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Abstract— In many problems governed by partial differential
equations, there is freedom in the choice of actuator (and
sensor) location. These locations should be chosen to optimize
performance objectives. In practice, approximations are used in
controller design and thus in selection of the actuator locations.
The optimal cost and location of the approximating sequence
should converge to the exact optimal cost and location. In this
work conditions for this convergence are given in the case of
linear quadratic control.

I. INTRODUCTION

The location of actuators in systems governed by partial

differential equations can often be chosen. An important

application is active control of interior noise, particularly in

automobiles and in aircraft. Performance is known to depend

strongly on actuator location. For example, in [15] achievable

noise reduction in a duct was shown to vary strongly with

actuator location. Actuators should therefore be located at

positions that optimize performance. The actuator location

problem has been considered by many researchers; see for

instance [6], [12], [13].

In this paper we are concerned with linear quadratic

regulators. The optimal control is calculated via the solution

Π to an algebraic Riccati equation. In practice, the equations

for the optimal control cannot be solved and the the control

is calculated using an approximation Πn to Π. Criterion for

optimality of the calculated optimal locations with reference

to the full partial differential equation model need to be

obtained. Conditions for strong convergence of the approx-

imations Πn to Π, with fixed actuator location, are known;

see for instance, [1], [9]–[11].

Determining the optimal actuator location for the optimal

control introduces an additional layer of numerical calcula-

tion. An example in this paper shows that strong convergence

of Πn is not sufficient to obtain correct results: The optimal

cost and corresponding actuator locations of the approxi-

mating sequence may not converge to the exact cost and

location. The sequence of Riccati operators needs to converge

uniformly to the exact operator. For general semigroups,

conditions for uniform convergence in the Hilbert-Schmidt

norm of Πn to Π are given in [5], but the approximation

space needs to lie in D(A). This assumption is not satisfied

by many finite-element type approximation schemes.

It will be shown that compactness of the input operator B
and cost C is sufficient to ensure uniform convergence of the

approximate Riccati operators and furthermore, the optimal
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cost is continuous with respect to the actuator location. This

leads to the main result of this paper; conditions under which

the approximating optimal performance converges to the

optimal performance, along with a corresponding sequence

of actuator locations. The results are illustrated with an

example.

II. CALCULATION OF LINEAR-QUADRATIC CONTROL

Consider systems described by

dz

dt
= Az(t) + Bu(t), z(0) = z0 (2.1)

on a Hilbert space H where A with domain D(A) generates a

strongly continuous semigroup S(t) on H and B ∈ L(U,H)
for some Hilbert space U .

The linear-quadratic (LQ) controller design objective is to

find a control u(t) so that the cost functional

J(u, z0) =

∫ ∞

0

〈Cz(t), Cz(t)〉 + 〈u(t), Ru(t)〉dt (2.2)

is minimized where R ∈ L(U,U) is a self-adjoint positive

definite operator weighting the control, C ∈ L(H, Y ) (with

Hilbert space Y ) weights the state, and z(t) is determined

by (2.1).

Definition 2.1: The system (2.1) with cost (2.2) is opti-

mizable if for every z0 ∈ H there exists u ∈ L2(0,∞;U)
such that the cost is finite.

Definition 2.2: The pair (C,A) is detectable if there exists

F ∈ L(Y,H) such that A − FC generates an exponentially

stable semigroup.

Theorem 2.3: [4, Thm 6.2.4, 6.2.7] If (2.1) with cost (2.2)

is optimizable and detectable, then the cost has a minimum

for every z0 ∈ H. Furthermore, there exists a self-adjoint

non-negative operator Π ∈ L(H,H) such that

min
u∈L2(0,∞;U)

J(u, z0) = 〈z0,Πz0〉.

The operator Π is the unique non-negative solution to the
operator equation

〈Az1,Πz2〉+〈Πz1, Az2〉+〈Cz1, Cz2〉−〈B∗Πz1, R
−1
B

∗Πz1〉 = 0
(2.3)

for all z1, z2 ∈ D(A). Defining K = R−1B∗Π, the

corresponding optimal control is u = −Kz(t) and A−BK
generates an exponentially stable semigroup.

Definition 2.4: The pair (A,B) is stabilizable if there

exists K ∈ L(U,H) such that A − BK generates an

exponentially stable semigroup.

It is straightforward to show that the assumption of opti-

mizability in Theorem 2.3 is equivalent to stabilizability.
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In practice, the operator equation (2.3) cannot generally be

solved and the control is calculated using an approximation.

Let Hn be a finite-dimensional subspace of H and Pn be

the orthogonal projection of H onto Hn. The space Hn

is equipped with the norm inherited from H. Consider a

sequence of operators An ∈ L(Hn,Hn), Bn ∈ L(U,Hn).
This leads to a sequence of approximations

dz

dt
= Anz(t) + Bnu(t), z(0) = zn0 = Pnz0 (2.4)

with cost functional

J(u, z0) =

∫ ∞

0

〈Cz(t), Cz(t)〉 + 〈u(t), Ru(t)〉dt (2.5)

where Cn = C|Hn
. If (An, Bn) is stabilizable and (An, Cn)

is detectable, then the cost functional has the minimum

cost 〈Pnz0,ΠnPnz0〉 where Πn is the unique non-negative

solution to the algebraic Riccati equation

A∗
nΠn + ΠnAn − ΠnBnR−1B∗

nΠn + C∗
nCn = 0 (2.6)

on the finite-dimensional space Hn.

The feedback control Kn = R−1B∗
nΠn, is used to control

the original system (2.1). Assumptions that guarantee that

Πn converges to Π in some sense are required in order for

this approach to be valid.

There have been many papers written describing con-

ditions under which approximations lead to approximating

controls that converge to the control for the original infinite-

dimensional system, see for instance, [1], [9]–[11]. The

following set of assumptions is standard.

(A1) Let Sn(t) indicate the semigroup generated

by An. For each z ∈ H, we have

(i) ‖Sn(t)Pnz − S(t)z‖ → 0,

(ii) ‖S∗
n(t)Pnz − S∗(t)z‖ → 0

uniformly in t on bounded intervals.

(A2 ) (i) For each u ∈ U , ‖Bnu − Bu‖ → 0, and

for each z ∈ H, ‖B∗
nPnz − B∗z‖ → 0,

(ii) For each z ∈ H, ‖CnPnz − Cz‖ → 0, and for

each y ∈ Y , ‖C∗
ny − C∗y‖ → 0.

(A3) (i) The family of pairs (An, Bn) is uniformly

exponentially stabilizable, that is, there exists a

uniformly bounded sequence of operators Kn ∈
L(Hn, U) such that

∥

∥

∥
e(An−BnKn)tPn z

∥

∥

∥
≤ M1 e−ω1t |z|

for some positive constants M1 ≥ 1 and ω1.

(ii) The family of pairs (An, Cn) is uniformly expo-

nentially detectable, that is, there exists a uniformly

bounded sequence of operators Fn ∈ L(Y,Hn)
such that

∥

∥

∥
e(An−FnCn)tPn

∥

∥

∥
≤ M2 e−ω2t, t ≥ 0,

for some positive constants M2 ≥ 1 and ω2.

Common approximation schemes such as modal approxima-

tions and finite-elements typically satisfy these assumptions.

See, for instance, [1], [11], [14].

Assumption (A1i) is required for convergence of initial

conditions. Assumption (A1)(i) is often satisfied by ensuring

that the conditions of the Trotter-Kato Theorem hold , see for

instance, [16, Chap. 3, Thm. 4.2]. The convergence (A1)(ii)

of the adjoint semigroup sequence S∗
n(t) is required for the

strong convergence of the approximating Riccati operators

Πn. A counter-example may be found in [2]. Note that

assumption (A1) implies that Pnz → z for all z ∈ H.

If U and Y are finite-dimensional, as is usual, the strong

convergence Pnz → z, and definitions of Bn = PnB and

Cn = C|Hn
imply that (A2) is satisfied. Assumption (A3) is

standard in the literature on convergence of approximating

controls. It is not known to what extent assumption (A3) is

necessary.

Theorem 2.5: [1, Thm. 6.9], [10, Thm. 2.1, Cor. 2.2]

Assume that (A1)-(A3) are satisfied and that (A,B) is stabi-

lizable and (A,C) is detectable. Then for each n, the finite-

dimensional ARE (2.6) has a unique nonnegative solution

Πn with sup ‖Πn‖ < ∞. There exists constants M2 ≥ 1,

α2 > 0, independent of n, such that

‖e(An−BnR−1B∗
n
Πn)t‖ ≤ M2e

−α2t.

Furthermore, for all z ∈ H,

lim
n→∞

‖ΠnPnz − Πz‖ = 0

and

lim
n→∞

‖KnPnz − Kz‖ = 0.

The above result provides sufficient conditions for strong

convergence of the Riccati operators. However, as shall be

shown in the next section, convergence of optimal actuator

locations obtained using approximations requires uniform

convergence of the Riccati operators.

The first point to consider is that since Hn is finite-

dimensional, Πn has finite rank, and therefore Π must be

a compact operator in order for uniform convergence to

occur, regardless of the choice of approximation method. The

following simple example illustrates that Π is not always a

compact operator.

Example 2.6: [4] Consider (2.1) with A,B,C such that

A∗ = −A and C = B∗. Then Π = I is a solution to

the ARE. This operator is not compact on any infinite-

dimensional Hilbert space.

Conditions additional to those required for existence of an

optimal control need to be imposed in order to guarantee that

Π is compact and hence can be approximated by a finite-rank

operator.

Conditions for systems where the semigroup is analytic

can be found in [11]. If the input and output spaces are finite-

dimensional, and (A,B) is stabilizable, then Π is a Hilbert-

Schmidt operator [3, Thm. 4], a special type of compact

operator. The following result assumes that B and C are

compact in order to show that Π is compact.
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Theorem 2.7: Assume that (A,B) is stabilizable , (A,C)
is detectable and that B and C are both compact. Then Π is

compact.

Proof: The assumptions guarantee that the linear-quadratic

control problem (2.2) has a solution Π and that A −
BR−1B∗Π generates an exponentially stable semigroup,

SK(t). This implies that, for any z0 ∈ H,

〈z0,Πz0〉 =

∫ ∞

0

〈Cz(t), Cz(t)〉 + 〈u(t), Ru(t)〉dt

with z(t) = SK(t)z0, u(t) = −KSK(t)z0. Rewriting this

equation and using the fact that z0 is arbitrary,

Π =

∫ ∞

0

SK(t)∗
[

C∗C + Π∗BR−1BΠ
]

SK(t)dt.

Compactness of B and C implies that

DT =

∫ T

0

SK(t)∗
[

C∗C + Π∗BR−1Π
]

SK(t)dt

is compact for all T ≥ 0. Since there is M ≥ 0, α > 0 such

that ‖SK(t)‖ ≤ Me−αt, DT converges uniformly to Π and

Π is also compact. �

Example 2.6 fails to satisfy the assumptions of the above

theorem since a system with A∗ = −A cannot be stabilized

by a non-compact feedback [8].

Extension of the proof in [9] to general infinite-

dimensional systems leads to the following result on uniform

convergence. Apart from compactness of B and C, required

to ensure that Π is compact, the only additional assumption is

that limn→∞ ‖Bn − PnB‖ = 0. This is obviously satisfied

by the typical case where Bn = PnB. The more general

definition of Bn is needed later in this paper.

Theorem 2.8: Assume that (A,B) is stabilizable and

(A,C) is detectable, and that B and C are both com-

pact. Let (An, Bn, Cn) be a sequence of approximations to

(A,B,C) such that assumptions (A1)-(A3) are satisfied and

also limn→∞ ‖Bn − PnB‖ = 0. Then, the minimal non-

negative solution Πn to (2.6) converges uniformly to the

non-negative solution Π to (2.3).

Proof: As in the proof of Theorem 2.7, write

Π =

∫ ∞

0

SK(t)∗
[

C∗C + Π∗BR−1BΠ
]

SK(t)dt

and write Πn similarly. Define K = R−1B∗Π, M = C∗C +
K∗RK and define similarly Kn, Mn. We have

‖KnPn − K‖ ≤ ‖R−1‖‖B∗
nΠnPn − B∗Π)‖

≤ ‖R−1‖ (‖(B∗
n − B∗P ∗

n)ΠnPn‖ ...

+ ‖B∗(P ∗
nΠnPn − Π)‖)

= ‖R−1‖ (‖Bn − PnB‖‖Πn‖ ...

+ ‖(P ∗
nΠnPn − Π)B‖) .

Since Πn converges strongly to Π, and B is compact,

(P ∗
nΠnPn − Π)B converges uniformly to zero. Since by

assumption ‖Bn − PnB‖ converges to zero, Kn converges

uniformly to K. Since C is compact, Cn = CP ∗
n converges

uniformly to C also and we obtain that Mn converges

uniformly to M .
We can write the error in Πn − Π as

ΠnPn − Π =

Z

∞

0

SKn(t)∗ [Mn − PnM ]SKn(t)Pndt...

+

Z

∞

0

[SKn(t)∗Pn − S
∗

K(t)]MSKn(t)Pndt...

+

Z

∞

0

S
∗

K(t)M [SKn(t)Pn − SK(t)] dt.

Uniform convergence of Mn to M and uniform exponential

stability of SKn implies uniform convergence to zero of the

first term. Compactness of M and strong convergence of

SKn to SK , uniformly on bounded intervals of time, leads

to

lim
n→∞

‖(SKn(t)∗Pn − S∗
K(t))M‖ = 0

where the convergence is uniform on bounded intervals

of time. This, together with uniform exponential stability

implies uniform convergence to zero of the second term.

Similarly, the third term converges uniformly to zero. Thus,

Πn converges uniformly to Π. �

III. OPTIMAL ACTUATOR LOCATION FOR

LINEAR-QUADRATIC CONTROL

Consider now the situation where there are m actuators

with locations that can be varied over some compact set Ω ⊂
Rq. Parametrize the actuator locations by r and indicate the

corresponding input operator by B(r). Note that r is a vector

of length m with components in Ω so that r varies over

a space denoted by Ωm. For each r we have an optimal

control problem (2.2) which we indicate by Jr(u, z0) with

corresponding optimal cost 〈Π(r)z0, z0〉. We wish to choose

the actuator location in order to minimize the response to

the worst choice of initial condition. In other words, choose

r in order to minimize

max
z0∈H

‖z0‖=1

min
u∈L2(0,∞;U)

Jr(u, zo) = ‖Π(r)‖.

The performance for a particular r is µ(r) = ‖Π(r)‖ and

the optimal performance

µ̂ = inf
r∈Ωm

‖Π(r)‖.

For the sequence of approximating problems

(An, Bn(r), Cn) define similarly Jr
n(u, z0), µn(r) and

µ̂n.

Approximations must generally be used to calculate the

optimal actuator location. As the following example shows,

strong convergence of Πn to Π is not sufficient to guarantee

that limn→∞ µ̂n = µ̂.

Example 3.1: Weakly Damped Beam Consider a simply

supported Euler-Bernoulli beam and let w(r, t) denote the

deflection of the beam from its rigid body motion at time

t and position r. The deflection is controlled by applying

a force u(t) at a point. The control is a force centered on

the point r with width ∆. If we normalize the variables and
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include viscous damping with parameter cd = .1, we obtain

the partial differential equation

∂2w

∂t2
+ cd

∂w

∂t
+

∂4w

∂x4
= bru(t), t ≥ 0, 0 < x < 1,

where, letting ∆ = 0.001 indicate the width of the actuator

and r its location,

br(x) =

{

1/∆, |r − x| < ∆
2

0, |r − x| ≥ ∆
2

.

The boundary conditions are

w(0, t) = 0, w′′(0, t) = 0,
w(L, t) = 0, w′′(L, t) = 0.

(3.7)

Define the state-space H = H2
0(0, 1) × L2(0, 1) with state

z(t) = (w(·, t), ∂
∂tw(·, t)). A state-space formulation of the

above partial differential equation problem is

d

dt
x(t) = Ax(t) + Bu(t),

where

A =





0 I

−d4

dr4 −cdI



 , B =





0

br



 ,

with domain

D(A) = {(φ, ψ) ∈ H2

0(0, 1) ×H2

0(0, 1) with φ
′′ ∈ H2

0(0, 1)}.

An obvious choice of weight for the state is C = I . Since

there is only one control, choose control weight R = 1.

Let φi(x) indicate the eigenfunctions of ∂4w
∂x4 with bound-

ary conditions (3.7). Defining Xn to be the span of φi,

i = 1..n, we choose Hn = Xn × Xn. This type of

approximation satisfies all the assumptions of Theorem 2.5

and the sequence of solutions Πn to the corresponding finite-

dimensional ARE’s converge strongly to the exact solution

Π. However, as shown in Figures 1 and 2 this does not

imply convergence of the optimal actuator locations, or of

the corresponding actuator locations.

Conditions under which the optimal cost is continuous

with respect to the actuator location will be given. The

following theorem is needed. It is a special case of [7, Thm.

5.3] where it is stated with respect to time-varying systems,

with possibly varying weights C and R. This theorem applies

to the situation where the perturbed system is defined on

the same state space, possibly infinite-dimensional, as the

original system.

Theorem 3.2: For Hilbert spaces U, Y and Z with C ∈
L(Z, Y ) and positive definite R ∈ L(U,U) consider a series

of optimal control problems

J(u, z0) =

∫ ∞

0

〈Cz(t), Cz(t)〉 + 〈u(t), Ru(t)〉dt (3.8)

governed by

ż(t) = Fiz(t) + Giu(t),

where Fi generates a C0-semigroup S(t) on Z and Gi ∈
L(U,Z). Assume that there is a closed operator F on Z
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Optimal actuator locations: viscous damping, C=I

Fig. 1. Optimal actuator location, Viscously damped beam, C = I
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Fig. 2. Performance at optimal location, Viscously damped beam, C = I

generating a semigroup S(t) on Z and G ∈ L(U,Z) such

that

1) for each z ∈ Z , we have

(i)‖Si(t)z − S(t)z‖ → 0

(ii) ‖S∗
i (t)z − S∗(t)z‖ → 0,

uniformly in t on bounded intervals, and

2) ‖Gi − G‖ → 0.

Assume that (Fi, Gi) are stabilizable and (Fi, C) are de-

tectable. Let Πi be the minimal non-negative solution of

the ARE for the ith problem and let SKi be the semigroup

generated by Ai−GiR
−1G∗

i Πi. If there exists M > 0, β > 0
such that

‖SKi(t)‖ ≤ Me−βt, t ≥ 0,

and M1 such that

‖Πi‖ < M1
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then there exists a non-negative solution Π to the optimal

control problem for (F,G) such that for all z ∈ Z ,

lim
i→∞

Πiz = Πz.

Letting SK(t) indicate the semigroup generated by A −
GR−1G∗Π,

‖SK(t)‖ ≤ Me−βt,

and for all z ∈ Z ,

lim
i→∞

SKi(t)z = SK(t)z,

uniformly on bounded intervals of time.

This general result applies both to perturbations (Ai, Bi)
of the original system (A,B) and also to perturbations

(Ani, Bni) of an approximating system (An, Bn). The fol-

lowing theorem and corollary apply to both the original

system and to an approximating system.

Theorem 3.3: Let B(r) ∈ L(U,H), r ∈ Ωm, be a family

of compact input operators such that for any r0 ∈ Ωm,

lim
r→r0

‖B(r) − B(r0)‖ = 0.

Assume that (A,B(r)) are all stabilizable and that (A,C) is

detectable where C ∈ L(H, Y ) is a compact operator. Then

the corresponding Riccati operators Π(r) are continuous

functions of r in the operator norm:

lim
r→r0

‖Π(r) − Π(r0)‖ = 0.

Proof: Consider (A,B(r0)) at some arbitrary point r0 ∈
Ω. Choose some K so that A − B(r0)K generates an

exponentially stable semigroup with bound Me−αt, where

M ≥ 1, α > 0. Let δ be such that A − B(r)K generates

an exponentially stable semigroup with bound Me−
α

2
t for

all ‖B(r) − B(r0)‖ < δ. There is ǫ > 0 such that for all

|r−r0| < ǫ , ‖B(r)−B(r0)‖ < δ. We thus have a sequence

of uniformly exponentially stabilizable systems (A,B(r)).
Let Tr(t) indicate the semigroup generated by A−B(r)K.

For any z0 ∈ H,

〈Π(r)z0, z0〉 ≤ J(−Kz(t), z0)

=

∫ ∞

0

‖CTr(t)z0‖
2 + ‖R1/2KTr(t)z0‖

2dt

≤ c‖z0‖
2

for some constant c > 0. This implies that ‖Π(r)‖ ≤ c.

This, and Datko’s Theorem implies that the semigroups

Sr(t) generated by A−B(r)R−1B(r)∗Π(r) are bounded by

M2e
−βt for some M2 ≥ 1, α > 0. (See the proof of Theorem

2.1 in [10] for details.) Thus, any sequence (A,B(ri)) with

ri → r0 satisfies the assumptions of Theorem 3.2 and hence

for all z ∈ H

lim
r→r0

‖Π(r)z − Π(r0)z‖ = 0.

Furthermore, letting S0(t) indicate the semigroup generated

by A − B(r0)R
−1B(r0)

∗Π(r0), ‖S0(t)‖ ≤ M2e
−βt and

Sr(t) converge strongly to S0(t), uniformly on bounded

intervals of time. As in the proof of Theorem 2.8, we can

then show that

lim
r→r0

‖Π(r) − Π(r0)‖ = 0. �

The following result now follows immediately from the

compactness of Ω.

Corollary 3.4: There exists an optimal actuator location r̂
such that

‖Π(r̂)‖ = inf
r∈Ωm

‖Π(r)‖ = µ̂,

and similarly for each n there exists r̂n such that

‖Πn(r̂n)‖ = inf
r∈Ωm

‖Πn(r)‖ = µ̂n.

It will now be shown that compactness of C and B leads

to convergence of the optimal cost and of a corresponding

sequence of optimal actuator locations.

Theorem 3.5: Assume a family of control systems de-

pending on actuator location such that

1) (A,B(r)) are stabilizable and (A,C) are detectable,

2) B(r), r ∈ Ωm, is compact and such that for any r0 ∈
Ω,

lim
r→r0

‖B(r) − B(r0)‖ = 0,

3) C is compact.

Choose some approximation scheme such that assumptions

(A1)-(A3) are satisfied for each (A,B(r), C) with Bn(r) =
PnB(r), Cn = C|Hn

. Letting r̂ be an optimal actuator

location for (A,B(r), C) with optimal cost µ̂ and defining

similarly r̂n, µ̂n, it follows that

µ̂ = lim
n→∞

µ̂n,

and there exists a subsequence {r̂m} of {r̂n} such that

µ̂ = lim
m→∞

‖Π(r̂m)‖.

Proof:

µ̂n = inf
r∈Ωm

‖Πn(r)‖

≤ ‖Πn(r̂)‖

≤ ‖Πn(r̂) − Π(r̂)‖ + ‖Π(r̂)‖

= ‖Πn(r̂) − Π(r̂)‖ + µ̂.

Since ‖Πn(r̂) − Π(r̂)‖ → 0 (Thm. 2.8),

lim sup µ̂n ≤ µ̂.

It remains only to show that

lim inf µ̂n ≥ µ̂.

To this end, choose a subsequence µm → lim inf µ̂n, with

corresponding actuator locations rm. Since the sequence

{rm} lies in a compact set it has a convergent subsequence,

also denoted {rm}, with limit r. Since Bm = PmB,

‖Bm(rm) − PmB(r)‖ = ‖PmB(rm) − PmB(r)‖.

Compactness of B along with uniform convergence of

B(rm) to B(r) and convergence of rm to r implies that

‖Bm(rm) − PmB(r)‖ converges to zero. By assumption
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Fig. 3. Optimal actuator location, Viscously damped beam, C = deflection
at x = 0.5

(A3), there is a uniformly bounded sequence Km(r) ∈
L(H, U) such that Am−Bm(r)Km(r) generate semigroups

bounded by Me−ω1t for some M > 0, ω1 > 0. For some ǫ <
ω1/M , choose N large enough that ‖Bm(rm)−Bm(r)‖ < ǫ
for m > N . Then for all m > N , Am − Bm(rm)Km(r)
generates an exponentially stable C0-semigroup with bound

Me(−ω1+Mǫ)t. The assumptions of Theorem 2.8 are satisfied

by the sequence (Am, Bm(rm), Cm) and so ‖Πm(rm) −
Π(r)‖ → 0. Thus,

lim inf µ̂n = lim
m→∞

µm (3.9)

= lim
m→∞

‖Πm(rm)‖

= ‖Π(r)‖ (3.10)

≥ µ̂.

Thus, lim inf µ̂n ≥ µ̂ and so lim µ̂n = µ̂ as required.

Since µ̂ = lim µ̂n = lim inf µ̂n, (3.10) implies that

µ̂ = lim inf µn

= ‖Π(r)‖

= lim
m→∞

‖Π(r̂m)‖.

where the latter equality follows from continuity of perfor-

mance with respect to acuator location (Theorem 3.3). Thus,

as was to be shown, a sequence of approximating actuator

locations yield performance arbitrarily close to optimal. �

Example 3.6: Viscously Damped Beam, cont. Consider

the same control system as above, except that now instead

of trying to minimize the norm of the entire state, C = I , we

consider only the position at the midpoint. The weight Cz =
w(0.5) where w is the first component of the state z. Both B
and C are compact operators on H. Using the same modal

approximations as before, we obtain the sequence of optimal

actuator locations shown in Figure 3 with corresponding

performance shown in Figure 4. As predicted by the theory,

the optimal locations and performance converge.
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Fig. 4. Performance, Viscously damped beam, C = deflection at x = 0.5
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