
Adaptive Robust Control of a Class of Uncertain Nonlinear Systems

with Unknown Sinusoidal Disturbances

Xiangbin Liu†‡, Hongye Su†, Bin Yao§ and Jian Chu†

Abstract— In this paper, nonlinear observers are incorpo-
rated into the discontinuous projection based adaptive robust
control (ARC) to synthesize performance oriented controllers
for a class of uncertain nonlinear systems with unknown
sinusoidal disturbances. In addition to magnitudes and phases,
frequencies of the sinusoidal disturbances need not to be known
as well, so long as the overall order is known. A nonlinear
observer is constructed to eliminate the effect of unknown sinu-
soidal disturbances to improve the steady-state output tracking
performance – asymptotic output tracking is achieved when the
system is subjected to unknown sinusoidal disturbance only.
The discontinuous projection based adaptation law is used to
obtain robust estimate of all unknown parameters. In addition,
a dynamic normalization signal is introduced to construct
adaptive robust control laws to effectively deal with various
uncertainties for a guaranteed robust performance in general.
Compared with the existing internal model principle based
robust adaptive designs for unknown sinusoidal disturbances,
the model uncertainties considered in the paper can be of
unmatched. Furthermore, in the presence of other disturbances
and uncertainties in addition to the sinusoidal disturbances,
the proposed approach achieves a guaranteed output tracking
robust performance in terms of both the transient and the
steady-state, as opposed to the robust stability results of the
existing internal model principle based designs.

I. INTRODUCTION

One of the key ingredients in controller designs is how to

effectively deal with uncertainties and disturbances to maxi-

mize the achievable closed-loop control performance. Adap-

tive control and robust control are two popular approaches

among various control designs for uncertain nonlinear sys-

tems. In general, adaptive control uses certain parameter

adaptation laws and certainty equivalence principle based

control law designs to gradually eliminate the impact of

unknown constant parameters – asymptotic output tracking

can be achieved even in the presence of unknown system

parameters [1]. However, the drawback of such an approach

is its poor transient performance, which becomes an obstacle

for its adoption in practical applications. Whereas, robust

control aims at uncertainties without any structural informa-

tion. By virtue of finding some known functions to bound

the uncertain/disturbance signals, certain control laws can

be synthesized to stabilize the uncertain systems without any
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attempt to learn from past control actions to gradually reduce

the degree of uncertainties [2]. Hence, the resulting control

performance is rather conservative.

The more information we have about uncertain-

ties/disturbances, the better control performance we might

be able to achieve. For the uncertainties or disturbances with

known structural information, the observer/nonlinear ob-

server with the estimate error dynamics being exp-ISS/ISpS

can be used to estimate such signals for a better control

performance [4]. For periodic signals with known period, tra-

ditional parameter adaptation or learning/repetitive controls

can be used to relatively painlessly solve the problem [10].

For unbiased sinusoidal signals generated by exosystems

with known order but unknown frequencies, the internal

model principle can be used to estimate the sinusoidal

signal for asymptotic output tracking [5], [11], [7]. However,

these internal model principle based methods assume that

the systems have no other uncertainties or disturbances

at all other than the unknown sinusoidal signals and/or

constant unknown parameters. In practice, systems may be

subjected to both unknown sinusoidal signals and other types

of uncertainties and disturbances. In [6], using the same

modification techniques as in the traditional robust adaptive

controls, Niki f orov also presented a robustified version of

[5] to bounded disturbances. Output feedback versions of

the problem are studied in [8].

In this paper, the nonlinear observer in [6] is incorporated

into the discontinuous projection based adaptive robust con-

trol(ARC) [3] to synthesize performance oriented controllers

for a class of uncertain nonlinear systems with unknown si-

nusoidal disturbances. In addition to magnitudes and phases,

frequencies of the sinusoidal disturbances need not to be

known as well, so long as the overall order is known.

A nonlinear observer is constructed to eliminate the effect

of unknown sinusoidal disturbances to improve the steady-

state output tracking performance – asymptotic output track-

ing is achieved when the system is subjected to unknown

sinusoidal disturbance only. The discontinuous projection

based adaptation law is used to obtain robust estimate of all

unknown parameters. In addition, a dynamic normalization

signal is introduced to construct adaptive robust control laws

to effectively deal with various uncertainties for a guaranteed

robust performance in general. Compared with the existing

internal model principle based robust adaptive designs [6],

[11], [7], the model uncertainties considered in the paper

can be of unmatched. Furthermore, in the presence of other

uncertainties in addition to the sinusoidal disturbances, the

proposed approach achieves a guaranteed output tracking
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robust performance in terms of both the transient and the

steady-state.

II. PROBLEM FORMULATION

Consider a class of the single-input-single-output uncertain

nonlinear systems described by

ẋi = xi+1 +φi(x̄i)µ +∆i(x,µ,u, t),1 ≤ i ≤ n−1,
ẋn = u+φn(x)µ +∆n(x,µ,u, t),
y = x1

(1)

where x̄i = [x1, · · · ,xi]
T , x = [x1, · · · ,xn]

T ∈ R
n are system

states. u ∈ R and y ∈ R are the control input and the output,

respectively. φi(x̄i), i = 1, · · · ,n, is a known smooth nonlinear

function. ∆i(x,µ,u, t), i = 1, · · · ,n, is a lumped unknown

nonlinear function. µ represents the unknown sinusoidal

disturbances, generated from an unknown exosystem given

by
ω̇ = Sω,
µ = LT ω

(2)

in which we know nothing about exosystem matrix S and

vector L except the order or dimension of (2), i.e., ω ∈ R
s,

where s is a known number.

It is worth pointing out that, as opposed to the matched

sinusoidal disturbances assumed in [6], [7], [8], the uncertain

nonlinearities ∆i(x,µ,u, t) and the unknown sinusoidal dis-

turbances µ in (1) are unmatched. The following assumptions

are made.

Assumption 1: The extent of parametric uncertainties and

uncertain nonlinearities are known, i.e., ∀i,

∆i ∈ Ω∆i , {∆i : |∆i(x,µ,u, t)| ≤ δi(x̄i)} (3)

where δi(x̄i) is a known function in which | · | denotes the

Euclidean norm.

Assumption 2: The eigenvalues of S are with zero real

parts and distinct, i.e., the exosystem is assumed to be

neutrally stable, and {S,LT} of the unknown exosystem (2)

observable. The signal µ is unaccessible to measurement.

Let yd(t) be the desired output trajectory, which is as-

sumed to be known, bounded with derivatives up to nth

orders. The control objective is to construct a control input

u to make the output y(t) track yd(t) with a prescribed

accuracy in spite of various uncertainties. In addition, when

∆i(x,µ,u, t) = 0,1≤ i≤ n, asymptotic output tracking should

be achieved.

III. UNKNOWN SINUSOIDAL DISTURBANCE

ESTIMATION

Motivated by [6] and [7], we use internal model principle

to re-parameterize (2) for µ since {S,LT} in (2) are unknown.

The following lemma, which is proved in [5], will be used

in the subsequent ARC controller design.

Lemma 1: 1 For the sinusoidal disturbances generated by

(2), consider the dynamic system

η̇ = Mη +Nµ (4)

1see [5], Lemma 3.1

where η ∈ R
s is the state and µ is the input, and the pair

{M,N} is controllable. Then for any M ∈R
s×s being Hurwitz

matrix, there exists a unique constant vector ψ ∈R
s such that

the signal µ can be presented in the following form,

µ = ψT (η + εµ) (5)

where the vector εµ satisfies the following equation,

ε̇µ = Mεµ (6)

with the initial condition εµ(0) = T ω(0)− η(0), and the

matrix T is the solution of Sylvester equation T S−MT =
NLT . ♦

Through Lemma 1, the signal µ can be obtained by

estimating the unknown constant vector ψ .

Assumption 3: The extent of ψ ∈ R
s is known, i.e.,

ψ ∈ Ωψ , {ψ : ψmin ≤ ψ ≤ ψmax} (7)

where ψmin and ψmax are known vectors.

Assumption 4: There exists a vector of functions h(x1) :

R −→ R
s, such that

dh(x1)
dx1

φ1 = N.

Since µ and η are unaccessible to measurement in practice,

we construct an observer based on internal model principle

as

ξ̇ = Mξ +Mh(x1)−
dh(x1)

dx1
x2 (8)

The biased error is defined by

εη = η −ξ −h(x1) (9)

Considering the Assumption 4, the derivative of εη is

computed as

ε̇η = Mη +Nµ − [Mξ +Mh(x1)−
dh(x1)

dx1
x2]

− dh(x1)
dx1

[x2 +φ1(x1)µ +∆1(x,µ,u, t)]

= Mεη + ∆̄

(10)

where ∆̄ = − dh(x1)
dx1

∆1(x,µ,u, t). By virtue of (5), (9), (6)

and (10), the unknown sinusoidal disturbances can also be

represented by

µ = ψT [ξ +h(x1)+ ε] (11)

where the estimation error ε = εµ + εη , ε is generated by

ε̇ = Mε + ∆̄ (12)

Remark 1: It should be noted that though the above

observer design is based on that in [6] and the resulting

observer error dynamics (12) are also similar in form,

there are actually some fundamental differences between the

two. Namely, the uncertain nonlinearity ∆̄ in (12) could be

unbounded since ∆1 is assumed to be bounded by a known

function of state only, while the uncertainty ∆ in Theorem 1

in [6] is assumed to be bounded.

Since M is a Hurwitz matrix, the unperturbed system of

(12) is exponentially stable. Furthermore, let the matrix P > 0

be the solution to the following Lyapunov equation

MP+PMT = −I (13)
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Define a non-negative function as

Vε(ε) = εT Pε (14)

Then, we have

γ1(|ε|) ≤Vε(ε) ≤ γ2(|ε|), ∀ε ∈ R
s, (15)

where γ1(|ε|) = λmin(P)|ε|2 and γ2(|ε|) = λmax(P)|ε|2. Not-

ing Assumption 1, from (12), the derivative of Vε(ε) satisfies

V̇ε ≤ −|ε|2 +2|ε|λmax(P)(|∆̄|)

≤ −cλmax(P)|ε|2 + λ 2
max(P)

1−cλmax(P) (|∆̄|)
2 (16)

where 0 < c < 1
λmax(P) . Viewing the Assumption 1, |∆̄| ≤

| dh(x1)
dx1

|δ1(x1). Thus there exist a known class K∞ function

γε(|x1|) and a known positive constant d such that γε(|x1|)+

d ≥ λ 2
max(P)

1−cλmax(P) (|
dh(x1)

dx1
|δ1(x1))

2. Thus (16) becomes

V̇ε(ε) ≤−cVε(ε)+ γε(|x1|)+d (17)

Lemma 2: 2 For any constants c̄∈ (0,c), any initial condi-

tion ε(0) and r0 = r(0) > 0 and any function γ̄(x1)≥ γε(|x1|),
let r be a dynamic signal generated by

ṙ = −c̄r + γ̄(x1)+d (18)

If (17) hold, the for any initial condition ε(0), there exists

a finite T 0 = T 0(c̄,r0,ε(0))≥ 0, a nonnegative function D(t)
defined for all t ≥ 0 and such that D(t) = 0 for all t ≥ T 0

and

Vε ≤ r(t)+D(t) (19)

for all t ≥ 0 where the solutions are defined. it follows that

|ε(t)| ≤ γ−1
1 (2r(t))+ γ−1

1 (2D(t)) (20)

IV. DISCONTINUOUS PROJECTION-BASED ARC

BACKSTEPPING DESIGN

A. Parameter projection

In viewing (12), when ∆1 = 0 (i.e., in the absence of

uncertain nonlinearity), the unknown sinusoidal signal µ
can be recovered through the observer (8) if the constant

vector ψ is known. As ψ is unknown, in the following,

we use discontinuous projection type adaptation law [3] to

estimate it on-line in order to recover the unknown sinusoidal

disturbances µ . Specifically, let ψ̂ denote the estimate of

ψ and ψ̃ the estimation error (i.e. ψ̃ = ψ̂ − ψ). Under

Assumption 3, the following discontinuous projection type

adaptation law can be used,

˙̂ψ = Projψ̂(Γν) (21)

where Γ > 0 is a diagonal matrix, ν is an adaption function

to be synthesized later. The projection mapping Pro jψ̂(•) =
[Pro jψ̂1

(•1), · · · ,Pro jψ̂s
(•s)]

T is defined as

Projψ̂i
(•i) =







0 if ψ̂i = ψimax and •i > 0

0 if ψ̂i = ψimin and •i < 0

•i otherwise

(22)

2see [9], Lemma 3.1

It can be shown that for any adaptation function ν , the

projection mapping used in (22) guarantees

P1 ψ̂ ∈ Ωψ , {ψ̂ : ψmin ≤ ψ̂ ≤ ψmax}
P2 ψ̃T [Γ−1Projψ̂(Γν)−ν ] ≤ 0, ∀ν

(23)

B. ARC Controller design

In this paper, the observer (8) is incorporated into the ARC

backstepping design [3] to synthesize performance oriented

robust controllers for the system (1) in the presence of both

the unknown sinusoidal disturbances µ and the uncertain

nonlinearities ∆i, i = 1, . . . ,n. The details are given below.

Step 1 For the control objective, we define output tracking

error as z1 = y− yd . In view of the first equation in (1) and

the unknown sinusoidal signal (11), the derivative of z1 is

ż1 = x2 +φ1(x1)ψ
T [ξ +h(x1)+ ε]

+∆1(x,µ,u, t)− ẏd
(24)

In (24), by viewing x2 = z2 + α1 as a virtual control. We

choose the desired control function α1 as

α1 = α1a +α1s,
α1s = α1s1 +α1s2

(25)

where α1a is the adjustable model compensation given by

α1a = ẏd −φ1(x1)ψ̂
T [ξ +h(x1)] (26)

and α1s is the robust control law having the following form,

α1s = α1s1 +α1s2,
α1s1 = −k1sz1

(27)

where k1s > 0 is a nonlinear feedback gain which will be

synthesized according to Theorem 1. α1s2 is a robust perfor-

mance control term satisfying the following two conditions

(i) z1{α1s2 −φ1(x1)ψ̃
T [ξ +h(x1)]

+φ1(x1)ψ
T ε +∆1(x,µ,u, t)} ≤ ε1(1+ρ2),

(ii) z1α1s2 ≤ 0

(28)

where ε1 > 0 is a design parameter according to desired

performance, and ρ = γ−1
1 (2D(t)). With the above control

function, the derivative of output tracking error z1 is

ż1 = z2 − k1sz1 +α1s2 −φ1(x1)ψ̃
T [ξ +h(x1)]

+φ1(x1)ψ
T ε + ∆̃1(x,µ,u, t)

(29)

where ∆̃1 = ∆1.

Define a positive semi-definite(p.s.d.) function V1 = 1
2
z2

1,

its time derivative satisfies

V̇1 = z1z2 − k1sz
2
1 + z1{α1s2 −φ1(x1)ψ̃

T [ξ +h(x1)]
+φ1(x1)ψ

T ε + ∆̃1(x,µ,u, t)}
(30)

Define ψim̄ = max{|ψimin|, |ψimax|}, and ψM̄ =
[ψ1m̄, · · · ,ψsm̄]T

Noting the Assumption 1 and 3 and the upper bounding

functions of ε in (20), we have the following inequality,

z1{α1s2 −φ1(x1)ψ̃
T [ξ +h(x1)]

+φ1(x1)ψ
T ε + ∆̃1(x,µ,u, t)}

≤ z1α1s2 + |z1|{|φ1(x1)||ψM||ξ +h(x1)|

+|φ1(x1)||ψM̄|[γ−1
1 (2r(t))+ γ−1

1 (2D(t))]+ δ̃1}

(31)
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where ψM = ψmax −ψmin.

Let h1 be a known bounding function satisfying

h1 ≥ |φ1(x1)||ψM||ξ +h(x1)|

+|φ1(x1)||ψM̄|γ−1
1 (2r(t))+ δ̃1

(32)

then one example of α1s2 satisfying (28) is given by

α1s2 = −
1

4ε1
[h2

1 + |φ1(x1)|
2|ψM̄|2]z1 (33)

By substituting (33) into (31) and using the completion of

squares technique, we have (i) of the two conditions (28).

Step i (2 ≤ i ≤ (n− 1)) In i step, let αi be the desired

control function for the virtual control input xi+1 such that xi

tracks its desired ARC control law αi−1 at step i−1. Denote

the tracking error at step i as zi = xi −αi−1 and recursively

define the following functions,

Vi = Vi−1 + 1
2
z2

i

∆̃i = −∑i−1
k=1

∂αi−1

∂xk
∆k +∆i

φ̄i = −∑i−1
k=1

∂αi−1

∂xk
φk +φi

(34)

Noting (1) and (11), the derivative of zi is

żi = xi+1 + φ̄i(x̄i)ψ
T [ξ +h(x1)+ ε]+ ∆̃i(x,µ,u, t)

−∑i−1
k=1

∂αi−1

∂xk
xk+1 −

∂αi−1

∂ t
−

∂αi−1

∂ r(t) ṙ(t)

−
∂αi−1

∂ξ
ξ̇ −

∂αi−1

∂ψ̂
˙̂ψ

(35)

Let xi+1 = zi+1 +αi and the desired control function αi as

αi = αia +αis1 +αis2,

αia = −zi−1 − φ̄i(x̄i)ψ̂
T [ξ +h(x1)]+∑i−1

k=1
∂αi−1

∂xk
xk+1

+
∂αi−1

∂ t
+

∂αi−1

∂ξ
ξ̇ +

∂αi−1

∂ r(t) ṙ(t),

αis1 = −kiszi,kis > 0
(36)

kis which will be designed according to Theorem 1 and αis2

satisfies the following conditions,

(i)zi{αis2 − φ̄i(x̄i)ψ̃
T [ξ +h(x1)]

+φ̄i(x̄i)ψ
T ε + ∆̃i(x,µ,u, t)} ≤ εi(1+ρ2),

(ii)ziαis2 ≤ 0

(37)

where εi > 0 is design parameter according to desired per-

formance.

Noting (35) and (36), the derivative of augmented positive

semi-definition(p.s.d.) function Vi = Vi−1 + 1
2
z2

i satisfies

V̇i = zizi+1 +∑i
k=1{−kksz

2
k

+zk(αks2 − φ̄k(x̄k)ψ̃
T [ξ +h(x1)]

+φ̄k(x̄k)ψ
T ε + ∆̃k(x,µ,u, t))− zk

∂αk−1

∂ψ̂
˙̂ψ}

(38)

In view of Assumption 1 and 3, (20) and |∆̃i| ≤ δ̃i ,

∑i−1
k=1 |

∂αi−1

∂xk
|δk +δi, we have the following inequality

zi{αis2 − φ̄i(x̄i)ψ̃
T [ξ +h(x1)]+ φ̄i(x̄i)ψ

T ε + ∆̃i(x,µ,u, t)}
≤ ziαis2 + |zi||φ̄i(x̄i)||ψM||[ξ +h(x1)]|

+|zi||φ̄i(x̄i)||ψM̄||[γ−1
1 (2r(t))+ γ−1

1 (2D(t))]+ |zi|δ̃i

(39)

Let hi be any smooth function satisfying

hi ≥ |φ̄i(x̄i)||ψM||ξ +h(x1)|+ |φ̄i(x̄i)||ψM̄|γ−1
1 (2r(t))+ δ̃i

(40)

then one example of αis2 satisfying (37) can be designed as

αis2 = −
1

4εi

[h2
i + |φ̄i(x̄i)|

2|ψM̄|2]zi (41)

By substituting (41) into (39) and using the completion

square technique, we have (i) of the two conditions (37).

Step n Let u = xn+1, and noting (1) and (11), the derivative

of zn = xn −αn−1 is

żn = u+ φ̄n(x)ψ
T (ξ +h(x1)+ ε)−∑n−1

k=1
∂αn−1

∂xk
xk+1

+∆n(x,µ,u, t)−∑n−1
k=1

∂αn−1

∂xk
∆k −

∂αn−1

∂ t

−
∂αn−1

∂ r(t) ṙ(t)−
∂αn−1

∂ξ
ξ̇ −

∂αn−1

∂ψ̂
˙̂ψ

(42)

Let u = αn and αn is given as

αn = αna +αns,

αna = −zn−1 − φ̄nψ̂T (ξ +h(x1))+∑n−1
k=1

∂αn−1

∂xk
xk+1

+
∂αn−1

∂ t
+

∂αn−1

∂ r(t) ṙ(t)+
∂αn−1

∂ξ
ξ̇ ,

αns = αns1 +αns2,
αns1 = −knszn,

kns ≥ 0, cn ≥ 0
(43)

where kns will be designed according to Theorem 1.

αns2 satisfies the following two conditions,

(i)zn{αns2 − φ̄n(x̄n)ψ̃
T [ξ +h(x1)]

+φ̄n(x̄n)ψ
T ε + ∆̃n(x,µ,u, t)} ≤ εn(1+ρ2),

(ii)znαns2 ≤ 0

(44)

where εn > 0 is design parameter according to desired

performance.

Substituting (43) into (42), we have

żn = −zn−1 − knszn +αns2 − φ̄nψ̃T [ξ +h(x1)]

+φ̄nψT ε + ∆̃n(x,µ,u, t)−
∂αi−1

∂ψ̂
˙̂ψ

(45)

From (45) and (43), the derivative of augmented positive

semi-definition(p.s.d.) function Vn = Vn−1 + 1
2
z2

n is

V̇n = ∑n
k=1{−kksz

2
k + zk[αks2 − φ̄k(x)ψ̃

T (ξ +h(x1))

+φ̄k(x)ψ
T ε + ∆̃k(x,µ,u, t)]−

∂αk−1

∂ψ̂
˙̂ψzk}

(46)

From Assumption 1, 3 and the estimation error in (20),

the following inequality is achieved,

[αns2 − φ̄nψ̃T (ξ +h(x1))+ φ̄nψT ε + ∆̃n(x,µ,u, t)]zn

≤ znαns2 + |zn||φ̄n||ψM||(ξ +h(x1))|

+|zn||φ̄n||ψM̄|[γ−1
1 (2r(t))+ γ−1

1 (2D(t))]+ |zn|δ̃n

(47)

Let hn be bounded functions Satisfying

hn ≥ |φ̄n||ψM||ξ +h(x1)|+ |φ̄n||ψM̄|γ−1
1 (2r(t))+ δ̃n (48)

and the examples of αns2 can be chosen as

αns2 = −
1

4εn

{h2
n + |φ̄n|

2|ψM̄|2}zn (49)

Substituting (49) into (47) and using completing squares

technique, we have (i) of the two conditions (44).

Theorem 1: Consider the system (1) subjected to the

Assumptions 1−4, and the adaptive robust controller which
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consists of the control law (43) and the adaptation law (21),

in which the ν is chosen as

ν = ∑n
k=1 φ̄k(x̄k)[ξ +h(x1)]zk (50)

and the observer (8). Let kis ≥ gi + |
∂αi−1

∂ψ̂ Cψi|
2 + |Cφ iΓφ̄i[ξ +

h(x1)]|
2 + cψ |φ̄i(x̄i)|

2, where gi > 0,cψ > 0, Cφ i and Cψi are

positive-definite constant diagonal matrices. The cψ ji and

cφki are the ith diagonal elements of the diagonal matrices

Cψ j and Cφk, respectively. If the controller parameters Cψ j

and Cφk are chosen such that c2
φki ≥

n
4 ∑n

j=2 1/c2
ψ ji, we have

A. The control input and all internal signals are bounded.

Vn is bounded by

Vn(t) ≤ Vn(0)e−λnt + εsum

λn
[1− e−λnt ]

+ εsum

λn

∫ t
0 e−λn(t−τ)ρ2dτ

(51)

where λn = 2 min{g1, · · · ,gn}, εsum = ∑
j=n
j=1 ε j. Noting that

ρ = 0 for t ≥ T 0, Vn is ultimately bounded by

Vn(∞) ≤
εsum

λn

(52)

B. If after a finite time t f , ∆i = 0, i.e., in the presence

of unknown sinusoidal disturbances only, then, in addition

to results in A, asymptotic output tracking (or zero final

tracking error) is also achieved. ♦.

Proof: A: Note that zn+1 = 0, from (46), (38) and (30), we

have

V̇n = ∑n
k=1{−kksz

2
k + zk[αks2 − φ̄k(x)ψ̃

T (ξ +h(x1))

+φ̄k(x)ψ
T ε + ∆̃k(x,µ,u, t)]−

∂αk−1

∂ψ̂
˙̂ψzk}

(53)

By completion of squares

−∑n
j=2 z j

∂α j−1

∂ψ̂
˙̂ψ ≤ ∑n

j=2 |z j||
∂α j−1

∂ψ̂ Cψ jC
−1
ψ j

˙̂ψ|

≤ ∑n
j=2(|

∂α j−1

∂ψ̂ Cψ j|
2z2

j +
1
4
|C−1

ψ j
˙̂ψ|2)

(54)

Noting that C−1
ψ j and Γ are diagonal matrices, from (21)

and (22), we have

∑n
j=2 |C

−1
ψ j

˙̂ψ|2 = ∑n
j=2 |C

−1
ψ j Projψ̂(Γν)|2

≤ n∑n
j=2(∑

n
k=1 |C

−1
ψ j Γφ̃k(x̄k)[ξ +h(x1)]|

2z2
k)

(55)

If Cψ j and Cφk satisfied the conditions in the theorem,

from (54) and (55),

−∑n
j=2 z j

∂α j−1

∂ψ̂
˙̂ψ

≤ ∑n
j=2 |

∂α j−1

∂ψ̂ Cψ j|
2z j

2

+∑n
k=1 |CφkΓφ̄k(x̄k)[ξ +h(x1)]|

2z2
k

(56)

From (56) and the (i) of (28), (37) and (44), which readily

leads to (51). Then, the boundedness of z = [z1, · · · ,zn]
T can

be proved. Since yd is assumed to be a bounded signal

with bounded derivatives up to nth order, together with

Assumption 1, the backstepping designs [3] can prove that

all internal signals are globally uniformly bounded . The

boundedness of state x and (17) guarantee η , ε , r and ξ
bounded. Then, all the intermediate control functions αi are

bounded. From (42) and (43), u is bounded.

B: Omitted, reader can refer to [4]. ¥.

V. SIMULATION

To illustrate the proposed ARC scheme, this section con-

siders the following specific system

ẋ1 = x2 + 1

1+x2
1

µ +∆1,

ẋ2 = u
(57)

where µ is an unknown sinusoidal disturbance generated by

ω̇ =

[

0 −1

1 0

]

ω,

µ = [1 0]ω
(58)

and ∆1 is an unknown bounded uncertainty. The µ is shown

in unmatched form which can not be applied by Niki f orov’s

method in [6]. We take ∆1(t) = 0.6sin(2t) which bound is

δ1 = 0.8.

According to Lemma 1, Let

M =

[

−2 0

0 −6

]

(59)

and the nonlinear vector function h(x1) = [x1 +
x3

1
3
,2x1 +

2x3
1

3
]T

which satisfies the Assumption 4.

µ can be replaced by ( 11 ) where ξ is generated by (8)

and vector ψ is [−1.25 4.625]T and the bounds describing

its corresponding elements are ψ1 ∈ [−2,−1] and ψ2 ∈ [4,5].
The estimation error dynamics is

ε̇ = Mε −
dh(x1)

dx1
∆1 (60)

Let Vε(ε) = εT ε and γ1(|ε|) = γ2(|ε|) = εT ε . From (60), the

derivative of the Vε is computed as

V̇ε ≤ −2Vε +0.64(x4
1 +2x2

1)+1 (61)

It is thus clear that (16) is satisfied with c0 = 2, γ3(|x1|) =
0.64(x4

1 +2x2
1) and d0 = 1.

According to Lemma 2, a dynamic normalization signal r

is generated by (5):

ṙ = −r +0.64(x4
1 +2x2

1)+1,r(0) = r0 (62)

Define a nonnegative function

D = max{0,Vε(ε(0))exp(−2t)− r(0)exp(−t)} (63)

It is easy to verify that there exist a finite T 0
0 , and such that

D = 0 for all t > T 0
0 and

Vε ≤ r +D (64)

which agrees with Lemma 1.

From definition of Vε and (64), then ε is bounded by

|ε| ≤ (r +D)
1
2 ≤ (2r)

1
2 +(2D)

1
2 (65)

which agrees with (20).

Step 1: We can construct the desired ARC controller

for the first measured state equation according to section

4 as (25),(26),(27), where g1 > 0, cψ > 0 and φ̄1 = φ1 =
1

1+x2
1

. Noting (32), we choose h1 ≥ |φ̄1||ψM||ξ + h(x1)|+

|φ̄1||ψM̄|γ−1
1 (2r)+δ1, where γ−1

1 (2r) = (2r)
1
2 ,
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Step 2: The desired ARC controller u for the simulation

nonlinear system is synthesized as (43), where g2 > 0 and

φ̄2 = − ∂α1
∂x1

φ1. Noting (48), we choose h2 ≥ |φ̄2||ψM||ξ +

h(x1)|+ |φ̄2||ψM̄|γ−1
1 (2rε)+ δ̃2. where δ̃2 = | ∂α1

∂x1
|δ1.

The parameter adaptation law is given by

˙̂ψ = Projψ̂(Γν),

ν = φ̄1[ξ +h(x1)]z1 + φ̄2[ξ +h(x1)]z2
(66)

The design parameters and initial conditions for the pro-

posed ARC are as follows:

r(0) = 0.2,x1(0) = x2(0) = 0, ψ̂1 = −1.5,cψ = 0.1,
ψ̂2 = 3.5,ξ1 = ξ2 = 0,g1 = g2 = 10,ε1 = 30,ε2 = 300,

Cφ1 =

[

1 0

0 1

]

,Cφ2 =

[

0.25 0

0 0.25

]

,

Cψ2 =

[

2 0

0 2

]

,Γ =

[

1 0

0 1

]

(67)

Let desired trajectory xd = 0.5(1−cos(1.4πt)). In order to

show the properties of the proposed ARC scheme, we will

consider the following two conditions to demonstrate them.

Case i: Without uncertain nonlinearities

The simulation is first run for the actual system with sinu-

soidal disturbances but without uncertain nonlinearities, i.e.,

letting ∆1 = 0 in (57), which corresponds to the ideal working

conditions. It is seen from the simulation results shown in

Figure 1 that the proposed extended ARC scheme has good

transient performance and final tracking accuracy – output

tracking error is small during the entire transient period

and converges to zero eventually. The unknown sinusoidal

disturbance estimate gradually converges to its true value as

well. The control input also is reasonable.

Case ii: With uncertain nonlinearities

The simulation is also run for the actual system subjected

to the sinusoidal disturbances and uncertain nonlinearities as

well, i.e., the system (57) with ∆1 = 0.6sin(2t). The initial

conditions for dynamic normalization signals are chosen as

r(0) = 0.2. The tracking error plot for the ARC scheme is

shown in Figures 2. The closed-loop system is stable and

the output tracking error is still kept small during the entire

transient period.

VI. CONCLUSIONS

In this paper, nonlinear observers are incorporated into

the discontinuous projection based adaptive robust control

(ARC) to synthesize performance oriented controllers for

a class of uncertain nonlinear systems with unknown si-

nusoidal disturbances. A nonlinear adaptive robust observer

is constructed to recover the unmeasured sinusoidal distur-

bances so that suitable model compensation can be con-

structed for a much improved steady-state output tracking

performance – asymptotic output tracking is achieved in the

presence of parametric uncertainties and unknown sinusoidal

disturbances. The discontinuous projection based adaptation

law is used to obtain robust estimate of all unknown param-

eters. A dynamic normalization signal is constructed so that

certain robust feedback can be used to dominate the estimate
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Fig. 1. Tracking errors in case i
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Fig. 2. Tracking errors in case ii

error effect for a guaranteed transient and steady-state output

tracking performance in general.
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