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Abstract— This paper deals with the finite-time stability
problem for a special class of hybrid systems, namely impulsive
dynamical linear systems (IDLS). IDLS are systems that exhibit
jumps in the state trajectory. Both analysis and design problems
are tackled, both for time-dependent and state-dependent IDLS.
The presented results require to solve feasibility problems in-
volving Differential Linear Matrix Inequalities (DLMIs), which
can be solved numerically in an efficient way, as illustrated by
the proposed example.

I. INTRODUCTION

The concept of finite-time stability (FTS) dates back to the

Sixties, when it was introduced in the control literature [1],

[2]. A system is said to be finite-time stable if, given a bound

on the initial condition, its state does not exceed a certain

threshold during a specified time interval. It is important to

recall that FTS and Lyapunov Asymptotic Stability (LAS)

are independent concepts; indeed a system can be FTS but

not LAS, and vice versa.

In [3] sufficient conditions for FTS and finite-time stabi-

lization of continuous-time linear time-invariant systems are

provided; such conditions require the solution of a feasibility

problem involving Linear Matrix Inequalities (LMIs). A

different approach, which is reminiscent of optimal control

techniques and it is also applicable to linear time-varying

(LTV) systems, has been proposed in [4]. In the time-

invariant case, the main result of [4] turns out to be less

conservative than the condition provided in [3], but it is

computationally more demanding, since the solution of a

Differential Linear Matrix Inequality (DLMI) is required.

In this paper we consider the class of LTV systems with fi-

nite state jumps [5], which are linear continuous-time system

whose state undergoes finite jump discontinuities at discrete

instants of time. Such systems can be regarded as a special

class of hybrid systems, namely impulsive dynamical linear

systems (IDLS) [6], which can be either time–dependent, if

the state jumps are time-driven, or state–dependent, where

the state jumps occur when the trajectory reaches an assigned

subset of the state space, the so-called resetting set. This

work follows the spirit of [4] to derive the main results for

FTS analysis and control of IDLS. The first contribution of

the paper is a necessary and sufficient condition for FTS. It
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requires the computation of the state transition matrix of the

given system, a numerically hard problem except for time-

invariant systems. Therefore we also provide some sufficient

conditions for FTS (one for time-dependent IDLS and one

for state-dependent IDLS), which require the solution of

two coupled differential–difference Lyapunov inequalities;

the Lyapunov inequalities can be turned into differential–

difference linear matrix inequalities (D/DLMIs) which can

be efficiently solved with many existing software packages.

Sufficient conditions for finite-time stabilization in the state

and output feedback cases are derived as well.

The paper is organized as follows: in Section II both

the class of impulsive dynamical linear systems and the

definition of FTS are introduced. In Section III the analysis

conditions are given both for time-dependent and state-

dependent IDLS. Synthesis results are provided in Section IV

so as to solve the problem of finite-time stabilization, either

via output or state feedback. A numerical example is then

discussed in order to demonstrate the effectiveness of the

proposed approach. Eventually some conclusions are drawn.

Notations. The symbols R and N denote the set of the

real and positive integer numbers respectively; accordingly,

R
n×m is the set of n × m matrices whose entries are

real numbers. By L2
[0,T ] (l2r) we denote the set of square

integrable (summable) vector-valued functions defined over

the interval [0, T ] (over the set {1, 2, . . . , r}).

II. PROBLEM STATEMENT

Let us consider the IDLS described by

ẋ(t) = Ac(t)x(t) , x(0) = x0 ,
(

t, x(t)
)

6∈ S (1a)

x(t+) = Ad(t)x(t) ,
(

t, x(t)
)

∈ S (1b)

where Ac(·) , Ad(·) : t ∈ [0, +∞) 7→ R
n×n, are continuous

matrix-valued functions and S ⊂
[

0,+∞
]

×R
n is called the

resetting set [6]. In particular (1a) describes the continuous-

time dynamic of the IDLS, and (1b) is the resetting law.

According to (1b), system (1) may exhibit a finite jump from

x(tk) to x(t+k ) 6= x(tk). For a particular trajectory x(t),
we let tk, k ∈ N, to denote the k-th instant of time at

which
(

t, x(t)
)

intersects S, and we call tk, k ∈ N, resetting

times. Furthermore we assume that when the trajectory x(t)
intersects the resetting set S, it instantaneously exits S.

Depending on the definition of the resetting set S, IDLS

can be classified as follows [6]:

i) Time-dependent IDLS – S = T × R
n, with

T :=
{

t1 , t2 , . . .
}

, i.e. the resetting set is defined

by a prescribed sequence of times, which are inde-

pendent of the state x(·);
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ii) State-dependent IDLS – S =
[

0, +∞
]

×
⋃

k Dk,

with Dk ⊂ R
n, i.e. the resetting set is defined by a

region in the state space, which is independent of

time.

The following assumption is introduced in order to prevent

system (1) to exhibit Zeno behavior.
Assumption 1: Given an interval [0, T ], there are only

a finite number of resetting times, either if (1) is time-
dependent, or state-dependent. It follows that the resetting
set to be considered in the time interval [0, T ] is given by

S = T × D ⊂ [0, T ] × R
n

, with T =
{

t1 , t2 , . . . , tr

}

. ♦

In this paper we deal with the behavior of the system (1)
within a finite interval [0, T ]. The solution of system (1) in
the considered interval is given by

x(t) = Φ(t, 0)x0 , t ∈ [0, T ],

where the matrix function Φ(t, τ) is the state transition
matrix of system (1). The transition matrix turns out to be
piecewise continuous with possible right discontinuities at
the time instants tk, k = 1, . . . , r . In the first interval, Φ(t, τ)
satisfies the following matrix differential equation

∂

∂t
Φ(t, 0) = Ac(t)Φ(t, 0) , t ∈ [0, t1] , Φ(0, 0) = I ;

in the following intervals we have

∂

∂t
Φ(t, t+k ) = Ac(t)Φ(t, t+k ) , t ∈]tk, tk+1] , k = 1, . . . , r − 1

Φ(t+k , t
+

k ) = Ad(tk)Φ(tk, t
+

k−1) , k = 1, . . . , r − 1 ,

where t+0 = t0 := 0 (obviously at t0 = 0 there is no
discontinuity). Finally in the last interval we have

∂

∂t
Φ(t, t+r ) = Ac(t)Φ(t, t+r ) , t ∈]tr, T ]

Φ(t+r , t
+
r ) = Ad(tr)Φ(tr, t

+

r−1) .

We now extend the definition of finite-time stability [2] to

the class of IDLS.
Definition 1 (FTS of impulsive systems): Given a positive

scalar T , a positive definite matrix R, a positive defi-
nite matrix-valued function Γ(·) defined over [0, T ], with
Γ(0) < R, the IDLS described by (1) is said to be finite-
time stable with respect to

(

T,R, Γ(·)
)

if

x
T
0 Rx0 ≤ 1 ⇒ x(t)T Γ(t)x(t) < 1 ∀ t ∈ [0, T ] . (2)

♦

Remark 1: Definition 1 can be interpreted in terms of

ellipsoidal domains. The set defined by xT
0 Rx0 ≤ 1

contains all the admissible initial states. The inequality

x(t)T Γ(t)x(t) < 1, instead, defines a time-varying ellipsoid

that bounds the state trajectory over the interval [0, T ]. ♦
Given a piecewise continuous vector-valued function

z(·) ∈ L2
[0,T ], with right discontinuities at the points

t1 , . . . , tr, we can define three norms, as follows. The first
is the classical L2-norm

‖z‖2,L :=

[∫ T

0

z
T

(t)z(t)dt

]1/2

.

Note that the function z(·) univocally defines the sequence
{z(tk)}k=1 ,... ,r ∈ l2r (remember that z(tk) represents the

left limit of z(·) in tk and that z(·) is assumed to be left
continuous in tk); therefore

‖z‖2,l :=

[

r
∑

k=1

z
T

(tk)z(tk)

]

1/2

is the classical l2-norm of the sequence {z(tk)}. Notice that

‖z‖2,l turns out to be a semi-norm for the signal z(·).
Finally we can think of z(·) as the composition of two

signals, one belonging to L2, and the other to l2, therefore
defining a “mixed norm” over L2 ⊕ l2

‖z‖2,m :=
[

‖z‖2
2,L + ‖z‖2

2,l

]1/2
. (3)

It is simple to recognize that the mixed norm (3) is actually

a norm for L2 ⊕ l2.

III. MAIN RESULTS

The following theorem provides a necessary and sufficient

condition for FTS of system (1).
Theorem 1: System (1) is FTS wrt (T, R, Γ(·)) iff for all

t ∈ [0, T ]

Φ(t, 0)T Γ(t)Φ(t, 0) < R . (4)

Proof: Assume that (4) holds and let xT
0 Rx0 ≤ 1. Then

x(t)T Γ(t)x(t) = x
T
0 Φ(t, 0)T Γ(t)Φ(t, 0)x0 < x

T
0 Rx0 < 1 .

Therefore system (1) is FTS. Conversely, assume by contra-
diction that system (1) is FTS and that for some t̄, x̄

x̄
T Φ(t̄, 0)T Γ(t̄)Φ(t̄, 0)x̄ ≥ x̄

T
Rx̄ . (5)

Now let x(0) = λx̄, where λ is such that x(0)T Rx(0) = 1.
Then (5) implies that

x(t̄)T Γ(t̄)x(t̄) = x(0)T Φ(t̄, 0)T Γ(t̄)Φ(t̄, 0)x(0) ≥ 1 ,

contradicting the assumption of FTS for system (1).

It is worth noticing that for state-dependent IDLS, the

condition in Theorem 1 cannot be applied, since the resetting

times are not known a priori. Condition (4) may be difficult

to check also for time-dependent IDLS, unless we are in the

time-invariant case, because it requires the computation of

the transition matrix. For these reasons, in the next lemma we

provide an alternative condition for FTS which involves two

coupled differential–difference Lyapunov inequalities. This

condition is further exploited so as to introduce conditions

that can be checked numerically in a more efficient way by

means of LMIs.
Lemma 1: Given system (1) and t ∈ [0, T ], the condition

x
T
0 Rx0 ≤ 1 ⇒ x(t)T Γ(t)x(t) < 1 (6)

is satisfied iff the following coupled differential–difference
Lyapunov inequalities, with terminal and initial conditions,
admit a piecewise continuously differentiable symmetric
solution P (·):

Ṗ (τ) + Ac(τ)T
P (τ) + P (τ)Ac(τ) < 0 , (7a)

τ ∈]0, t] , τ 6∈ T

x(tk)T (

Ad(tk)T
P (t+k )Ad(tk) − P (tk)

)

x(tk) ≤ 0 , (7b)

tk ∈]0, t] ,
(

tk, x(tk)
)

∈ S

P (t) ≥ Γ(t) , (7c)

P (0) < R . (7d)

Proof: Let V (τ, x) = xT P (τ)x. Then, if τ 6∈ T , the
derivative of V along the trajectories of system (1) yields

V̇ (τ, x) = x
T

(

Ṗ (τ) + Ac(τ)T
P (τ) + P (τ)Ac(τ)

)

x ,
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which is negative definite by virtue of (7a). At the disconti-
nuity points we have

V (t+k , x) − V (tk, x) =

x
T (tk)

(

Ad(tk)P (t+k )Ad(tk) − P (tk)
)

x(tk) ,

which is negative semidefinite in view of (7b). We can con-
clude that V (τ, x) is strictly decreasing along the trajectories
of system (1); hence, given x0 such that xT

0 Rx0 ≤ 1, we
have

x(t)T Γ(t)x(t) ≤ x(t)T
P (t)x(t) by (7c)

< x(0)T
P (0)x(0)

< x(0)T
Rx(0) ≤ 1 by (7d) .

Conversely, let us assume that (6) holds. By continuity
arguments there exists a sufficiently small ǫ > 0 such that,
letting z = ǫx, we have

x(0)T
Rx(0) ≤ 1 ⇒ x(t)T Γ(t)x(t) + ‖z‖2

2,m < 1 , (8)

where ‖ · ‖2,m has been defined in (3). Let us define P (·) as
the unique symmetric solution of

Ṗ (τ) + Ac(τ)T
P (τ) + P (τ)Ac(τ) + ǫ

2
I = 0 , (9a)

τ ∈]0, t] , τ 6∈ T

P (t) = Γ(t) (9b)

P (tk) = Ad(tk)T
P (t+k )Ad(tk) + ǫ

2
I , (9c)

tk ∈]0, t] , tk ∈ T

and assume, by contradiction, that (7d) is not satisfied, i.e.
for some x̄

x̄
T
P (0)x̄ ≥ x̄

T
Rx̄ . (10)

Now let x0 = λx̄, where λ is such that

x
T
0 Rx0 = 1 . (11)

Then (10) implies
x

T
0 P (0)x0 ≥ 1 . (12)

First, consider the time interval ]tk, tk+1], with
tk , tk+1 ∈ ]0, t] ∩ T . From (9a) we obtain that

d

dτ
x(τ)T

P (τ)x(τ) = −ǫ
2
x(τ)T

x(τ) , (13)

and, integrating (13) from t+k to tk+1

x(tk+1)
T
P (tk+1)x(tk+1)

− x(t+k )T
P (t+k )x(t+k ) = −ǫ

2‖x]tk,tk+1]‖
2
2,L . (14)

If t 6∈ T , we can write an analogous relation for the last
interval ]trt

, t]

x(t)T
P (t)x(t)− x(t+rt

)T
P (t+rt

)x(t+rt
) = −ǫ

2‖x]trt ,t]‖
2
2,L , (15)

where
trt = max {tk ∈ T : tk < t} .

From (9c) we obtain for the resetting times tk ∈]0, t] ∩ T ,

x(t+k )T
P (t+k )x(t+k ) − x(tk)T

P (tk)x(tk) = −ǫ
2‖x(tk)‖2

, (16)

where ‖v‖ denotes the Euclidean norm of the vector v.
Then, summing over all the intervals (14) and (16) with

(15), and taking into account (12) and (9c), we have

x(t)T Γ(t)x(t) = x(t)T
P (t)x(t) = x

T
0 P (0)x0 − ǫ

2‖x‖2
2,m

≥ 1 − ‖z‖2
2,m . (17)

We can conclude that an x0 has been found which satisfies

(11) and such that (17) holds; this contradicts (8). Therefore

(10) is not true, and (7d) holds true. Hence we have built

a symmetric P (·) through (9) which satisfies (7a)–(7c) and

(7d); this completes the proof.

Lemma 1 can be immediately applied to state an alterna-

tive (to Theorem 1) necessary and sufficient condition for

FTS. Looking at Definition 1, in principle we should check

that for any t ∈ [0, T ] the hypotheses of Lemma 1 are

satisfied. In other words we should check the feasibility of

infinitely many optimization problems involving two coupled

differential–difference Lyapunov inequalities; this is obvi-

ously an impossible task. Even performing a fine gridding

of the interval [0, T ], the problem would remain hard from

a computational point of view. To this regard Theorem 1

remains more appealing. Moreover, as for Theorem 1, con-

ditions (7) cannot be checked for state-dependent IDLS.

Although Lemma 1 is not useful per se to derive a reliable

result to analyze the FTS of a given IDLS, it permits to

prove in a simple way the following theorems which require

to check the feasibility of only two coupled differential–

difference Lyapunov inequalities. The conditions stated in

the next theorems, however, are only sufficient thus they

introduce a certain degree of conservatism in the analysis.
Theorem 2 (FTS for time-dependent IDLS): Assume that

the coupled differential–difference Lyapunov inequalities
with terminal and initial conditions

Ṗ (t) + Ac(t)
T
P (t) + P (t)Ac(t) < 0 , (18a)

t ∈]0, T ] , t 6∈ T

P (tk) ≥ Ad(tk)T
P (t+k )Ad(tk) , tk ∈ T (18b)

P (t) ≥ Γ(t) , ∀ t ∈ [0, T ] , (18c)

P (0) < R , (18d)

admit a piecewise continuously differentiable symmetric

solution P (·); then the time-dependent IDLS (1) is FTS with

respect to
(

T, R, Γ(·)
)

.

Proof: It is straightforward to check that, if the

IDLS (1) is time-dependent, then condition (18b) is equiva-

lent to (7b), since S = T × R
n. It follows that a symmetric

matrix-valued function P (·) satisfying conditions (18) also

satisfies (7) for all t ∈ [0, T ]. Therefore condition (2) is

satisfied and system (1) is FTS.

Remark 2: The conservatism introduced by Theorem 2

has to be interpreted as follows. Given two time instants t1
and t2, t1 < t2, belonging to the interval [0, T ], the necessary

and sufficient condition coming from Lemma 1 requires to

find two symmetric matrix-valued functions P1(·) and P2(·)
which satisfy the hypotheses of Lemma 1 for t = t1 and

t = t2, respectively. Note that, concerning condition (7d), it

is only required that at the terminal point of the respective

definition interval, namely [0, t1] for P1(·) and [0, t2] for

P2(·), the two functions satisfy P1(t1) ≥ Γ and P2(t2) ≥
Γ, while P1(·) and P2(·) are not constrained to be the

same function over the common interval [0, t1]. Conversely,

Theorem 2 requires to find one symmetric matrix-valued

function P (·) which satisfies for the whole interval [0, T ] the

condition P (t) ≥ Γ(t); this is the source of conservatism.
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Remark 3: By using Schur complements arguments, in-

equality (18b) can be turned into the following difference

linear matrix inequality

(

−P (tk) AT
d (tk)P (t+k )

P (t+k )Ad(tk) −P (tk)

)

< 0 . (19)

♦
Theorem 3 (FTS for state-dependent IDLS): Assume that

the coupled differential–difference Lyapunov inequalities
with terminal and initial conditions

Ṗ (t) + Ac(t)
T
P (t) + P (t)Ac(t) < 0 , t ∈]0, T ] (20a)

x
T (t)

(

Ad(t)T
P (t)Ad(t) − P (t)

)

x(t) ≤ 0 , (20b)

t ∈]0, T ] , x ∈
⋃

k

Dk

P (t) ≥ Γ(t) , ∀ t ∈ [0, T ] , (20c)

P (0) < R , (20d)

admit a continuously differentiable symmetric solution P (·);
then the state-dependent IDLS (1) is FTS with respect to
(

T,R, Γ(·)
)

.

Proof: The proof follows similar arguments to those

used in the proof of Theorem 2. Note that, since for state-

dependent IDLS the resetting times are not known a priori,

conditions (7a) and (7b) have to be checked for all t in [0, T ],
yielding conditions (20a) and (20b), respectively.

Remark 4: Condition (20b) can be turned into LMIs by

using the S-procedure, as shown in [7]. ♦

Theorems 2 and 3 reduce the FTS analysis to a feasibility

problem in the matrix variable P (·) involving two coupled

differential–difference linear matrix inequalities (D/DLMIs),

a LMI to be tested for all t ∈ [0, T ], and the LMI (18d).

When the structure of the matrix P (·) is fixed a priori, for

example piecewise affine (see the example in Section IV), the

feasibility problem can be turned into a classical optimization

problem involving LMIs [8].

IV. FINITE-TIME STABILIZATION

Problem 1 (Finite-time Control via Output Feedback):
Consider the following IDLS

ẋ(t) = Ac(t)x(t) + B(t)u(t), x(0) = x0 , (21a)
(

t, x(t)
)

6∈ S

x(t+k ) = Ad(tk)x(tk) ,
(

tk, x(tk)
)

∈ S (21b)

y(t) = Cx(t) + Du(t), t ≥ 0 (21c)

where u(t) is the control input, y(t) is the output. Given
a positive number T , two positive definite matrices R
and RK , two positive definite matrices Γ(·) and ΓK(·)
defined over [0, T ], with Γ(0) < R, ΓK(0) < RK . Find
a dynamic output feedback controller in the form

ẋK(t) = AK(t)xK(t) + BK(t)y(t) (22a)
(

t, x(t)
)

6∈ S

xK(t+k ) = Ad,K(tk)xK(tk) + Bd,K(tk)y(tk), (22b)
(

tk, x(tk)
)

∈ S

u(t) = CK(t)xK(t) + DK(t)y(t) (22c)

where xK(t) has the same dimension of x(t), such

that the closed loop system obtained by the inter-

connection of (21) and (22) is FTS with respect to

(T, blockdiag(R,RK), blockdiag(Γ(·), ΓK(·))).

The following lemma is useful for the solution to the

problem.
Lemma 2 ([9]): Given symmetric matrices S ∈ R

n×n

and Q ∈ R
n×n, there exist a symmetric matrix V ∈ R

n×n

and two nonsingular matrices M ∈ R
n×n, N ∈ R

n×n such
that1

P :=

(

S M

MT V

)

> 0 , P
−1 =

(

Q N

NT ⋆

)

,

iff
(

Q I
I S

)

> 0 (23)

♦

Theorem 4 (Output feedback for time-dependent IDLS):
Problem 1 is solvable for time-dependent IDLS, if there
exist piecewise continuously symmetric positive definite
matrix-valued functions Q(·) and S(·), a nonsingular matrix-

valued function N(·) and matrix-valued functions ÂK(·),
B̂K(·), ĈK(·), DK(·), Âd,K(·), and B̂d,K(·) such that

(

Θ11 Θ12

ΘT
12 Θ22

)

< 0, (24a)

t ∈]0, T ] , t 6∈ T
(

Θd,11 Θd,12

ΘT
d,12 Θd,22

)

< 0 , tk ∈ T (24b)









Q Ψ12 Ψ13 Ψ14

ΨT
12 Ψ22 0 0

ΨT
13 0 I 0

ΨT
14 0 0 I









≥ 0 , t ∈ [0, T ] (24c)

(

Q(0) I
I S(0)

)

≤

(

∆11 Q(0)R
RQ(0) R

)

, (24d)

where2

Θ11 = − Q̇ + AcQ + QA
T
c + BĈK + Ĉ

T
KB

T
(25a)

Θ12 =Ac + Â
T
K + BDKC (25b)

Θ22 =Ṡ + SAc + A
T
c S + B̂KC + C

T
B̂

T
K (25c)

Θd,11 = −

(

Q I
I S

)

(25d)

Θd,12 =

(

Q(tk)Ad(tk)T Âd,K(tk)T

Ad(tk)T Ad(tk)T S(t+k ) + C(tk)T B̂d,K(tk)T

)

(25e)

Θd,22 = −

(

Q(t+k ) I

I S(t+k )

)

(25f)

Ψ12 =I − QΓ (25g)

Ψ13 =QΓ1/2
(25h)

Ψ14 =NΓ
1/2

K (25i)

Ψ22 =S − Γ (25j)

∆11 =Q(0)RQ(0) + N(0)RKN(0)T
(25k)

1The symbol ⋆ denotes a “don’t care” block.
2In order to avoid awkward notation, when possible we discard the time

dependence in both (24) and (25).
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Proof: The connection of systems (21) and (22) reads

ẋCL(t) =

(

Ac(t) + B(t)DK(t)C(t) B(t)CK(t)
BK(t)C(t) AK(t)

)

xCL(t)

= ACL(t)xCL(t) , t ≥ 0 , t 6∈ T

xCL(t+k ) =

(

Ad(tk) 0
Bd,K(tk)C(tk) Ad,K(tk)

)

xCL(tk)

= Ad,CL(tk)xCL(tk) , tk ∈ T

where xCL =
[

xT xT
K

]T
.

According to Theorem 2 it follows that Problem 1 is
solvable if there exist a piecewise continuously symmetric
matrix-valued function P (·) such that

Ṗ (t) + ACL(t)T
P (t) + P (t)ACL(t) < 0 (26a)

t ∈]0, T ] , t 6∈ T
(

−P (tk) Ad,CL(tk)T P (t+k )
P (t+k )Ad,CL(tk) −P (t+k )

)

< 0 (26b)

tk ∈ T

P (t) ≥ blockdiag(Γ(·), ΓK(·)) , ∀ t ∈ [0, T ] , (26c)

P (0) < blockdiag(R, RK). (26d)

Now let us define the following matrix-valued functions

P (t) =

(

S(t) M(t)
M(t)T T (t)

)

, P (t)−1 =

(

Q(t) N(t)
N(t)T ⋆

)

,

Π1(t) =

(

Q(t) I

N(t)T 0

)

, Π2(t) =

(

I S(t)
0 M(t)T

)

.

Note that by definition

P (t)Π1(t) = Π2(t) (27a)

S(t)Q(t) + M(t)N(t)T = I (27b)

Q(t)Ṡ(t)Q(t) + N(t)Ṁ(t)T
Q(t) + Q(t)Ṁ(t)N(t)T +

+ N(t)Ṫ (t)N(t)T = −Q̇(t) (27c)

By pre- and post-multiplying inequality (26a) by Π1(t)
T and

Π1(t) respectively, condition (24a) follows once we let

ÂK(t) =Ṡ(t)Q(t) + Ṁ(t)N(t)T + M(t)AK(t)N(t)T +

+ S(t)B(t)CK(t)N(t)T + M(t)BK(t)C(t)Q(t)+

+ S(t) (Ac(t) + B(t)DK(t)C(t)) Q(t) (28a)

B̂K(t) =M(t)BK(t) + S(t)B(t)DK(t) (28b)

ĈK(t) =CK(t)N(t)T + DK(t)C(t)Q(t) (28c)

By pre- and post-multiplying inequal-
ity (26b) by blockdiag(Π1(tk)T , Π1(t

+
k )T ) and

blockdiag(Π1(tk),Π1(t
+
k )) respectively, condition (24b)

follows once we let

Âd,K(tk) =M(t+k )Ad,K(tk)N(tk)T +

+ M(t+k )Bd,K(tk)C(tk)Q(tk)+

+ S(t+k )Ad(tk)Q(tk) (29a)

B̂d,K(tk) =M(t+k )Bd,K(tk) (29b)

By pre- and post-multiplying inequality (26c) and (26d) by

Π1(t)
T and Π1(t) respectively, tacking into account (27) and

Lemma 2, conditions (24c) and (24d) follow. Note that (24c)

implies (23).

Remark 5: The statement of Theorem 4 requires to find a

nonsingular N(·); this can be obtained by adding a further

LMI constraint requiring positive definiteness of N for all

t ∈ [0, T ]. ♦

Remark 6 (Controller design): Assume now that the hy-

pothesis of Theorem 4 are satisfied; in order to design the

controller the following steps have to be followed:

1) Find Q(·), S(·), N(·), ÂK(·), B̂K(·), ĈK(·), DK(·),
Âd,K(·) and B̂d,K(·) such that conditions (24) are

satisfied.
2) Calculate the matrix function

M(t) = (I − S(t)Q(t)) N
−T (t)

and its derivative

Ṁ(t) = −
(

Ṡ(t)Q(t) + S(t)Q̇(t) + M(t)Ṅ(t)T
)

N(t)−T

3) Obtain AK(·), BK(·) and CK(·) by inverting (28)

BK(t) =M(t)−1
(

B̂K(t) − S(t)B(t)DK(t)
)

CK(t) =
(

ĈK(t) − DK(t)C(t)Q(t)
)

N(t)−T

AK(t) =M(t)−1
(

ÂK(t) − Ṡ(t)Q(t)+

− Ṁ(t)N(t)T − S(t)B(t)CK(t)N(t)T +

− M(t)BK(t)C(t)Q(t)+

−S(t) (Ac(t) + B(t)DK(t)C(t)) Q(t)) N(t)−T

and Ad,K(·) and Bd,K(·) by inverting (29)

Bd,K(tk) =M(t+k )−1
B̂d,K(tk)

Ad,K(tk) =M(t+k )−1
(

Âd,K(tk)+

− B̂d,K(tk)C(tk)Q(tk)+

−S(t+k )Ad(tk)Q(tk)
)

N(tk)−T
♦

When the state of system (21) is fully available, we can

look for a state feedback finite-time stabilizing controller

in the form u(t) = K(t)x(t). In this case by pre- and

post-multiplying (7a) by P−1(t) := Q(t), noticing that

Q̇(t) = − Q(t)Ṗ (t)Q(t), and letting L(t) = K(t)Q(t),
we readily obtain the following theorem.

Theorem 5 (State feedback for time-dependent IDLS):
Problem 1 is solvable via state feedback control if there
exist a piecewise continuously differentiable symmetric
matrix-valued function Q(·) and a matrix-valued function
L(·) such that

− Q̇(t) + Ac(t)Q(t) + Q(t)Ac(t)
T + L(t)T

B(t)T

+ B(t)L(t) < 0 , t ∈]0, T ] , t 6∈ T (30a)
(

−Q(t+k ) Ad(tk)Q(tk)
Q(tk)Ad(tk)T −Q(tk)

)

< 0 , t ∈ T (30b)

Q(t) ≤ Γ−1(t) ∀ t ∈ [0, T ] (30c)

Q(0) > R
−1

. (30d)

In this case a controller gain which solves Problem 1 via

state feedback is K(t) = L(t)Q−1(t). ♦

Remark 7 (Feedback control of state-dependent IDLS):

Since for state-dependent IDLS the resetting times are

not know a priori, it follows that for this class of IDLS

Problem 1 is solvable:

• via output feedback, if there exist matrix-valued func-

tions Q(·), S(·), N(·), ÂK(·),B̂K(·), ĈK(·), DK(·),
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Âd,K(·), and B̂d,K(·) such that conditions (24c)

and (24d) hold, while both conditions (24a) and (24b)

are satisfied for all t in ]0, T ];
• via state feedback, if there exist two matrix-valued func-

tions Q(·), L(·) such that conditions (30c) and (30d)

hold, while conditions (30a) and (30b) are satisfied for

all t in ]0, T ]. ♦

An example of controller design is now presented, so
as to illustrate the effectiveness of the proposed procedure.
Consider the second order time-dependent IDLS

Ac =

(

0 1
−1 −1

)

, B =

(

0
1

)

, C =
(

1 0 0
)

,

D = 0 , Ad =

(

1.1 0
0 1.1

)

,

with tk = kTs, Ts = 0.1 s. Theorem 4 is ex-
ploited to design an output feedback controller (22), of
the same order of the system (21), which guarantees
the FTS of the closed-loop time-dependent IDLS wrt
(T, blockdiag(R,RK), blockdiag(Γ(·), ΓK(·))), where

T = 1s , Γ =

(

1 0
0 1

)

, R =

(

2.5 0
0 2.5

)

,

ΓK =

(

0.1 0
0 0.1

)

, RK =

(

2.5 0
0 2.5

)

.

In order to recast the conditions provided in Theorem 4
in terms of LMIs, the matrix-valued functions Q(·), S(·),
N(·), ÂK(·), B̂K(·), ĈK(·), Âd,K(·) and B̂d,K(·) have been
assumed piecewise affine, that is

Q(t) = Ω0
j + Ω∗

j (t − (j − 1)Ts) , t ∈ [(j − 1)Ts, jTs] ,

j = 1, . . . , J + 1.

where J = max{j ∈ N : j < T/Ts}, and Ω0
j , Ω∗

j

are the optimization variables. Exploiting the Matlab LMI

toolbox [10], it is possible to find matrix functions Q(·), S(·),
N(·), ÂK(·), B̂K(·), ĈK(·), Âd,K(·) and B̂d,K(·) verifying

the conditions of Theorem 4. Therefore, based on Remark 6,

we can calculate the five matrix functions AK(·), BK(·)
Ad,K(·), Bd,K(·) and CK(·) and conclude that the closed

loop system obtained by the interconnection of (21) and (22),

is FTS wrt (T, blockdiag(R, RK), blockdiag(Γ(·),ΓK(·))).
As example, the evolution of the state of the plant, for

x0 =
(

0.25 0
)T

, and xK0
=

(

0 0
)T

is shown

in Fig. 1, while the controller’s state is shown in Fig. 2.

CONCLUSIONS

An extension of the finite-time stability concept to a class

of impulsive dynamical linear systems has been presented in

this paper. First a necessary and sufficient condition for FTS

of this class of systems has been given. In order to check FTS

for time-dependent and state-dependent IDLS by solving

feasibility problems involving DLMIs, two further sufficient

conditions have been presented. Sufficient condition for the

existence and the design of both output and state feedback

controller have been provided as well. The effectiveness of

the results has been illustrated by a numerical example.
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Fig. 1. Evolution of the state of system (21) subject to the output feedback
controller. x1(t) (solid line) and x2(t) (dashed line).
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Fig. 2. Evolution of the state of the output feedback controller. xK1(t)
(solid line) and xK2(t) (dashed line).
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