small for
the required a(n−1) whereas the maximum value is too large.
Fig.2 summarizes the successive values of a(n−1) obtained
by sequentially modifying the candidate z until convergence
occurs within a tolerance of 10−6 in 15 steps , for a desired
service level of 0.95, in the 4 machine line of Table ??. Note
of course that as soon as the iterated values of the required
z had started oscillating between 2 and 3, one could have
immediately relied on the integrality constraint to declare
that 3 was the smallest integer wip that could meet the
required service level. On the other hand, the exact value
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of the minimum z computed via the fluid model sitting at
2.37 could be suggestive of a cyclic wip limit periodically
moving between 2 and 3 as the minimal storage strategy.

Fig. 2. Required Z for a given coefficient of availability a(n−1)

VII. CONCLUSION

We have developed an approximate mathematical model,
amenable to computations, for the evaluation of important
performance indicators of CONWIP controlled transfer lines,
which can incorporate an arbitrary number of failure prone
machines. The model for a(n−1) machine loop corresponds
to a concatenation of interconnected aggregate (or macro)
machines, with one machine associated to each of the buffer
dynamics within the loop, and a machine dedicated to the
dynamics of total wip within the loop. The macromachines
are coupled each with an individual buffer state to produce
a hybrid state vector associated with its set of Forward
Kolmogorov equations. In our aggregate modeling, the total
wip dynamics is seen to be essentially affected by the
reliability statistics of machine M1, and the service level at
buffer (n-1), thus reflecting the view of CONWIP as a form
of Kanban imposed on a collection of machines.
By building on our previous modeling work [13], one can
show that the results remain valid even for non uniform pi’s
but common repair rate, modulo a change in the calculation
of p̃i. The case of non uniform repair rates will be considered
in future work. The availability of the current modeling tool,
makes it possible to compute minimal storage requirements
in a CONWIP controlled loop given a required service level
and a fixed demand rate. It can also become part of a
tool for the optimization of hybrid Kanban/ CONWIP ([2])
architectures in transfer lines.
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