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Abstract— A receding-horizon-type LQG control problem for
switched linear systems is proposed and applied to the case
of Markov switching. The objective is to determine a linear
dynamic output feedback control law that minimizes a finite-
horizon quadratic cost over all admissible future switching
paths subject to almost sure uniform stability of the closed-
loop system. A solution is determined by running a series of
semidefinite programs offline until a saturation in achievable
performance is reached.

I. INTRODUCTION

Switched systems [1], [2] and Markovian jump systems

[3], [4] model multi-modal systems under nondeterministic

switching between different modes of operation. They ap-

pear in many contexts such as networked control systems

subject to signal quantization or feedback delays [5], [6],

macroeconomic models switching among different economic

phases [7], and distributed networks of autonomous vehicles

undergoing network topology changes [8]. On the other

hand, receding-horizon control, where a finite-horizon op-

timization is performed at each time step over a moving

horizon window, is useful in approximately solving hard

infinite-horizon optimal control problems [9]–[11], for online

optimization based model predictive control under hard state-

control constraints [12], and when short-term optimization is

emphasized over infinite-horizon planning [13]–[15].

Previous results on receding-horizon-type control of

Markovian jump systems and switched systems appear in

[7], [16]–[22]. With the exception of [22], however, these

results require a sufficiently long control horizon to guar-

antee closed-loop stability. Moreover, they are restricted to

controllers that depend only on the (estimated) current mode

of operation even though controllers with memory of past

modes are known to outperform these controllers [23], [24].

In this paper, we propose synthesis results for dynamic

output feedback controllers that overcome these aforemen-

tioned limitations of existing work. Even though finite-

horizon optimization for a given horizon length involves

looking ahead future switching paths, the resulting controller

coefficients depend only on the past switching path (of a

finite length). This ensures not only the causality of the

controller but also guarantees (almost sure) uniform exponen-

tial stability of the closed-loop system without introducing
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conservatism [25]–[27]. Moreover, stability and optimality

are guaranteed for each horizon length. In particular, instead

of optimizing the uniform output regulation performance

as in [22], we seek to achieve Pareto-optimal path-by-path

output regulation, which leads to a novel result in receding-

horizon-type control of Markovian jump linear systems.

Notation. The Euclidean vector norm on R
n is denoted by

‖ · ‖, so that ‖x‖ =
√

xTx for x ∈ R
n. If X, Y ∈ R

n×n are

symmetric, then we write X < Y (resp. X ≤ Y) to mean that

X−Y is negative definite (resp. negative semidefinite).

II. DEFINITIONS AND PRELIMINARY RESULTS

A. Switched Linear Systems

Given a positive integer N, infinite sequences in {1, . . . ,N}
shall be called switching sequences; denoted by {1, . . . ,N}∞

is the set of all switching sequences. Similarly, any finite

sequence in {1, . . . ,N} belonging to {1, . . . ,N}L+1 for some

nonnegative integer L shall be called a switching path of

length L. In particular, zero-length switching paths are called

modes. With a nonempty subset Θ of {1, . . . ,N}∞ understood,

members of Θ shall be said to be admissible.

Let Ai ∈ R
n×n, Bi ∈ R

n×m, Ci ∈ R
l×n, and Di ∈ R

l×m, i =
1, . . . , N, be given. If Θ is a nonempty subset of {1, . . . ,N}∞,

and if G is the indexed family

G = {(Ai,Bi,Ci,Di) : i = 1, . . . ,N}, (1)

then the pair (G ,Θ) is called a discrete-time switched linear

system, and defines the family of state-space representations

x(t + 1) = Aθ(t)x(t)+ Bθ(t)w(t),

z(t) = Cθ(t)x(t)+ Dθ(t)w(t)
(2)

over all θ = (θ (0),θ (1), . . . ) ∈ Θ. Here, x(t) ∈ R
n, w(t) ∈

R
m, and z(t) ∈ R

l are the state, disturbance input, and error

output, respectively, of the switched system at time t. If

Θ is a singleton, (G ,Θ) is a linear time-varying system; if

N = 1, then (G ,Θ) is a linear time-invariant system. On the

other hand, the pair (G ,{1, . . . ,N}∞) is the discrete linear

inclusion, where every switching sequence is admissible.

B. Markovian Jump Linear Systems

Let P = (pi j) ∈ [0,1]N×N be a row-stochastic matrix such

that ∑N
j=1 pi j = 1 for all i ∈ {1, . . . ,N}. Let p = (pi) ∈

[0,1]1×N be a row-vector such that ∑N
i=1 pi = 1. The pair

(P,p) defines the homogeneous Markov chain with transition

probability matrix P and initial distribution p. Realizations

of (P,p) are switching sequences. Let Θ(P,p) be the set

of all realizations θ = (θ (0),θ (1), . . . ) of (P,p) such that
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pθ(t)θ(t+1) > 0 for all t and pθ(0) > 0. Switching sequences

in Θ(P,p) shall be called admissible with respect to (P,p).
If (P,p) is a Markov chain and if G is as in (1), then

the triple (G ,P,p) defines the discrete-time Markovian jump

linear system, whose state-space representation is given by

(2) for each realization θ of (P,p). It suffices for our purpose

to identify the Markovian jump linear system (G ,P,p) with

the switched linear system (G ,Θ(P,p)).

C. Uniform Exponential Stability

Our stability notion for switched linear systems requires

uniformity in the exponential decay rate of the state over all

admissible switching sequences. Let G be as in (1), and let

Θ be a nonempty subset of {1, . . . ,N}∞.

Definition 1: The switched linear system (G ,Θ) is said

to be uniformly exponentially stable if there exist c > 1 and

λ ∈ (0,1) such that, whenever w(t) = 0 for all t ∈ {0,1, . . .},

the system of difference equations (2) satisfies

‖x(t)‖ ≤ cλ t−s‖x(s)‖ (3)

for all t, s ∈ {0,1, . . .} with s ≤ t, for all x(s) ∈ R
n, and for

all θ ∈ Θ.

It is well-known that the discrete linear inclusion

(G ,{1, . . . ,N}∞) is asymptotically stable under all switch-

ing sequences if and only if the joint spectral radius of

{A1, . . . ,AN} is strictly less than one [28], and that asymp-

totically stable discrete linear inclusions are in fact uniformly

exponentially stable—see, e.g., [25], [29]. In general, for

nonempty Θ ⊂ {1, . . . ,N}∞, an exact characterization of

uniform exponential stability is given by an increasing union

of linear matrix inequalities [25], [26]. For (θ (0),θ (1), . . .)∈
{1, . . . ,N}∞, set θ (−1) = θ (−2) = · · · = 0. Then, for non-

negative integers L and nonempty Θ ⊂ {1, . . . ,N}∞, define

LL(Θ) = {(θ (t −L), . . . ,θ (t)) : θ ∈ Θ, t ≥ 0}.

and

WL(Θ) = LL(Θ)∩{1, . . . ,N}L+1

= {(θ (t), . . . ,θ (t + L)) : θ ∈ Θ, t ≥ 0}.

For notational convenience, set {1, . . . ,N}0 = {0}. The fol-

lowing lemma appears in [22] and its proof is immediate

from the results in [25], [26].

Lemma 2: The switched linear system (G ,Θ) is uniformly

exponentially stable if and only if there exist a nonnega-

tive integer M and matrices Y( j1,..., jM) > 0, ( j1, . . . , jM) ∈
{1, . . . ,N}M , such that

AT
iM

Y(i0,...,iM−1)AiM −Y(i1,...,iM) < 0

for all (i0, . . . , iM) ∈ W (Θ).
On the other hand, as is done in the series of papers

[25]–[27], our notion of stability for Markovian jump linear

systems requires almost sure uniformity in the exponential

decay rate of the state. Let G be as in (1) and let (P,p) be

a Markov chain.

Definition 3: The Markovian jump linear system (G ,P,p)
is said to be almost surely uniformly exponentially stable if,

whenever w(t) = 0 for all t ∈ {0,1, . . .}, there exists a c > 1

and λ ∈ (0,1) such that, with probability one, inequality (3)

holds for all t, s ∈ {0,1, . . .} with s ≤ t and for all x(s)∈R
n.

As pointed out in [27], almost sure uniform exponential

stability is a deterministic notion, and hence we are able to

extend the classical LQG control result to Markovian jump

linear systems without introducing conservatism in stability

analysis. The following lemma is from [25]:

Lemma 4: The Markovian jump linear system (G ,P,p)
is almost surely uniformly exponentially stable if and only

if the switched linear system (G ,Θ(P,p)) is uniformly

exponentially stable.

D. Path-by-Path Performance

Let G be as in (1), and let Θ ⊂ {1, . . . ,N}∞ be nonempty.

Assume initial state x(0) = 0, and let w = (w(0),w(1), . . . )
be the zeromean white noise sequence satisfying

E[w(t)] = 0 for all t; (4a)

E[w(t)w(s)T] =

{
I, if t = s;

0, otherwise.
(4b)

Here, E[·] denotes the expectation. If the error output se-

quence z is generated under a switching sequence θ ∈Θ, then

we write z = (zθ (0),zθ (1), . . . ). We are concerned with a

collection of finite-horizon quadratic performance measures.

Definition 5: Given a nonnegative integer T , the switched

linear system (G ,Θ) is said to satisfy T -step path-by-path

performance levels γ(i0,...,iT ) > 0, (i0, . . . , iT ) ∈ WT (Θ), if,

under the condition that x(0)= 0 and w is a random sequence

satisfying (4), the system of difference equations (2) yields

1

T + 1

t0+T

∑
t=t0

E‖zθ (t)‖2
< γ2

(θ(t0),...,θ(t0+T))

for all t0 ∈ {0,1, . . .} and for all θ ∈ Θ.

This path-by-path performance specification generalizes

the case of a single uniform performance level [22], where

γ(i0,...,iT ) = γ for some γ > 0 and for all (i0, . . . , iT )∈WT (Θ).
As illustrated in the context of disturbance attenuation

in [26], we will see shortly that a convex combination

of path-by-path performance levels not only gives us a

refinement of the uniform performance specification, but it

also enables us to extend the switched systems results to

Markovian jump systems.

Let (P,p) be a Markov chain with P = (pi j) and p = (pi).
We say that p is P-invariant if pP = p. There exists a unique

P-invariant distribution p when P is irreducible. If p is P-

invariant and if switching sequences θ are realizations of

(P,p), then, for each (i0, . . . , iT ) ∈ WT (Θ(P,p)), the proba-

bility that (θ (t), . . . ,θ (t + T )) = (i0, . . . , iT ) is given by

π(i0,...,iT ) = pi0 pi0i1 · · · piT−1iT (5)

for all t, T ∈ {0,1, . . .}. The sum of the probabilities π(i0,...,iT )

over (i0, . . . , iT )∈ WT (Θ(P,p)) is equal to one, and π(i0,...,iT )

give us the T -step probability distribution of (P,p).
Definition 6: Given a nonnegative integer T , the Marko-

vian jump linear system (G ,P,p), where p is P-invariant, is
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said to satisfy a T-step average performance level γ > 0 if,

under the condition that x(0)= 0 and w is a random sequence

satisfying (4), the system of difference equations (2) yields

1

T + 1

t0+T

∑
t=t0

E‖z(t)‖2
< γ2

for all t0 ∈{0,1, . . .}, where E[·] denotes the expectation with

respect to θ and w.

III. ANALYSIS RESULTS

A. Analysis of Switched Linear Systems

Let us first characterize uniformly exponentially stable

switched linear systems satisfying given path-by-path per-

formance levels. A straightforward generalization of the

uniform performance result in [22] serves this purpose.

Let G be as in (1). If Y
(t0)
θ ,t ≥ 0 satisfy

Aθ(t)Y
(t0)
θ ,t AT

θ(t) −Y
(t0)
θ ,t+1 = −Bθ(t)B

T
θ(t) (6)

for all θ ∈ Θ and for all t0, t ∈ {0,1, . . .} with t0 ≤ t, subject

to the initial condition Y
(t0)
t0

= 0, then we have

Y
(t0+1)
θ ,t+1 ≤ Y

(t0)
θ ,t+1 (7)

for all θ ∈ Θ and t0, t ∈ {0,1, . . .} with t0 ≤ t, and

E‖zθ (t)‖2 = tr
(
Cθ(t)Y

(0)
θ ,t C

T
θ(t) + Dθ(t)D

T
θ(t)

)
(8)

for all θ ∈ Θ and for all t ∈ {0,1, . . .}.

Lemma 7: Let Y
(t0)
θ ,t+1

be as in (6). Then

Yθ ,t+1 ≥ Y
(t0)
θ ,t+1

for t ∈ {t0,t0 + 1, . . .}, whenever Yθ ,t0 ≥ 0 and

Aθ(t)Yθ ,tA
T
θ(t) −Yθ ,t+1 ≤−Bθ(t)B

T
θ(t)

for t ∈ {t0,t0 + 1, . . .}.

Proof: The result is immediate from definitions.

Theorem 8: Let G be as in (1), and let Θ ⊂ {1, . . . ,N}∞

be nonempty. Given a nonnegative integer T , the switched

linear system (G ,Θ) is uniformly exponentially stable and

satisfies T -step path-by-path performance levels γ(i0,...,iT ) > 0,

(i0, . . . , iT ) ∈WT (Θ), if and only if there exist a nonnegative

integer M and matrices Y( j1,..., jM) > 0 such that

AiM Y(i0,...,iM−1)A
T
iM
−Y(i1,...,iM) < −BiM BT

iM
(9a)

for all (i0, . . . , iM) ∈ WM(Θ), and such that

1

T + 1

M+T

∑
t=M

tr
(
Cit Y(it−M ,...,it−1)C

T
it
+ Dit D

T
it

)
< γ2

(iM ,...,iM+T )

(9b)

for all (i0, . . . , iM+T ) ∈ LM+T (Θ) with (iM, . . . , iM+T ) ∈
WT (Θ).

Proof: The proof is based on Lemma 2 and Lemma 7,

and it is identical to that of [22, Theorem 1] except that we

now have multiple performance levels γ(iM ,...,iM+T ) instead of

a single γ .

B. Analysis of Markovian Jump Linear Systems

The following result identifies the T -step average perfor-

mance level of a Markovian jump linear system (G ,P,p)
as a convex combination of the T -step path-by-path perfor-

mance levels of the corresponding switched linear system

(G ,Θ(P,p)), where the coefficients for the convex combina-

tion are the T -step probabilities of the Markov chain (P,p).
Theorem 9: Let (P,p) be a Markov chain, where p is

P-invariant. Given a nonnegative integer T , the Markovian

jump linear system (G ,P,p) is almost surely uniformly

exponentially stable and satisfies T -step average performance

level γ > 0 if and only if the switched linear system

(G ,Θ(P,p)) is uniformly exponentially stable and satis-

fies T -step path-by-path performance levels γ(i0,...,iT ) > 0,

(i0, . . . , iT ) ∈ WT (Θ), such that

∑
(i0,...,iT )∈WT (Θ(P,p))

π(i0,...,iT )γ
2
(i0,...,iT ) ≤ γ2

, (10)

where π(i0,...,iT ) are the T -step probabilities given by (5).

Proof: The proof is similar to that of [22, Theorem 1],

so we will only sketch it. If (G ,P,p) is almost surely uni-

formly exponentially stable, then (G ,Θ(P,p)) is uniformly

exponentially stable by Lemma 4. Moreover, if (G ,P,p)
satisfies T -step average performance level γ , then we have

1

T + 1

t0+T

∑
t=t0

E‖z(t)‖2

= ∑
(θ(t0),...,θ(t0+T ))

π(θ(t0),...,θ(t0+T ))
1

T + 1

t0+T

∑
t=t0

E‖zθ (t)‖2
.

Let Y
(ε,t0)
θ ,t satisfy the Lyapunov equation

Aθ(t)Y
(ε,t0)
θ ,t

AT
θ(t) −Y

(t0)
θ ,t+1

= −Bθ(t)B
T
θ(t) − εI

for ε > 0, θ ∈Θ(P,p), and 0≤ t0 ≤ t, subject to Y
(ε,t0)
θ ,t0

= 0. It

can be shown using (6)–(8) and proceeding as in the proof of

[22, Theorem 1] that, whenever the Markovian jump system

(G ,P,p) satisfies T -step average performance level γ and

the corresponding switched system (G ,Θ(P,p)) is uniformly

exponentially stable, there exist a sufficiently small number

ε > 0 and a sufficiently large integer M > 0 such that

Aθ(t)Y
(ε,t−M)
θ ,t AT

θ(t) −Y
(ε,t−M+1)
θ ,t+1 < −Bθ(t)B

T
θ(t)

and

∑
(θ(t0),...,θ(t0+T ))

π(θ(t0),...,θ(t0+T ))

× 1

T + 1

t0+T

∑
t=t0

tr
(
Cθ(t)Y

(ε,t−M)
θ ,t CT

θ(t) + Dθ(t)D
T
θ(t)

)
< γ2

whenever t ≥ M and θ ∈ Θ. Put

Y(θ(t−M),...,θ(t−1)) =

{
Y

(ε,t−M)
θ ,t , t ≥ M;

Y
(ε,0)
θ ,t , t < M

for all t ≥ 0 and θ ∈ Θ. Then, using (6), one can show that

(9a) and (9b) hold for some γ(iM ,...,iM+T ) > 0, (iM, . . . , iM+T )∈
WT (Θ), such that (10) is satisfied. This proves necessity.

Sufficiency follows easily from Lemma 4 and Lemma 7.
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IV. SYNTHESIS RESULTS

A. Plants and Path-Dependent Controllers

With Ai ∈ R
n×n, B1,i ∈ R

n×m1 , B2,i ∈ R
n×m2 , C1,i ∈ R

l1×n,

D11,i ∈ R
l1×m1 , D12,i ∈ R

l1×m2 , C2,i ∈ R
l2×n, and D21,i ∈

R
l2×m1 for i = 1, . . . , N, define

T = {(Ai,B1,i,B2,i,C1,i,D11,i,D12,i,C2,i,D21,i) :

i = 1, . . . ,N}. (11)

We consider controlled plants of the form

x(t + 1) = Aθ(t)x(t)+ B1,θ(t)w(t)+ B2,θ(t)u(t),

z(t) = C1,θ(t)x(t)+ D11,θ(t)w(t)+ D12,θ(t)u(t),

y(t) = C2,θ(t)x(t)+ D21,θ(t)w(t)

(12)

for all t ∈ {0,1, . . .}, where u = (u(0),u(1), . . . ) is the control

input sequence and y = (y(0),y(1), . . .) the measured output

sequence. For a nonempty Θ ⊂ {1, . . . ,N}∞, the pair (T ,Θ)
defines the controlled switched linear system; if (P,p) is

a Markov chain, the triple (T ,P,p) defines the controlled

Markovian jump linear system.

It is assumed that, in addition to the measured output

y(t), the mode θ (t) is perfectly observed by the controller

at each time t. Moreover, the controller is allowed to have a

finite memory of past modes. For nonnegative integers L and

nonempty subsets Θ of {1, . . . ,N}∞, let AK,(i0,...,iL) ∈R
nK×nK ,

BK,(i0,...,iL) ∈ R
nK×l2 , CK,(i0,...,iL) ∈ R

m2×nK , DK,(i0,...,iL) ∈
R

m2×l2 for (i0, . . . , iL) ∈ LL(Θ). Let

K = {(AK,(i0,...,iL),BK,(i0,...,iL),CK,(i0,...,iL),DK,(i0,...,iL)) :

(i0, . . . , iL) ∈ LL(Θ)}. (13)

Also, for θ ∈ Θ, with θ (−1) = θ (−2) = · · · = 0, define

θL(t) = (θ (t −L), . . . ,θ (t)),

ΘL = {(θL(0),θL(1), . . . ) : θ ∈ Θ}.
Then the pair (K ,ΘL) is identified with the L-path-

dependent (linear dynamic output feedback) controller of

order nK represented by

xK(t + 1) = AK,θL(t)xK(t)+ BK,θL(t)y(t),

u(t) = CK,θL(t)xK(t)+ DK,θL(t)y(t)

for all t ∈ {0,1, . . .} and θ ∈ Θ. Note that the controller

coefficients are constrained to depend solely on the current

mode and past switching path of finite length. This ensures

that the controller can be used under nondeterministic au-

tonomous switching sequences and that closing the feedback

loop preserves the finiteness of the number of modes.

B. Synthesis of Switched Linear Systems

Given a controlled switched linear system (T ,Θ) and an

L-path-dependent linear dynamic output feedback controller

(K ,ΘL), let

Ã(i0,...,iL) = ÂiL + B̂2,iL K(i0,...,iL)Ĉ2,iL ,

B̃(i0,...,iL) = B̂1,iL + B̂2,iLK(i0,...,iL)D̂21,iL ,

C̃(i0,...,iL) = Ĉ1,iL + D̂12,iLK(i0,...,iL)Ĉ2,iL ,

D̃(i0,...,iL) = D11,iL + D̂12,iLK(i0,...,iL)D̂21,iL

with

K(i0,...,iL) =

[
AK,(i0,...,iL) BK,(i0,...,iL)

CK,(i0,...,iL) DK,(i0,...,iL)

]

for (i0, . . . , iL) ∈ LL(Θ), where

Âi =

[
Ai 0

0 0

]
, B̂1,i =

[
B1,i

0

]
, B̂2,i =

[
0 B2,i

I 0

]
,

Ĉ1,i =
[
C1,i 0

]
, D̂12,i =

[
0 D12,i

]
,

Ĉ2,i =

[
0 I

C2,i 0

]
, D̂21,i =

[
0

D21,i

]

for i ∈ {1, . . . ,N}. Let

TK =
{(

Ã(i0,...,iL), B̃(i0,...,iL),C̃(i0,...,iL),D̃(i0,...,iL)

)
:

(i0, . . . , iL) ∈ LL(Θ)
}
.

If we define x̃(t) = [x(t)T xK(t)T]T, then the closed-loop

switched linear system (TK ,ΘL) has the representation

x̃(t + 1) = ÃθL(t)x̃(t)+ B̃θL(t)w(t),

z(t) = C̃θL(t)x̃(t)+ D̃θL(t)w(t)
(14)

for each θ ∈ Θ. As argued in [22], the closed-loop mode at

time t is given by the switching path θL(t) ∈ LL(Θ).
Theorem 10: Let T be as in (11), and let Θ⊂{1, . . . ,N}∞

be nonempty. Given nonnegative integers nK ≥ n and T ,

there exist a path length L and an L-path-dependent con-

troller (K ,ΘL) of order nK such that the closed-loop sys-

tem (TK ,ΘL) is uniformly exponentially stable and satis-

fies T -step path-by-path performance levels γ(i0,...,iT ) > 0,

(i0, . . . , iT )∈WT (Θ), if and only if there exist an integer M ≥
L, symmetric matrices R( j0,..., jM−1), S( j0,..., jM−1), Z( j0,..., jM),

and rectangular matrices W( j0,..., jM) such that

H(i0,...,iM) + FT
iM

W(i0,...,iM)GiM + GT
iM

WT
(i0,...,iM)FiM < 0,

(15a)

Ĥ(i0,...,iM) + F̂T
iM

W(i0,...,iM)ĜiM + ĜT
iM

WT
(i0,...,iM)F̂iM < 0

(15b)

for all (i0, . . . , iM) ∈ LM(Θ), and such that

1

T + 1

M+T

∑
t=M

trZ(it−M ,...,it) < γ2
(iM ,...,iM+T ) (15c)

for all (i0, . . . , iM+T ) ∈ LM+T (Θ) with (iM, . . . , iM+T ) ∈
WT (Θ), where

H(i0,...,iM) =




−S(i0,...,iM−1) −I AT
iM

∗ −R(i0,...,iM−1) R(i0,...,iM−1)A
T
iM

∗ ∗ −R(i1,...,iM)

∗ ∗ ∗
∗ ∗ ∗

AT
iM

S(i1,...,iM) 0

0 0

−I B1,iM

−S(i1,...,iM) S(i1,...,iM)B1,iM

∗ −I




,
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GiM =

[
0 I 0 0 0

C2,iM 0 0 0 D21,iM

]
,

FiM =

[
0 0 0 I 0

0 0 BT
2,iM

0 0

]
,

and

Ĥ(i0,...,iM) =




−S(i0,...,iM−1) −I

∗ −R(i0,...,iM−1)

∗ ∗
∗ ∗

CT
1,iM

0

R(i0,...,iM−1)C
T
1,iM

0

−Z(i0,...,iM) D11,iM

∗ −I


 ,

ĜiM =

[
0 I 0 0

C2,iM 0 0 D21,iM

]
,

F̂iM =

[
0 0 0 0

0 0 DT
12,iM

0

]

for all (i0, . . . , iM) ∈ LM(Θ). In particular, if this condition

holds, then the controller (K ,ΘL) can be taken to be M-

path-dependent (i.e., L = M) and of order n (i.e., nk = n).

Proof: The proof is based on Theorem 8 and the

change-of-variable technique developed in [30], and it is

identical to that of [22, Theorem 2] except that we now have

multiple performance levels.

As in [27], [30], once the linear matrix inequalities in

Theorem 10 have been solved for some M, the coefficients

AK,(i0,...,iM), BK,(i0,...,iM), CK,(i0,...,iM), and DK,(i0,...,iM) of an

M-path-dependent controller are obtained via

W(i0,...,iM) =

[
S(i1,...,iM)AiM R(i0,...,iM−1) 0

0 0

]

+

[
U(i1,...,iM) S(i1,...,iM)B2,iM

0 I

][
AK,(i0,...,iM) BK,(i0,...,iM)

CK,(i0,...,iM)) DK,(i0,...,iM)

]

×
[

TT
(i0,...,iM−1) 0

C2,iM R(i0,...,iM−1) I

]

for all (i0, . . . , iM) ∈ LM(Θ), where T( j0,..., jM−1) and

U( j0,..., jM−1) are any nonsingular matrices such that

T( j0,..., jM−1)U
T
( j0,..., jM−1) = I−R( j0,..., jM−1)S( j0,..., jM−1)

for ( j0, . . . , jM−1) ∈ {1, . . . ,N}M .

C. Synthesis of Markovian Jump Linear Systems

If (P,p) is a Markov chain and if L is a nonnegative

integer, then, as in [27], we can define a state transition

matrix QL(P,p) = (q(i0,...,iL)( j0,..., jL)) and an initial distri-

bution vector qL(P,p) = (q(i0,...,iL)) among the switching

paths in LL(Θ(P,p)) as follows: q(i0,...,iL)( j0,..., jL) = piL jL if

(i1, . . . , iL) = ( j0, . . . , jL−1), and q(i0,...,iL)( j0,..., jL) = 0 other-

wise; also, q(i0,...,iL) = piL if (i0, . . . , iL−1) = (0, . . . ,0), and

q(i0,...,iL) = 0 otherwise. The feedback interconnection of

(T ,P,p) and (K ,Θ(P,p)L) leads to a closed-loop Marko-

vian jump linear system (TK ,QL(P,p),qL(P,p)), where

(QL(P,p),qL(P,p)) defines the closed-loop Markov chain.

Suppose that p is P-invariant. Given integers L, T ≥ 0,

define

NL,T,k(Θ(P,p)) = {(i0, . . . , iL+T ) ∈ LL+T (Θ(P,p)) :

(i0, . . . , ik−1)= (0, . . . ,0), (ik, . . . , iL+T )∈WL+T−k(Θ(P,p))}

for k ∈ {0, . . . ,L}. Then, for 0 < k ≤ L, NL,T,k(Θ(P,p)) is

the set of all admissible closed-loop switching paths (θ (k−
L), . . . ,θ (k + T )) that can occur with positive probability at

time t = L− k; similarly, for k = 0, NL,T,0(Θ(P,p)) is the

set of all admissible (θL(t −L), . . . ,θ (t +T )) that can occur

with positive probability at t ≥ L. For each k ∈ {0, . . . ,L},

the (L+T )-step probabilities π(i0,...,iL+T ) over (i0, . . . , iL+T )∈
NL,T,k(Θ(P,p)) are given by

π(i0,...,iL+T ) = pik pikik+1
· · · piL+T−1iL+T

, (16a)

∑
(i0,...,iL+T )∈NL,T,k(Θ(P,p))

π(i0,...,iL+T ) = 1 (16b)

for each k ∈ {0, . . . ,L}.

Theorem 11: Let T be as in (11); let (P,p) be a Markov

chain, where p is P-invariant. Given a nonnegative integers

nK ≥ n and T , there exist a path length L and an L-path-

dependent controller (K ,Θ(P,p)L) of order nK such that

the closed-loop system (TK ,QL(P,p),qL(P,p)) is almost

surely uniformly exponentially stable and satisfies a T -

step average performance level γ > 0 if and only if there

exists a nonnegative integer M such that (15a) and (15b)

hold for all (i0, . . . , iM) ∈ LM(Θ(P,p)), and (15c) holds for

all (i0, . . . , iM+T ) ∈ LM+T (Θ(P,p)) with (iM, . . . , iM+T ) ∈
WT (Θ(P,p)), so that

∑
(iM ,...,iM+T )∈WT (Θ(P,p))

π(iM ,...,iM+T )γ
2
(iM ,...,iM+T ) ≤ γ2

, (17)

where π(iM ,...,iM+T ) are as in (5). Moreover, such a controller

can be taken to be M-path-dependent and of order n.

Proof: We first show that, for any T , L, and K , the

closed-loop T -step probabilities are given by the (L + T )-
step probabilities defined in (16); that is, the probability

of the closed-loop switching path (θL(t), . . . ,θL(t + T )) is

equal to π(θ(t−L),...,θ(t+T )) for all t ∈ {0,1, . . .} and for all

realizations θ of (P,p) such that (θ (t−L), . . . ,θ (t +T )) has

positive probability. If t = 0, then θL(0) = (0, . . . ,0,θ (0)),
so qθL(0) = pθ(0) under (QL(P,p),qL(P,p)). If t = 1, then

θL(1) = (0, . . . ,0,θ (0),θ (1)), so the probability of θL(1) is

equal to qθL(0)qθL(0)θL(1) = pθ(0)pθ(0)θ(1) for each realization

θ of (P,p). By induction, we establish that the probability

of (i0, . . . , iL) ∈ LL(Θ(P,p)) is pik pikik+1
· · · piL−1iL whenever

(i0, . . . , iL) = (0, . . . ,0︸ ︷︷ ︸
k times

, ik, . . . , iL)

for some k ∈ {0, . . . ,L}. Thus, whenever (i0, . . . , iL+T ) ∈
LL+T (Θ(P,p)) is such that (iL, . . . , iL+T )∈WT (Θ(P,p)) and

such that

(i0, . . . , iL+T ) = (0, . . . ,0︸ ︷︷ ︸
k times

, ik, . . . , iL+T )
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for some k ∈ {0, . . . ,L}, the P-invariance of p yields that

the closed-loop T -step probabilities π(i0,...,iL+T ) satisfy (16).

Finally, the P-invariance of p implies that

∑
{(ik,...,iL−1) : (i0,...,iL+T )∈NL,T,k(Θ(P,p))}

π(i0,...,iL+T ) = π(iL,...,iL+T )

for each k ∈ {0, . . . ,L}.

Now, in view of Theorem 9 and the fact that T -step

probabilities are invariant under L-path-dependent feedback,

if we replace Θ in Theorem 10 with Θ(P,p) and add (17)

to the conditions in the theorem, then we obtain the desired

synthesis result for (T ,P,p).
For switched systems, one way to jointly optimize the

performance levels γ(i0,...,iT ) > 0 over all length-T switch-

ing paths (i0, . . . , iT ) ∈ WT (Θ) is to minimize a convex

combination of γ(i0,...,iT ). The path-by-path performance lev-

els resulting from this optimization will be Pareto opti-

mal; that is, no path-by-path performance levels γ̃(i0,...,iT )

satisfying γ̃(i0,...,iT ) ≤ γ(i0,...,iT ) for all (i0, . . . , iT ) ∈ WT (Θ)
and γ̃( j0,..., jT ) < γ( j0,..., jT ) for some ( j0, . . . , jT ) ∈ WT (Θ) are

achievable subject to closed-loop stability. Due to Theo-

rem 11, such Pareto optimization leads to closed-loop sta-

bility and optimal average performance level for Markovian

jump linear systems if the coefficients for the convex com-

bination are the T -step probabilities.

V. CONCLUSIONS

A novel approach for optimal receding-horizon-type con-

trol of switched linear systems and Markovian jump linear

systems was proposed. Salient features of this approach in-

clude that a sufficiently large control horizon is not required

to guarantee stability, and that the synthesis condition for

dynamic output feedback controllers is nonconservative. For

performance optimization, this approach involves semidefi-

nite programming over future switching paths of length T ;

on the other hand, to guarantee stability, the semidefinite

program is subject to a set of Lyapunov inequalities over past

switching paths of length M. As T and M approach infinity,

the performance approaches that of the infinite-horizon LQG

controllers developed in [27]. However, saturation in perfor-

mance often occurs at a small M, and hence, in practice, M

can be taken to remain constant over all T .
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