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Abstract— Attenuation of sinusoidal disturbances with un-
certain and arbitrarily time-varying frequencies is considered
in the form of a generalized asymptotic regulation prob-
lem. The disturbances are modeled as the outputs of a
parameter-dependent unexcited exogenous system that evolves

from nonzero initial conditions. The parameter dependence is
assumed to be in such a form that the state of the exogenous
system has constant norm at all times. Considering a partially
parameter-dependent system, the problem is then formulated
as the synthesis of a linear time-invariant controller with
which the closed-loop respects a desired level of attenuation
profile in steady-state and exhibits sufficiently fast transient
response for all admissible parameter variations. The main
result of the paper is a synthesis procedure based on a convex
optimization problem, which is identified by a set of parameter-
dependent linear matrix inequalities and can be rendered
tractable through standard relaxation schemes. The order of
the synthesized controller is equal to the order of the plant
plus the order of the exogenous system.

I. INTRODUCTION

Rejection of sinusoidal or periodic disturbances is a com-

mon problem in various engineering systems ranging from

disk drives, [22], to CD players, [13], [4], helicopters, [2]

and steel casting, [17]. Part of the recent interest concerning

sinusoidal disturbance attenuation is on improving robustness

against the variations in the frequencies and the periods of

the disturbances [30], [15], [26], [20], [9], [27]. With the dis-

turbances generated by a known autonomous and marginally

stable exogenous system from unknown initial conditions,

it is well-established in the theory of asymptotic regulation

(see [21], [3]) when and how the sinusoidal disturbance

rejection problems can be solved in a stationary setting. In

this case, the solution essentially amounts to replicating in

the feedback loop the dynamics of the exogenous system

as required by the Internal Model Principle of [7]. The

classical asymptotic regulation theory, however, does not

offer an immediate solution when the disturbances have a

non-stationary and uncertain nature. The classical focus has

been on maintaining robustness against the uncertainty in

the plant parameters and this is done by replicating as many

times as required the dynamics of the exo-system generating

the considered infinite-energy disturbances. The situation is

rather different if the uncertainty is in the exo-system, since

exact asymptotic regulation will be possible in such a case

only under rather strong assumptions or -intuitively- with an

infinite-dimensional controller. Another option that applies to

a restrictive class of plants is a controller that is scheduled

with the measurements of the uncertain parameters [10] if

they are available at all.

A standard approach to non-stationary sinusoidal dis-

turbance attenuation with a linear time-invariant controller

would be based on H∞ or H2 synthesis techniques in

which the disturbances can be characterized as the outputs of

stable band-pass filters that emphasize the frequency range

of interest and that are excited by impulsive or white noise

inputs. This is admittedly an ad-hoc approach and hence does

not provide theoretical guarantees for situations in which the

frequencies can change with time arbitrarily. Alternatively,

one might consider designing a robust controller by first

modeling the disturbances as the outputs of a critically-

damped yet stable filter, which depends on uncertain pa-

rameters, the ranges of which reflect the frequency intervals

of interest. Such an approach is presented in [5], where a

convex solution is provided to robust controller synthesis

for uncertain disturbance filters. Although this approach

is recently extended to exploit any available bounds on

the rates-of-variation of uncertain parameters [6], there are

inherent limitations since the filters are required to be stable

and the initial conditions are assumed to be zero. As a

matter of fact, the usual H∞ or H2 synthesis framework

with stable disturbance filters is not an ideal setting for this

problem. Although unstable weighting filters have already

been considered in nominal synthesis (see e.g. [19]), the

available approaches are appropriate for exact cancelation of

disturbances rather than for attenuation thereof. On the other

hand, a natural extension of the classical regulation theory

in which a nonzero bound is required on the steady-state

peak of the output is possible for sinusoidal disturbances.

Inspired by [8], such a generalization has been considered

in [11] on top of an H∞ synthesis problem, where a

structure is identified for the candidate controllers similarly

to the previous works on exact regulation with additional

performance objectives [25], [28]. The generalized version

of the asymptotic regulation problem provides a convenient

framework for handling uncertainty in the exo-system, since

it is solvable with a finite-dimensional controller. In fact,

robust controller synthesis has already been considered as a

generalized asymptotic regulation problem in [12], where a
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potentially conservative solution is derived by adopting the

generic controller structure derived for the nominal version of

the problem. We also note the previous work by [14], which

is based on replicating the nominal exo-system in the loop

and guaranteeing a robust H∞ norm constraint to decrease

sensitivity to the variations in the frequencies.

In this paper, we study the non-stationary sinusoidal

disturbance attenuation problem in the spirit of the classical

regulation theory with the help of a marginally stable exo-

system. The exo-system depends on uncertain and possibly

time-varying parameters, which correspond to the variations

in the frequencies of the sinusoidal disturbances. With inspi-

rations from [8], we impose requirements on the steady-state

disturbance attenuation level and the transient response, as

stated precisely in Section II. The main result of the paper is

a linear time-invariant controller synthesis procedure based

on a convex optimization problem derived in Section III.

The optimization problem is not per se tractable since it has

infinitely many constraints to be satisfied, as is usually the

case for robust control problems. Nevertheless, standard re-

laxation techniques allow one to render the problem tractable

by replacing the semi-infinite constrains with a set of linear

matrix inequalities (LMI) and design robust controllers as

illustrated for a mass-spring damper system in Section IV.

The problem considered and the solution proposed in this

paper offer further opportunities as addressed briefly in the

concluding remarks.

II. PROBLEM FORMULATION

This paper is concerned with the attenuation of multi-

sinusoidal disturbances with uncertain and possibly time-

varying frequencies. These disturbances are viewed as the

outputs of an unexcited system of the form

v̇ = Ae(δ )v; Ae(δ ) = −Ae(δ )T ∈ R
l×l, (1)

where δ = [δ1 · · · δη ]T represents a vector of uncertain and

possibly time-varying parameters and the state evolves from

a nonzero initial condition v(0). As a simple yet sufficiently

representative example, let us consider

Ae =

[
0 −ϖ(t)

ϖ(t) 0

]

,ϖ(t) = (1 + δ (t))ω0, (2)

where ω0 ≥ 0 corresponds to a nominal frequency. With

φ(t) =

∫ t

0
ϖ(τ)dτ = ω0t + ω0

∫ t

0
δ (τ)dτ, (3)

it is straightforward to verify for this example that
[

v1(t)
v2(t)

]

=

[
cos(φ(t)) −sin(φ(t))
sin(φ(t)) cos(φ(t))

][
v1(0)
v2(0)

]

, (4)

which reveals the motivations behind viewing the systems

described by (1) as the generators of non-stationary sinu-

soidal disturbances. Systems that generate multi-sinusoidal

disturbances can be obtained -for instance- by using block-

diagonal system matrices with sub-blocks of the form given

in (2). In fact, a larger class of disturbances can be considered

with exo-systems for which there exists a positive-definite

matrix P such that AT
e (δ )P + PAe(δ ) = 0. There is, though,

no need for formulating the problem for this general class

of exo-systems as they can easily be subsumed to our

framework through the state transformation ν = P1/2v, since

P1/2Ae(δ )P−1/2 is then skew-symmetric.

The uncertain parameters in our setting basically reflect the

deviations of the frequencies from their nominal values and

are assumed to vary in time in a compact region R ⊂ R
η .

The admissible parameter trajectories are hence identified

as TR , {δ (·) : [0,∞) → R}. Note that, irrespective of the

parameter trajectory, the state of the system in (1) evolves

with a constant norm, i.e.

‖v(t)‖2 , v(t)T v(t) = ‖v(0)‖2,∀t ≥ 0. (5)

This can easily be established as d‖v(t)‖2/dt =
v(t)T He(Ae(δ (t)))v(t) = 0, where HeAe , Ae + AT

e .

This is a property which we particularly rely on in the

problem formulation.

The disturbance attenuation problem is formulated for a

plant with dynamics

G :





ẋ

e

y



 =





A Br(δ ) B

Cr(δ ) Dr(δ ) Drc(δ )
C Dcr 0









x

v

u



 , (6)

where x(t) ∈ R
k denotes the state vector, while u(t) ∈ R

n is

the vector of control inputs that are to be used to regulate the

outputs e(t)∈R
r based on the measurements y(t)∈ R

m. The

dynamics of the exo-system can be appended to the plant to

obtain the dynamics of the extended plant as

˙̃x =

[
A Br(δ )
0 Ae(δ )

]

︸ ︷︷ ︸

Ã(δ )

[
x

v

]

︸ ︷︷ ︸

x̃

+

[
B

0

]

︸ ︷︷ ︸

B̃

u,

e =
[

Cr(δ ) Dr(δ )
]

︸ ︷︷ ︸

C̃r(δ )

x̃ + Drc(δ )u,

y =
[

C Dcr

]

︸ ︷︷ ︸

C̃

x̃.

(7)

With an LTI controller of the form

K :

[
ξ̇
u

]

=

[
AK BK

CK DK

][
ξ
y

]

, (8)

the closed-loop dynamics are described by

κ̇ =

[
A + BDKC BCK

BKC AK

]

︸ ︷︷ ︸

A

[
x

ξ

]

︸ ︷︷ ︸

κ

+

[
Br(δ )+ BDKDcr

BKDcr

]

︸ ︷︷ ︸

Br(δ )

v,

e =
[

Cr(δ )+Drc(δ )DKC Drc(δ )CK

]

︸ ︷︷ ︸

Cr(δ )

κ

+
[

Dr(δ )+Drc(δ )DKDcr

]

︸ ︷︷ ︸

Dr(δ )

v.

(9)

The complete description of the closed-loop system can be
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obtained by addition of the dynamics of the exo-system as

˙̃κ =

[
Ã(δ )+ B̃DKC̃ B̃CK

BKC̃ AK

]

︸ ︷︷ ︸

˜A (δ )

[
x̃

ξ

]

︸ ︷︷ ︸

κ̃

,

e =
[

C̃r(δ )+Drc(δ )DKC̃ Drc(δ )CK

]

︸ ︷︷ ︸

C̃r(δ )

κ̃.
(10)

Within this setup, the problem that we consider is formu-

lated as follows: Given the plant in (6), the exo-system in

(1) and the uncertainty region R that satisfy:

A.1 R is compact and B̃r ,

[
Br

Ae

]

and Cr, Dr,Drc depend

continuously on δ ;

A.2 (A,B) is stabilizable (∃F :A+BF is Hurwitz);

A.3 (C,A) is detectable (∃L :A+LC is Hurwitz);

design a linear time-invariant controller K such that:

C.1. (Internal Stability) The feedback system formed by

G and K is exponentially stable (i.e. A is Hurwitz);

C.2. (Robust Generalized Asymptotic Regulation with

a Decay Rate ρ ∈ R+ and an attenuation pro-

file κ : R → R+) There exists a ϕ ∈ R+ such that

‖e(t)‖2 ≤ ϕ‖κ̃(0)‖2e−2ρt + (κ(δ (t)))2‖v(0)‖2,∀t ≥0,

∀δ (·)∈TR .

Remark 1: The notion of generalized asymptotic regula-

tion adopted in this paper is inspired by the recent work

[8]. Although a standard extension from exact to almost

regulation would not require the introduction of the decay-

rate (since the regulation theory is primarily concerned with

the steady-state behavior), we have done otherwise since

the transient behavior becomes especially important in a

non-stationary setting. The choice of the attenuation level

κ(·) as parameter-dependent is to offer flexibility in design.

If a fixed level of attenuation is desired for all parameter

variations, one can simply set κ = κ0. Nevertheless, it is

quite intuitive to think of a (graceful) attenuation level

degradation profile by considering a non-negative and non-

decreasing function ϑ(‖δ‖) with ϑ(0) = 0 (e.g. ϑ(‖δ‖) =
κ1‖δ‖ or ϑ(‖δ‖)= κ1‖δ‖2, where κ1 > 0) and try to achieve

generalized asymptotic regulation down to levels κ(δ (t)) =
κ0 +ϑ(‖δ (t)‖). Since δ in our setting reflects the deviation

of the parameters from their nominal values, such a profile

corresponds to requiring κ0-level attenuation for the nominal

case and allowing for an increase in the attenuation level

proportional to the amount of deviation from the nominal

values of the parameters.

III. ROBUST GENERALIZED ASYMPTOTIC REGULATION

In this section, we develop a convex optimization based

procedure for the synthesis of an LTI controller for robust

generalized asymptotic regulation. The optimization problem

is derived using the following matrix inequality condition for

generalized asymptotic regulation, adapted from [8]:

Lemma 1: There exists a solution to the generalized

asymptotic regulation problem formulated in Section II, if

there exists a symmetric matrix X̃ = X̃ T that satisfies

L̃s(δ ) = He
(
X̃ ˜A (δ )+ ρX̃

)
4 0,∀δ ∈ R, (11)

L̃r(δ ) =

[
X̃ + κ(δ )Ĩ T Ĩ C̃r(δ )T

C̃r(δ ) κ(δ )I

]

≻ 0,∀δ ∈ R,(12)

where Ĩ ,
[

Ẽ 0
]
, with Ẽ ,

[
0l×k Il

]
.

Proof: We first infer from (11) that the function

V (κ̃) , κ̃
T X̃ κ̃ satisfies

d
(
e2ρt

V (κ̃(t))
)
/dt = κ̃(t)T

L̃s(δ (t))κ̃(t) ≤ 0,

along the trajectories of the extended closed-loop system for

any admissible parameter trajectory. It hence decays with

time according to

V (κ̃(t)) ≤ V (κ̃(0))e−2ρt ≤ µ‖κ̃(0)‖2e−2ρt ,∀t ≥ 0,

where µ represents the maximum eigenvalue of X̃ . On the

other hand, (12) implies the existence of a positive scalar

ε for which X̃ + κ(δ )Ĩ T Ĩ < εI,∀δ ∈ R. Hence, when

v(0) = 0, we have v(t) = 0 as well as Ĩ κ̃(t) = 0, as a result

of which the state of the closed-loop system obeys

‖κ(t)‖2 ≤ ε−1
V (κ̃(t)) ≤ ε−1µ‖κ̃(0)‖2e−2ρt .

With the exponential stability thus being established, we now

consider the system for general v(0) and infer from (12) with

ψ(t)T =
[
κ̃(t)T − (κ(δ (t)))−1e(t)T

]
that

ψ(t)T
L̃r(δ (t))ψ(t)

= V (κ̃(t))+ κ(δ (t))‖v(t)‖2− (κ(δ (t)))−1‖e(t)‖2 ≥ 0,

which guarantees the generalized asymptotic regulation con-

dition in C.2 with ϕ = µ maxδ∈R κ(δ ) since ‖v(t)‖= ‖v(0)‖.

The solution to the problem considered in this paper is

derived by first expressing conditions (11) and (12) equiva-

lently as

He
(
Ỹ

T
X̃ ˜A (δ )Ỹ + ρỸ

T
X̃ Ỹ

)
4 0,∀δ ∈ R,(13)

[
Ỹ T

(
X̃ +κ(δ )Ĩ TĨ

)
Ỹ Ỹ TC̃r(δ )T

C̃r(δ )Ỹ κ(δ )I

]

≻ 0,∀δ ∈ R,(14)

where Y is an invertible matrix, the choice of which forms

the key step. In fact, the LMI approach to multi-objective

controller synthesis for various performance objectives is

based on suitable congruence transformations performed by

a generic choice of Ỹ in terms of certain sub-blocks of

X̃ and X̃ −1 [18], [25]. The equivalent matrix inequality

conditions obtained in this fashion are then rendered affine

in all free matrix variables through a bijective transformation

of the controller realization matrices into a set of new matrix

variables. The standard approach of [18], [25], however,

cannot lead us to a convex solution even in the nominal

version of our problem (i.e. for δ = 0), mainly due to the

term κ(δ )Ỹ T Ĩ T Ĩ Ỹ in (14). As a matter of fact, there

is an alternative approach that one can employ to solve

the nominal generalized asymptotic regulation problem. This

approach relies on identifying a generic structure for the

candidate controllers in terms of a replica of the exo-system,
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two matrix variables that are required to satisfy an affine

equality constraint as well as an LMI, and an accompanying

controller which is to be designed to stabilize the overall

system [11]. In fact, a solution has been obtained for the

robust generalized asymptotic regulation problem in [12] by

using a controller of this structure and imposing requirements

on the involved variables that facilitate a tractable solution.

Admittedly, this approach is potentially conservative and

hence does not provide an ideal solution.

In the sequel, we first combine the transformations from

[25], [23] similarly to [5], in order to obtain a suitable choice

for Ỹ and then introduce a new variable transformation that

paves the way to a convex solution for our problem. Let us

first express the realization matrices of the extended closed-

loop in terms of the controller parameters as

[
˜A (δ )

C̃r(δ )

]

=





Ã(δ ) 0

0 0

C̃r(δ ) 0



+





0 B̃

I 0

0 Drc(δ )





[
AK BK

CK DK

][
0 I

C̃ 0

]

, (15)

and partition the matrix X̃ and -assuming that it exists- its

inverse compatibly with this realization as

X̃ =

[
X̃ Ũ

ŨT H̃

]

,X −1 =

[
Ỹ Ṽ

Ṽ T S̃

]

(16)

We next introduce an invertible matrix T̃ as

T̃ =

[
Π̃

PẼ

]

=

[
I Π

0 P

]

, T̃−1 =
[
ĨT Π̃T

⊥P−1
]
=

[
I −ΠP−1

0 P−1

]

, (17)

as partitioned compatibly with Ã (see (7)), and assume that

the matrix Ỹ is of the form

Ỹ =

[
I Π
0 P

]−1

︸ ︷︷ ︸

T̃−1

[
Y 0

0 P

]

︸ ︷︷ ︸

Ŷ

[
I Π
0 P

]−T

︸ ︷︷ ︸

T̃−T

. (18)

Note that there is no loss of generality in assuming Ỹ to

be of this form, provided that Ỹ22 is invertible, since we

can then simply obtain the matrices in (18) as P = Ỹ−1
22 , Π =

−Ỹ12Ỹ−1
22 and Y = Ỹ11−Ỹ12Ỹ−1

22 Ỹ T
12, with Ỹi j’s representing the

corresponding sub-blocks of Ỹ . Our solution to the problem

is based on the choice of Ỹ as

Ỹ =

[
Ỹ T̃ T I

Ṽ T T̃ T 0

]

, (19)

with which we obtain by exploiting X̃ X̃ −1 = I that

Ỹ
T
X̃ =

[
T̃ 0

X̃ Ũ

]

, Ỹ
T
X̃ Ỹ =

[
Ŷ T̃

T̃ T X̃

]

, (20)

Ỹ
T
Ĩ

T =

[
ẼT

ẼT

]

, Ỹ
T
Ĩ

T
Ĩ Ỹ =

[
ẼT Ẽ ẼT Ẽ

ẼT Ẽ ẼT Ẽ

]

. (21)

Standard manipulations based on these expressions lead to

[
Ỹ TX̃ ˜A (δ )Ỹ

C̃r(δ )Ỹ

]

=





T̃ Ã(δ )Ỹ T̃ T T̃ Ã(δ )
X̃ Ã(δ )Ỹ T̃ T X̃ Ã(δ )

C̃r(δ )Ỹ T̃ T C̃r(δ )





+





0 T̃ B̃

Ũ X̃B̃

0 Drc(δ )





[
AK BK

CK DK

][
Ṽ T T̃ T 0

C̃Ỹ T̃ T C̃

]

. (22)

The first important observation at this point is that the term

T̃ Ã(δ )Ỹ T̃ T is affine in the matrix variables Y,P and Π, as is

visible from

T̃ Ã(δ )Ỹ T̃ T =

[
AY Π̃B̃r(δ )−AΠ
0 PAe(δ )

]

. (23)

The remaining bilinear term X̃Ã(δ )Ỹ T̃ T can in fact be

absorbed into the transformed controller parameters in a

similar way to the usual technique, thanks to the fact that

T̃ B̃ = B̃. A standard adaptation, however, will lead to a

parameter dependence in the controller to be synthesized

due to the parameter dependence of Ã. The second crucial

observation is that this problem can in fact be avoided by

decomposing X̃Ã(δ )Ỹ T̃ T into two parts identified as

X̃ Ã(δ )Ỹ T̃ T =
[

X̃ ĨT AY −X̃ ĨT AΠ
]
+

[
0 X̃ B̃r(δ )

]
. (24)

Absorbing the parameter-independent part into the trans-

formed controller parameters as

[
J̃ −Ψ̃ M̃

N −Γ D

]

,

[
X̃ ĨT AY −X̃ ĨT AΠ 0

0 0 0

]

+

[
Ũ X̃ B̃

0 I

][
AK BK

CK DK

][
Ṽ T Π̃T Ṽ T ẼT P 0

C̃Ỹ Π̃T C̃Ỹ ẼT P I

]

, (25)

we arrive at the following solution for the robust disturbance

attenuation problem considered in this paper:
Theorem 1: There exists an LTI controller that solves

the robust generalized asymptotic regulation problem for-
mulated in Section II, if there exist Y = Y T ∈ R

k×k, X̃ =
X̃T ∈ R

(k+l)×(k+l),P = PT ∈ R
l×l ,Π ∈ R

k×l ,Γ ∈ R
n×l, J̃ ∈

R
(k+l)×k,Ψ̃ ∈ R

(k+l)×l,M̃ ∈ R
(k+l)×m,N ∈ R

n×k and D ∈
R

n×m such that, for all δ ∈ R, we have

He





AY +BN+ρY Π̃Ã(δ )+ρΠ̃+BDC̃ Π̃B̃r(δ )−AΠ−BΓ
J̃+ρΠ̃T X̃Ã(δ )+M̃C̃+ρX̃ X̃ B̃r(δ )−Ψ̃+ρẼT P

0 PAe(δ )Ẽ +ρPẼ PAe(δ )+ρP



40,(26)







Y # # #

Π̃T X̃ +κ(δ )ẼT Ẽ # #

0 PẼ +κ(δ )Ẽ P+κ(δ )I #

Cr(δ )Y+Drc(δ )N C̃r(δ )+Drc(δ )DC̃ Λ(Π,Γ,δ ) κ(δ )I






≻0,(27)

where Ẽ , [0 Il ], Π̃ , [ I Π ], Λ(Π,Γ,δ ) , Dr(δ )−Cr(δ )Π−
Drc(δ )Γ and #’s represent the terms that can be identified
from symmetry. With ĨT and T̃ obtained as in (17) and
W̃ = I − X̃Ỹ , a controller that solves the problem can then
be constructed as
[

AK BK

CK DK

]

=

[
I −X̃ B̃

0 I

][

J̃−X̃ ĨT AY X̃ĨT AΠ−Ψ̃ M̃
N −Γ D

][
T̃−TW̃−1 0

−C̃ỸW̃−1 I

]

. (28)

Proof: We first note that (26)-(27) are the inequalities

obtained by expressing (13)-(14) in terms of the transformed

controller parameters and interchanging certain row/column

blocks. In order to finalize the proof, we only need to

construct a positive-definite X and an invertible Y , using

the matrix variables that satisfy (26)-(27). For this, it suffices

to choose an invertible Ũ and set Ṽ T = Ũ−1(I − X̃Ỹ ). We

then obtain S̃ = −Ũ−1X̃(I − X̃Ỹ )U−T , in terms of which

H̃ = S̃−1 +ŨT X̃−1Ũ becomes the suitable choice with which
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X is to be constructed. Note that in this case Y −1 can be

obtained explicitly as

Y
−1 =

[
0 T̃−1Ṽ−T

I −ỸṼ−T

]

.

A realization of K can then be obtained from the inverse of

the transformation in (25), which reads for Ũ = I as given

by (28). Different choices for Ũ in fact lead to different

realizations of the same controller. We finally note that if

any of P, X̃ or I− X̃Ỹ is not invertible, one can render them

nonsingular by introducing slight perturbations that will not

lead to the violation of the LMIs (together with a possible

change in the value of ρ).

Remark 2: The necessary and sufficient conditions for the

solvability of the nominal generalized asymptotic regula-

tion problem (i.e. for δ = 0) is obtained in [11] as the

existence of Π and Γ for which Π̃B̃r(0)− AΠ − BΓ = 0

and ‖Λ(Π,Γ,0)‖ < κ(0). We briefly note that, when these

conditions are satisfied, one can always find a solution to

(26)-(27). More clearly, we can then choose J̃ and Ψ̃ to

render the blocks they appear as zero. This allows us to

select P arbitrarily close to zero and magnify any X̃ that

satisfies (26) as X̃ → αX̃ with a sufficiently large α > 0 to

facilitate the solution of (27). We also note that, the result

of Theorem 1 is somewhat more preferable for the solution

of the nominal problem since it provides LMI conditions

without any equality constraints (cf. [11]).

Remark 3: For a multi-objective version of the problem

in which nr outputs ei are to be regulated according to the

profiles κi(·), Theorem 1 admits an immediate extension in

which we have (26) accompanied by nr constraints of the

form (27) expressed in terms of the system matrices and

κi(·) corresponding to the relevant outputs to be regulated.

As an example, we consider here imposing a generalized

regulation constraint on the control input u with a constant

profile σ . With the expression u = 0 · x + 0 · v + Iu, we can

easily adapt (12) to obtain






Y Π̃ 0 NT

Π̃T X̃ + σ ẼT Ẽ ẼT P+ σ ẼT C̃T DT

0 PẼ + σ Ẽ P+ σ I −ΓT

N DC̃ −Γ σ I






≻0, (29)

as the constraint to be added to (26) and (27) to also

guarantee that the peak of the control input stays below σ
in steady state. In fact, for a given regulation profile κ(·)
that is known to be achievable, it would be quite reasonable

to obtain a suitable controller by minimizing σ , so that the

control effort is also kept as small as possible in the sense

of steady-state peak minimization.

Remark 4: Conditions (26) and (27) read as infinitely

many matrix inequalities and hence are not per se tractable.

There are a variety of relaxations that can be applied to

replace them with finitely many conditions (see [24] and

the references therein). As far as the sinusoidal disturbance

attenuation problem is concerned, the uncertainty can simply

be described in the form of affine parameter dependence (i.e.

B̃1
r (δ ) = B̃1

r (δ ⊗ I) etc.). If, moreover, R is assumed to be a
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Fig. 1. Example designs and simulations: (a) Parameter trajectory and
the disturbance; (b) Outputs, (c) Bode magnitude plots of Ted for various
designs (K1:dashed, K2:solid, K3:dotted, K4:dash-dotted)

polytotic region identified by a set of vertices {δ 1, . . . ,δ q}
(i.e. R = {∑

q
j=1 α jδ

j : ∑
q
j=1 α j = 1,α j ≥ 0}), conditions (26)

and (27) are satisfied throughout R if and only if they are

satisfied for each δ j, j = 1, . . . ,q.

IV. ILLUSTRATIVE EXAMPLE

In this section, we consider a mass-spring damper system

whose dynamics are described by








ẋ1

ẋ2

ẋ3

ẋ4

e
y









=










0 1 0 0 0 0

− k1

m1
− b

m1

k1

m1

b
m1

0 1
m1

0 0 0 1 0 0
k1

m2

b
m2

− k1+k2

m2
− b

m2

k2

m2
− 1

m2

1 0 0 0 0 0
1 0 −1 0 0 0


















x1

x2

x3

x4

d
u









,

where the disturbance affecting the system is assumed to be

of the form d(t) = sin(ω0(1+δ (t))), δ (t)∈ [−β ,β ], as is the

first state of (2) for the initial condition v(0) = [0 −1 ]T . For

a set of parameters given by m1 = 2,m2 = 0.5,k1 = 100,k2 =
150,b = 10,ω0 = 4, we synthesized four different controllers

using the procedure of Theorem 1 for four different β
values β1 = 0.3, β2 = 0.2, β3 = 0.1 and β4 = 0.01. By favor

of the Yalmip ([16]) interface, we solved the optimization

problems in MATLABr with SeDuMi ([29]) and obtained

the minimum (parameter-independent) κ levels for the four

different parameter ranges respectively as κ1 = 0.3891, κ2 =
0.2550, κ3 = 0.1269 and κ4 = 0.0125. We observe significant

improvement if compared to the previous work [12]. The

transfer functions of the designed controllers are given by

K1 = −11688.37(s+499.9)(s−66.3)(s+7.709)(s+2.807)(s2+36.54s+981.5)

(s+23.14)(s+2.687)(s2−22.71s+1.544·104)(s2+247.2s+8.574·104)
,

K2 = −23422.68(s+428.2)(s−47.45)(s+7.842)(s+2.621)(s2+37.8s+1021)

(s+23.41)(s+2.524)(s2−152.1s+1.717·104)(s2+375.1s+9.859·104)
,
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K3 = −9952.33(s+440.9)(s−52.24)(s+7.754)(s+2.577)(s2+37.84s+985.4)
(s+22.12)(s+2.481)(s2−87.15s+1.265·104)(s2+244.3s+6.506·104)

,

K4 = −35464.00(s+306.7)(s−36.59)(s+8.113)(s+2.346)(s2+41.86s+1110)
(s−172.3)(s−98.96)(s+23.93)(s+2.278)(s2+424.1s+9.053·104)

.

For a disturbance input as in Figure 1-a, the outputs obtained

with these controllers (starting from x(0) = [0.1 0 0.1 0 ]T

and ξ (0) = 0) are presented in Figure 1-b. Note from

Figure 1-a that the uncertain parameter first remains as zero

for a while; then increases from its minimum value to its

maximum value with constant rate; afterwards starts switch-

ing between 0.4 and −0.4 with increasing frequency; and

finally shows a sinusoidal variation. Although the parameter

range is much larger than the ranges considered to design

the controllers, all of the controllers perform similarly well

and the regulation performance does not degrade undesirably

even when the parameter is close to its extreme values.

The performance of the controllers for constant parameter

trajectories can be analyzed based on the Bode magnitude

plots of the transfer function from the disturbance to the error

signal, which are displayed in Figure 1-c. The closed-loop

exhibit band-pass behavior as is evident from the magnitude

plots. Recall, however, that no theoretical guarantees can be

inferred from the Bode plots in the case of time-variation.

V. CONCLUDING REMARKS

We have developed a novel procedure for the synthesis of

an LTI controller that guarantees robust attenuation of non-

stationary sinusoidal disturbances. One can consider exten-

sions of the method based on enhanced (dilated) LMI charac-

terizations [1]. The proposed method provides performance

guarantees in contrast to ad-hoc loop-shaping procedures.

In fact, one can develop alternative loop-shaping procedures

based on the solution of the robust generalized asymptotic

regulation problem, in which the parameter-dependent atten-

uation profile would be the key ingredient. The challenge

then is to exploit any available bounds on the rates-of-

variation of the uncertain parameters to reduce the potential

conservatism in the design.
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