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Abstract— This work presents a procedure to construct a
finite abstraction of a controlled discrete-time stochastic hy-
brid system. The state space and the control space of the
original system are partitioned by finite lattices, according to
some refinement parameters. The errors introduced by the
abstraction procedure can be explicitly computed, over time,
given some continuity assumptions on the original model. We
show that the errors can be arbitrarily tuned by selecting the
partition accuracy. The obtained abstraction can be interpreted
as a controlled Markov set-Chain, and can be used both for
verification and control design purposes. We test the proposed
technique to analyze a model from systems biology.

I. INTRODUCTION

The dynamical analysis of complex, high-dimensional,
hybrid and stochastic models poses many challenges, both
at a theoretical and at a computational level. One relevant
methodology to tackle this issue is known as abstraction:
a “simpler” system with smaller state space (possibly fi-
nite), and equivalent to the original system, is searched for.
Equivalence is usually defined by the notions of language
equivalence and bisimulation [4]. Often though such (exact)
notions are quite restrictive, since they require a perfect
correspondence between the trajectories of the original sys-
tem and those of its abstraction. To address this potential
limitation, approximate notions of system equivalence [6],
[7], [10], [13], [14] have been recently developed to relax
the abstraction procedure. According to this approach, a
proper metric is introduced to quantify the distance between
the (trajectories of the) original system and (those of) the
approximation.

The present line of research looks at abstractions of
Hybrid Systems (HS), models known for their generality and
complexity. The contribution in [5] proposes an algorithm to
construct an approximate abstraction of a HS by means of a
timed automaton, which is a model with simpler continuous
dynamics. In [13] a notion of approximate bisimilarity is
proposed for the class of probabilistic models known as
“jump linear stochastic systems.”

In this work we provide new results on approximate
abstractions of discrete-time controlled stochastic hybrid
systems (dt-cSHS), which encompass a number of other
classes of stochastic hybrid systems (SHS). The recent work
in [1] has introduced an approximate abstraction for a class
of SHS, and formalized a computation of a bound on the
error associated with this abstraction. By reinterpreting the
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new model as a Markov set-Chain (MSC) [9], the authors
have investigated the asymptotic behavior of the original SHS
via that of the MSC. Furthermore, the work has proposed an
algorithm which, given a desired precision on the steady-state
error, finds an adequate refinement parameter and synthesizes
an abstraction according to that parameter. The present
contribution extends that in [1] in three directions. First, the
considered SHS model is more general. Second, the model
is control-dependent, which requires a specific partition of
the control space, and an integration of the errors on the
state and on the control. Third, the work derives explicit
bounds on the error between the transition probabilities
of the abstracted model and those of the original model
(considered over the regions of the partition) along time (and
in particular in steady-state). The abstraction can be used
both for verification purposes and control design tasks. This
work represents another step towards a formalization of the
notion of stochastic bisimulation, which is the ultimate goal
of this line of research.

The paper develops as follows. Section II introduces the
SHS model, namely the discrete-time, controlled SHS (dt-
cSHS). Section III recalls some results on MSC, which
will be utilized in the following. Section IV introduces the
abstraction procedure, which turns the original dt-cSHS into
a controlled MSC. Section V delves into the computation of
the errors associated to the abstraction. Finally, in section
VI we test the proposed abstraction technique on a model
drawn from biology, which describes the biosynthesis of the
antibiotic subtilin by the soil bacterium Bacillus subtilis. We
employ the abstraction framework to investigate its steady-
state.

II. DISCRETE-TIME CONTROLLED STOCHASTIC HYBRID
SYSTEMS

Definition 1: A discrete-time controlled stochastic hybrid
system is a tuple H = (S,A, Tq, Tt, Tr), where
• S := ∪i∈Q{i}×Di, is the hybrid state space, that con-

sists of a set of discrete states Q := {q1, q2, . . . , qm},
for some finite m ∈ N, and by a set of continuous
“domains” for each mode i ∈ Q, each of which is
defined to be a compact subset Di ⊂ Rn(i). The
function n : Q → N assigns to each i ∈ Q the
dimension of the continuous state space Rn(i);

• A is the control space, a continuous and compact Borel
subset of Rp;

• Tq : Q× S ×A → [0, 1] is a discrete stochastic kernel
(the “discrete transition kernel”) on Q, given S × A,
which assigns to each (q, x) ∈ S and a ∈ A, a discrete
probability distribution over Q: Tq(q|(q, x), a);

• Tt : B(D(·)) × S × A → [0, 1] is a Borel-measurable
stochastic kernel (the “continuous transition kernel”) on
D(·), given S × A, which assigns to each (q, x) ∈ S
and a ∈ A a probability measure on the Borel space
(Dq,B(Dq)): Tt(dx|(q, x), a);
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• Tr : B(D(·))×S×A×Q → [0, 1] is a Borel-measurable
stochastic kernel (the “reset kernel”) on D(·), given S×
A × Q, that assigns to each (q, x) ∈ S, a ∈ A, and
q′ ∈ Q, q′ 6= q, a probability measure on the Borel
space (D(q′),B(D(q′))): Tr(dx|(q, x), a, q′). �

The system initialization at the initial time (say k = 0)
may be specified by some probability measure π0 : B(S)→
[0, 1] on the Borel space (S,B(S)). Here B(S) is the σ-field
generated by the subsets of S of the form ∪q{q}×Bq , with
Bq denoting a Borel set in Dq .

The model is inspired by that in [3]. However, unlike
this last source, for the sole sake of simplicity we do not
distinguish between a control input acting on the discrete
dynamics or on the continuous ones. Moreover, this model
is an extension of the similar framework in [1] by the
introduction of the control set. Furthermore, in [1] the change
of mode depends on the verification of spatial conditions,
which are expressed as subsets of a domain of the hybrid
state space: for instance, gq,q′ ⊂ Dq denotes a spatial
condition associated with the change of discrete mode from
q to q′. Instead in this work the execution is allowed to
change domain (say, q) according to the probability law of
the discrete kernel Tq , which is defined on the whole domain
Dq . Notice that the spatial conditions in [1] may be obtained
by assuming that Tq has an indicator-like structure:

Tq(q′|(q, x), a) =
{

1, if (q, x) ∈ gq,q′ ,∀a ∈ A,
0, else, (1)

where, as in [1], gq,q′ ⊂ Dq . Notice that according to the
law Tq a “discrete event” may also be affected by the choice
of a particular control a ∈ A. We refer the reader to the
details contained in [3] for further insights on the model. Let
us report here the definition of finite and infinite execution
process, after introducing the concept of control feedback.

Definition 2: Given a dt-cSHS H, a control feedback for
H is a Borel measurable function ν : S → A, which
associates to each hybrid state s ∈ S a control action
ν(s) ∈ A. We denote by C the set of measurable functions
ν : S → A.
A vector of these control functions over a time horizon
[0, . . . , N ] is called policy, and belongs to CN+1. �

The control functions ν : S → A are assumed to be
deterministic, that is they are non-randomized. Also, notice
the Markov property for such control functions, i.e. their
dependence solely on the current value of the state.

Definition 3: Given a dt-cSHS H, an initial distribution
π0 and a control policy ν ∈ CN+1, an execution of H
is a stochastic process1 {s(k) = (q(k),x(k)) : ∀k =
0, . . . , N + 1, s(k) ∈ S} generated by the following
algorithm:

extract from S a value s0 = (q0, x0) for s(0), according to
the distribution π0;
for k = 0 to N ,

extract a value qk+1 ∈ Q for q(k + 1), according to
Tq(· |sk, ν(sk));

if qk+1 6= qk ∈ Q,

1In this work bold symbols denote (stochastic) processes, while a regular
typeset is used for points on the state space.

then extract a value xk+1 ∈ Dqk+1 for x(k + 1)
according to Tr(· |sk, ν(sk), qk+1);
else extract a value xk+1 ∈ Dqk+1 for x(k + 1),
according to Tt(· |sk, ν(sk));

end. �

It is understood that, when N =∞, the algorithm does not
terminate. We make use of the following shortened notation
for the probability kernels, where q, q′ ∈ Q, q 6= q′, s =
(q, x) ∈ S, a ∈ A:

T (ds|(q, x), a, q′) =

 Tq(q′|(q, x), a)Tt(dx|(q, x), a),

Tq(q′|(q, x), a)Tr(dx|(q, x), a, q′).

III. MARKOV SET-CHAINS

We recall here the concept of Markov set-Chain, which
in this paper is later leveraged to prove properties of the
abstraction. The results are from [9] and references therein.

Definition 4: [9, Definition 2.5] Let P,Q ∈ Rn×n be
nonnegative matrices (not necessarily stochastic) with P ≤
Q. We define a transition set as:

[P,Q]={A ∈ Rn×n : A is a stochastic matrix, P ≤ A ≤ Q}.

�

In the proceeding, we assume that the set [P,Q] 6= ∅.
When the “bounding matrices” will be clear by the con-
text, we will use the more compact notation [Π]. We can
define a Markov set-Chain as a non-homogeneous, discrete-
time Markov chain, where the transition probabilities vary
non-deterministically at each time step within the compact
transition set [Π]. More formally,

Definition 5: [9, Definition 2.5] Let [Π] be a transition
set, i.e. a compact set of n×n stochastic matrices. Consider
the set of all non-homogeneous Markov chains having all
their transition matrices in [Π]. We call the sequence

[Π], [Π]2, · · ·

a Markov set-Chain, where [Π]k is defined by induction as
the set of all possible products A1, · · · , Ak, such that ∀i =
1, · · · , k, Ai ∈ [Π].
Let [π0] be a compact set of 1× n stochastic vectors, as in
Definition 4. We call [π0] the initial distribution set. �

The compact set [πk] = [π0][Π]k is the k-th distribution set
and

[π0], [π0][Π], · · ·

is the Markov set-Chain with initial distribution set [π0].
It can be shown that each element [πk] is a convex polytope
if [π0] is a convex polytope and [Π] is a transition set.

Definition 6: [9, Definition 1.2] For any stochastic matrix
A, its coefficient of ergodicity is defined as follows:

T (A) =
1
2

max
i,j
||ai − aj ||,

where ai, aj are the i–th, j–th rows of A. �
It can be shown that the condition T (A) < 1, along with the
irreducibility of the chain, implies the existence of a unique
and invariant limiting distribution for the associated Markov
Chain [9]. The above definition can be directly extended to
Markov set-Chains:
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Definition 7: [9, Definition 3.1] For any transition set [Π],
its coefficient of ergodicity is defined as follows:

T ([Π]) = max
A∈[Π]

T (A).
�

Since T (·) is a continuous function and [Π] a compact set,
the corresponding maximum argument exists. Similar to the
simpler case of Markov chains, the quantity T ([Π]) ∈ [0, 1]
provides a measure of the “contractive” nature of the Markov
set-Chain: the smaller T ([Π]), the “more contractive” the
MSC. This will become clear when studying the asymptotic
properties of the MSC, and is related to the regularity
properties of the matrices that build up the MSC [9]. The
following notion connects to Definition 7:

Definition 8: [9, Definition 3.3] Let a MSC with transi-
tion set [Π] be given. Suppose r is a positive integer such
that T (A1 . . . Ar) < 1, ∀A1, · · · , Ar ∈ [Π]. Then [Π] is said
to be product scrambling and r its scrambling integer. �
We are interested in the minimum possible scrambling inte-
ger, since for any positive k, r, s ∈ N : k = r+s, T ([Π]k) ≤
T ([Π]r)T ([Π]s). For this reason, given a MSC [Π], it is
possible that T ([Π]) = 1, yet that there exists k > 1 such
that T ([Π]k) < 1. We now illustrate some results on the
convergence of MSC.

Theorem 1: [9, Theorem 3.4] Given a product scrambling
MSC with transition set [Π] and initial distribution set [π0],
there exists a unique limit set [π∞] that is an invariant, i.e.
such that [π∞][Π] = [π∞]. Thus

lim
k→∞

[πk] = lim
k→∞

[π0][Π]k = [π∞].

Moreover, let r be the scrambling integer. Then for any
positive integer k,

dh([πk], [π∞]) ≤ αβk, (2)

where α = [T ([Π]r)]−1dh([π0], [π∞]), β = T ([Π]r)
1
r < 1

and dh is the Hausdorff distance. �
Define the diameter of a compact set (referred to either
matrices or vectors) as

∆([Π]) = max
A,A′∈[Π]

||A−A′||.

The following result provides an upper bound for the diam-
eter of the limit set [π∞] when it exists.

Theorem 2: [9, Theorems 3.9, 3.11] Given a product
scrambling Markov set-Chain with transition set [Π] = [P,Q]
and such that T ([Π]) < 1, then

∆([π∞]) ≤ ∆([Π])
1− T ([Π])

≤ ||Q− P ||
1− T ([Π])

.
�

Notice that the results in Theorem 2 can be intuitively
extended to the case of ergodicity with finite scrambling
integer r > 1, by replacing T ([Π]) with T ([Π]r), and by
considering P,Q as the bounding matrices of [Π]r.

IV. ABSTRACTION PROCEDURE

The abstraction for state and control spaces proposed in
this work can be used with two possible goals (see section
V-A).

From a verification perspective, chosen a particular con-
tinuous control feedback over a continuous plant, we can
exploit a finite abstraction to verify properties of the original
system. It is desirable to claim that, in the limit as the
approximation error associated with the abstraction goes to
zero, the property to be verified is true on the original

system if and only if it is true on the abstraction [7]. In
this verification instance, we propose a Markov set-Chain
[9] as the abstraction framework for the original closed-loop
system.

On the other hand, from a design point of view, given
a continuous controllable plant we can obtain a finite ab-
straction over which we can synthesize a quantized control
feedback (e.g. using classical MDP algorithms [15]), while
guaranteeing that the closed-loop behavior of the original
system is close to that of the abstract system with a required
precision. In this case, we propose a controlled Markov set-
Chain (cMSC) [11] as the abstraction framework for the
original control system. This structure is equivalent to that of
Bounded-parameter Markov Decision Process (BMDP) [8].

In order to attain the convergence properties mentioned
above, it is necessary to enforce some continuity on the
dynamics of the dt-cSHS. Suppose that the continuous
stochastic kernels Tt, Tr admit densities t, r. Let us raise
the following conditions:

Assumption 1:
1) |Tq(q̄|s, a)−Tq(q̄|s′, a′)| ≤ Lq‖x−x′‖+Mq‖a−a′‖,

for all s = (q, x), s′ = (q, x′) ∈ Dq, a, a′ ∈ A and
q̄ ∈ Q;

2) |t(x̄|s, a)− t(x̄|s′, a′)| ≤ Lt‖x− x′‖+Mt‖a− a′‖,
for all s = (q, x), s′ = (q, x′) ∈ Dq, a, a′ ∈ A, and
(q, x̄) ∈ Dq;

3) |r(x̄|s, a, q̄)−r(x̄|s′, a′, q̄)| ≤ Lr‖x−x′‖+Mr‖a−a′‖,
for all s = (q, x), s′ = (q, x′) ∈ Dq, a, a′ ∈ A,
(q̄, x̄) ∈ Dq̄ , and q̄ ∈ Q, q̄ 6= q;

Lq, Lt, Lr,Mq,Mt,Mr are finite positive constants. �

Consider now any control feedback ν defined on the system
H. Let us raise the following additional continuity assump-
tion:

Assumption 2: For any control feedback ν ∈ C,

|ν(s)−ν(s′)| ≤ La‖x−x′‖,∀s = (q, x), s′ = (q, x′) ∈ Dq,

where La is a finite and positive constant. �

A. State Space Partition

Let us recall that Dq ⊂ Rn(q) is required to be a compact
set, for each q ∈ Q. We introduce a finite partition of the
hybrid state space S = ∪q∈Q{q}×Dq . For each q ∈ Q, such
a partition {Dq}δ is made up of non-overlapping subsets of
Dq and can be general in its shape. However it is usually
introduced as a uniform grid of width δ in Rn(q) ∩ Dq ,
where δ is the diameter of the partition, that is the maximum
distance between any two points in the same equivalence
class (i.e., in the same element of the partition). In the
following, unless otherwise stated, we will be working with
a uniform partition, parameterized by its diameter δ. The set
{S}δ =

⋃
q∈Q
{q}× {Dq}δ is then a partition of the whole S.

Given any s = (q, x) ∈ S there exists an element 〈s〉 ∈
{S}δ such that the point s ∈ 〈s〉. It is clear that any 〈s〉 ∈
{S}δ is a subset of the hybrid state space, i.e. 〈s〉 ⊆ S, and
that 〈s〉 belongs to only a single domain Dq . Let us select
any point s̄ = (q̄, x̄) ∈ 〈s〉 ⊆ S to be the representative point
of the set 〈s〉. For instance, we may select its centroid. The
following relates any point s with its representative one s̄,
within their equivalence class 〈s〉:

∀s ∈ S, ∃〈s〉 ∈ {S}δ : (s, s̄ ∈ 〈s〉)∧(q = q̄)∧(‖x−x̄‖ ≤ δ).
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Given any q ∈ Q and any subset W ⊆ Rn(q), we denote the
measure of the volume of W as λW = L(W ), where L is
the Lebesgue measure. λW is finite if W ⊆ Dq . The volume
of the hybrid state space is defined to be λS =

∑
q∈Q

λDq .

Since in this work a partition of Dq is defined as a grid of
width δ, then ∀s = (q, x) ∈ S, λ〈s〉 = δn(q). It follows that
the cardinality of the complete partition {S}δ is given by:

|{S}δ| =
∑
q∈Q

λDq

δn(q)
.

If we assume, for the sake of simplicity and without much
loss of generality, that ∀q ∈ Q, n(q) = n, then |{S}δ| = λS

δn .

B. Control Space Partition
Let A ⊂ Rp be a compact set: we introduce a finite

partition {A}η of the control space A by defining a grid
of width η of Rp ∩ A and its associated non-overlapping
sets, as it was illustrated above for S.

Given any point a ∈ A there exists an element of {A}η ,
which we denote as 〈a〉, such that a ∈ 〈a〉. Any element
〈a〉 ∈ {A}η is a subset of the control space, i.e. 〈a〉 ⊆ A.
Let ā ∈ A be a representative point of 〈a〉, e.g. its centroid.
The following holds on a, ā, 〈a〉:

∀a ∈ A, ∃〈a〉 ∈ {A}η : (a, ā ∈ 〈a〉) ∧ (‖a− ā‖ ≤ η).

As before, we define the volume of the control space as
λA, and the volume of each element of the control space
partition λ〈a〉 = ηp. The cardinality of {A}η is given by
|{A}η| = λA

ηp .

V. ERROR ANALYSIS OF THE ABSTRACTION

In this section, we quantify the precision of the abstraction
by providing a bound for the approximation error. This error
bound is associated to an interval which, along with the
transition probabilities computed on the partition, defines the
MSC. We also investigate the actual dynamics in time of
these errors, and show that, if the original system is ergodic,
it is possible to obtain at any point in time an abstraction
with arbitrary precision by tuning the parameters associated
with the partition.

Let us recall that for any hybrid state s = (q, x) ∈ S , we
denote with 〈s〉 the corresponding element in the state space
partition {S}δ , and with s̄ = (q, x̄) the representative point
of 〈s〉. For any control feedback ν : S → A and a partition
{A}η of A, we define the corresponding quantized control
feedback ν̄ : S → {A}η as follows: ∀s ∈ S, ν(s) = a ∈
A ⇒ ν̄(s) = ā ∈ {A}η . In particular, this quantization is
also applied on points s = s̄ ∈ {S}δ .

Given a hybrid state s = (q, x) ∈ S , a control feedback
ν : S → A, and any target set 〈s′〉 ∈ {S}δ , the main idea
is to approximate, for any k ≥ 0, the one-step transition
probability

p(s(k + 1) ∈ 〈s′〉 | s(k) = s, ν(s)), (3)

with the transition probability

p(s(k + 1) ∈ 〈s′〉 | s(k) = s̄, ν̄(s̄)). (4)

The computation of the above quantities involves the use
either of the continuous transition kernel Tt, or of the
continuous reset kernel Tr, depending on the mode selected
by the discrete distribution Tq . More generally, by selecting
a feedback policy ν over a k-step time horizon, we shall use

the notation pks,ν(〈s′〉). We will omit the apex in pk when
k = 1. We will study the probability of events for the dt-
cSHS by considering the control-dependent system defined
on the quotient spaces and induced by the partition.

A. Single step error
Let us start by selecting a hybrid state s = (q, x) ∈ S

and a control feedback ν. For any set 〈s′〉 ∈ S (and, in
particular, 〈s′〉 ∈ {S}δ), where s′ = (q′, x′), and assuming
that q′ = q ∈ Q, we can derive the following bound:

|ps,ν(s)(〈s′〉)− ps̄,ν̄(s̄)(〈s′〉)| ≤∣∣∣∣∣
∫
〈s′〉
T (dz|(q, x), ν(q, x), q′)−

∫
〈s′〉
T (dz|(q, x̄), ν̄(q, x̄), q′)

∣∣∣∣∣
≤ λ〈s′〉

(
(Mt +Mq)‖ν(q, x)− ν̄(q, x̄)‖

+ ((Lt + Lq) + La(Mt +Mq))‖x− x̄‖
)
.

A similar bound can be derived if instead it is the case that
s′ = (q′, x′), 〈s′〉 ⊆ Dq′ , q′ 6= q, by using the reset kernel Tr.
Let us introduce the new constants L = max{Lt +Lq, Lr +
Lq}, M = max{Mt+Mq,Mr +Mq}. Thus, in general, we
can state that, ∀s, s′ ∈ S, for any control feedback ν:

|ps,ν(s)(〈s′〉)− ps̄,ν̄(s̄)(〈s′〉)| (5)
≤ δn(Mη + (L+ LaM)δ) .= δnε.

By virtue of the state and control spaces partition procedure
(which is parameterized by the pair (δ, η)), and of the
computed error bound, it is possible to associate to the
dt-cSHS H a controlled MSC, call it [M], with transition
intensities ps̄,ν̄(s̄)(〈s′〉) and intervals given in (5).

B. Error dynamics
Recall the notations introduced above, ∀s0 ∈ S, 〈s〉 ∈

{S}δ and for any continuous control feedback ν ∈ C,
pks0,ν(〈s〉) denotes the k-step transition probability into 〈s〉,
starting from s0 and following policy ν. Instead, pks̄0,ν̄ is
the corresponding probability distribution over the spaces
{S}δ, {A}η , and is generated by the definition of the Markov
set-Chain [M]. As we previously discussed, the distribution
pks0,ν over the sets of the partition {S}δ is derived, for
any k, from that of the SHS H. This distribution is not
known a-priori and depends on the particular initial state
s0. It can be thought of as a (unknown) non-homogeneous
Markov chain evolving on the partition space {S}δ: it will be
denoted by Π(k). Let us define a monotonically increasing

function f : f(ε, n, k) = (εn + 1)kf(ε, n, 0) + ε
k∑
l=1

(εn +

1)l−1, f(ε, n, 0) = dh(p0
s0 , p

0
s̄0), where p0

s0 , p
0
s̄0 are initial

probability distributions respectively of the original system
(considered over the regions of the partition) and of the
Markov set-Chain abstraction.

Theorem 3: Given a dt-cSHS H and upholding Assump-
tions 1 and 2, suppose that there exists a partition defined
by the parameters (δ, η) such that the corresponding Markov
set-Chain abstraction [M] is ergodic with coefficient of
ergodicity T ([M]) < 1. Then, for any s0 ∈ S, 〈s〉 ∈ {S}δ
and any control feedback ν, ∀k ≥ 0,

dh(pks0,ν(〈s〉), pks̄0,ν̄(〈s〉)) ≤ (6)

min
{
f(ε, n, k), 2αβk + 2λSε

1−T ([M])

}
where α, β and dh are defined as in Theorem 1. �
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Remark 1: The study can be extended to events defined
over time on Borel sets C ⊆ B(S), which do not necessarily
coincide with the partition sets 〈s〉 ∈ {S}δ . The computation
will resort to an under- or an over-approximation of C by
sets of the partition. We leave the details to the interested
reader. As already discussed, our attention will instead be
focused on the probability distribution of the original SHS
H over the sets of the partition, and on its asymptotics. �
Equation (6) provides a time-dependent bound for the ap-
proximation error, which is finite for each time step k ≥ 0
if the abstraction induced by the partition parameters (δ, η)
is ergodic. However, it is not always the case that there exist
(δ, η) such that the abstraction is ergodic. In the following
theorem we prove that, if the original system H is endowed
with some ergodicity, there always exist (δ, η) such that the
abstraction is ergodic. This fact implies that it is possible to
achieve any desired precision on the approximation error of
the abstraction over time by tuning the partition parameters
(δ, η).

Theorem 4: Given H and any control feedback ν : S →
A, if a stationary probability distribution p∞ν of H exists,2
then there exist partition parameters (δ > 0, η > 0), such
that the induced abstraction [M] satisfies T ([M]) < 1. �

Remark 2: The results in Theorems 3 and 4 can be
extended to the case where the scrambling integer for the
obtained MSC [M] is a finite integer r > 1, according to
the corresponding bounds discussed in section III. �

VI. ABSTRACTION AND ANALYSIS OF A STOCHASTIC
MODEL FOR BACTERIAL ANTIBIOTIC BIOSYNTHESIS

The following model describes the production of the
antibiotic subtilin by the bacterium Bacillus subtilis. The
original model from [12] is slightly simplified in its struc-
ture by exploiting some symmetry in its organization, as
observed in [2]. The model presents four variables: y =
[SigH] (concentration of a sigma factor in the environment),
z = [SpaS] (concentration of subtilin), X (nutrient level), D
(population level). The first two entities are at the cellular
level and have probabilistic dynamics, while the last two
are deterministic averaged dynamics. Time is discrete, with
time-step ∆. The positive variables are bounded above by
the quantities yM , zM , XM , DM .

The level of the sigma factor SigH follows a probabilistic
switching behavior according to:

y(k+1) =
{
y(k)− λ1y(k)∆ + w1(k) if X ≥ ηDM

y(k) + (k3 − λ1y(k))∆ + w2(k) if X < ηDM

which hinges on the nutrient-dependent spatial condition
{X = ηDM , 0 ≤ η ≤ 1}. The terms w1, w2 are independent
normal variables with zero mean and variance ∆.

Next, the concentration of the protein SpaS depends on
one of two possible states of a switch S1 as follows:

z(k+1) =
{
z(k)− λ3z(k)∆ + v1(k) if S1 is OFFz
z(k) + (k5 − λ3z(k))∆ + v2(k) if S1 is ONz.

Again v1, v2 are independent normal variables with zero
mean and variance ∆. The structure of S1 = {OFFz, ONz}
is assumed to be that of a Markov Chain, whose transi-

tion probability matrix is P1 =
[

1− b0 b0
b1 1− b1

]
. The

2Notice the difference between the measure p∞ν , which refers to the
original dt-cSHS H, and p∞ν , which refers to Π(k).

parameters b0, b1 depend on [SigH] according to b0(y) =
αy

1+αy , b1(y) = 1 − b0(y). The quantity α = e−∆Grk/RT

depends on the Gibbs free energy, a gas constant R, and the
environment temperature T [12].

The variation in the population level is modeled by a
logistic equation as follows:

D(k + 1) = D(k) + rD(k)
(

1− D(k)
D∞

)
∆, r > 0. (7)

This is a quadratic equation, with two equilibria. The first
(D = 0) is unstable, while the second (D = D∞) is stable.
The non-trivial (and stable) equilibrium relation depends on
the quantity D∞ (the carrying capacity). Let us intuitively
define it to be D∞ = X

XM
DM . The nutrient dynamics follow

the difference equation

X(k + 1) = X(k) + (k2νy − k1D(k)X(k))∆, ν < 1. (8)

The second equilibrium point for the population level corre-
sponds a stable equilibrium for the nutrient level.

The above set of dynamical relations can be re-
framed as a SHS. The model has four modes, Q =
{q1 = (ONy, ONz), q2 = (ONy, OFFz), q3 =
(OFFy, ONz), q4 = (OFFy, OFFz)}, where the pairs refer
to the activities of the variables y, z: ONy = {X : 0 ≤
X < ηDM}, OFFy = {ηDM ≤ X ≤ XM};ONz =
{S1 is ONz}, OFFz = {S1 is OFFz}. The continuous part
of the state space is also four dimensional, in each of the
discrete domains, and it reflects the bounds on the four
variables: D = {[0, yM ]× [0, zM ]× [0, XM ]× [0, DM ]}.

Let us introduce the stochastic kernels relative to the
probabilistic dynamics at the cellular level:

Tt(dy|(OFFy, y)) = N (dy, y − λ1y∆,∆);
Tt(dy|(ONy, y)) = N (dy, y + (k3 − λ1y)∆,∆);
Tt(dz|(OFFz, z)) = N (dz, z − λ3z∆,∆);
Tt(dz|(ONz, z)) = N (dz, z + (k5 − λ3z)∆,∆).

Here N (·, x, σ) is the probability measure associated to a
normal distribution of mean x and variance σ. The reset
kernels Tr are trivial. Furthermore, the discrete kernels have
the following form:

Tq(q2|((ONy, y), (ONz, z)) = P1(2, 1)1ONy ;
Tq(q3|((ONy, y), (OFFz, z)) = P1(1, 2)1OFFy ;
Tq(q4|((OFFy, y), (ONz, z)) = P1(2, 1)1OFFy ;
Tq(q1|((OFFy, y), (OFFz, z)) = P1(1, 2)1ONy ,

where the other possible transition probabilities are obtained
analogously, or by complementation.

The constants for the locally Lipschitz Tt kernels, with
regards to their density t, are those in [1]:

|t(·|q, y)− t(·|q, y′)| ≤ 1√
2
eyM − 1
yM

|y − y′|,∀q ∈ Q.

Those for the Tq kernels can be directly found by inspecting
P1:

|P1(i, j)(y′)−P1(i, j)(y′′)| ≤ α|y′ − y′′|,∀y′, y′′ ∈ [0, yM ].

Let us introduce a uniform partition of the state space
according to a grid of width δ, which we assume to be a
divisor of the quantity ηDM . The order of the cardinality
of the partition is easily |Q|(max{yM , zM , XM , DM}/δ)4.
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Population Level Nutrient Level Time
Simulation with
full Monte Carlo 0.88 3.6 127

Simulation with
Reduced Abstraction 0.78 3.1 37

Simulation with
Full Abstraction 0.5 2.7 80

Clearly λS = yMzMXMDM . The introduced error is
ε1 = ∆5

(
1√
2
eyM−1
yM

+ α
)

. Let us consider for simplicity a
probability for the initial points that is uniformly distributed
over the space. As in [12], we have chosen yM = 4, zM =
4, XM = 10, DM = 1. The reference simulations have been
implemented with a Monte Carlo approach: ten simulations
have been run from the starting states corresponding to
the representative points of the abstraction. The outputs for
population level and nutrient are in the Table.
We have also implemented a full abstraction of the above
dynamics with discretization level δ = 0.5 (see Table). The
MC has 1260 rows. While the steady states of the population
and of the nutrient appear to be close to the desired ones,
those of the cellular dynamics are not satisfactory. This is
possibly due to the sparsity of the obtained MC, which is
ascribed to the presence of deterministic dynamics. We have
then decided to reduce the abstraction at the level of the
cellular dynamics. More precisely, we have come up with two
different abstractions for the two regions ONy, OFFy . This
has also expedited the computation time for the abstraction,
so that we can push the discretization level to be quite
small. The outputs for population and nutrient are close to
those of the Monte Carlo Simulations (See Figures 1, 2).
Notice the computational improvement that the abstraction
procedure gains, despite the required partitioning procedure
and calculation of the steady state.

Fig. 1. Comparison between Monte Carlo Simulations and Abstraction
Steady-State, for a first initial condition.
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