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Abstract— In this paper we study the asymptotic eigenvalue
distribution of certain random Lyapunov and Riccati recursions
that arise in signal processing and control. The analysis of such
recursions has remained elusive when the system and/or covari-
ance matrices are random. Here we use transform techniques
(such as the Stieltjes transform and free probability) that have
gained popularity in the study of large random matrices. While
we have not yet developed a full theory, we do obtain explicit
formula for the asymptotic eigendistribution of certain classes of
Lyapunov and Riccati recursions, which well match simulation
results. Generalizing the results to arbitrary classes of such
recursions is currently under investigation.

I. INTRODUCTION

The classical time-invariant Lyapunov

Pi+1 = FPiF
∗ + Q, P0 (1)

and Riccati

Pi+1 = FPiF
∗−FPiH

∗(R+HPiH
∗)−1HPiF

∗+Q, P0

(2)
recursions arise in many applications, and their convergence
properties are well understood. However, their time varying
counterparts (with the matrices F , H , Q, R all replaced by
time-varying Fi, Hi, Qi, Ri) are much more difficult to
analyze and depend on the nature of the time-variation of
the system and covariance matrices.

An important class of such time-varying recursions arise
when the matrices Fi, Hi, Qi, Ri are drawn from some
random matrix ensemble. In this case, the Pi will form a
matrix-valued random process. When the Fi, Hi, Qi, Ri

are themselves drawn from jointly stationary matrix-valued
random processes, one may suspect that the Pi will also be
asymptotically stationary, i.e., the process {Pi} will converge
to a stationary process in the limit as i → ∞. However,
demonstrating this and, more importantly, determining the
stationary distribution of Pi appears to be quite challenging.

Examples of where such random recursions arise include
adaptive filtering where the regressors are often drawn ran-
domly [1], [2], [3] and control over packet-dropping links
(where the covariance matrices Ri and Qi are chosen ran-
domly according to whether packets are dropped or not) [4],
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[5]. However, determining the asymptotic behavior of these
recursions can be quite challenging (e.g., in [4] determining
the mean of Pi—in fact, even determining the stability of
Pi—remains open).

While determining the entire asymptotic distribution of Pi

may be well beyond reach, determining other aspects of Pi

may be tractable. In this paper, we propose to use ideas from
the theory of large random matrices (especially, transform
theory) to say things about the asymptotic distribution of the
eigenvalues of Pi in various random Lyapunov and Riccati
recursions. As is the case in large random matrix theory, the
theory requires that the size of the underlying matrices be
large. While we have not yet been able to develop a full
theory for this—something that in any event may be too
ambitious,— we are able to obtain non-trivial new results for
certain classes of Lyapunov and Riccati recursions. These
also well match results from simulations. We believe that
the results we have obtained here show the promise of large
random matrix theory techniques in studying random matrix
recursions and are therefore worthy of further scrutiny.

The remainder of this paper is organized as follows. In
Section II we review a number of results from random matrix
theory which appear to be useful in our study. In Section III
we will look at random Lyapunov recursions and will obtain
the steady-state eigendistribution for three important forms of
these recursions. In Section IV a number of random Riccati
recursions which arise in different problems are investigated.
Finally, Section V concludes the paper.

II. DEFINITIONS AND NOTATION

In this section we will present a few definitions and nota-
tional conventions which will be used throughout this work.
For an n×n random matrix M the empirical distribution of
the eigenvalues is defined as,

FM(x) =
1
n

n∑
l=1

11 {λl(M) ≤ x} , (3)

where λl(M) is the l-th eigenvalue of M and 11(·) denotes the
Heaviside step function. An empirical distribution function
fM (x) can also be associated with FM(x). This density
function is frequently referred to as the eigendistribution of
M.

Many results on the eigendistribution of random matrices
are expressed in terms of some transform of fM(λ). The
most important of these transforms is the so-called Stieltjes
transform which is defined as,

SM(z) = E
[

1
λ− z

]
. (4)
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Equivalent definitions, which are often useful, include

SM(z) = E
1
n

tr (M− zI)−1 (5)

and

SM(z) =
d

dz
E

1
n

log det(zI−M)−1. (6)

We will refer to SM(z) as the Stieltjes transform of the matrix
M or the Stieltjes transform of its eigendistribution inter-
changeably. Having the Stieltjes transform, we can retrieve
the eigendistribution uniquely through its inversion formula
[6],

fM(λ) = lim
ω→0+

1
π

Im [SM(λ + jω)] . (7)

We can also obtain the various moments of the eigendistri-
bution of M through power series expansion of the Stieltjes
transform. Expanding around infinity yields the moments
mi = Eλi, i = 0, 1, . . .

SM(z) = −
∞∑

i=0

miz
−i−1, (8)

while expanding around the origin yields the moments
m−i = Eλ−i, i = 1, 2, . . .

SM(z) =
∞∑

i=1

m−iz
i−1. (9)

Another important transform in large random matrix the-
ory is the R-transform which is directly related to the Stieltjes
transform as,

RM(z) = S−1
M (−z)− 1

z
, (10)

where S−1
M (·) is the inverse function of SM(·). If expanded

as a power series in terms of z, the coefficients of RM(z) are
referred to as the free cumulants [7]. A related fundamental
concept in random matrix theory is the notion of free proba-
bility which was first introduced by Voiculescu [8]. Freeness
replaces the independence property for random variables that
are non-commutative (such as random matrices).

Definition II.1 (Free Random Variables). Two non-
commutative random variables X and Y are called free if,

E [p1(X)q1(Y )p2(X)q2(Y ) . . . ] = 0, (11)

for finitely many polynomials pi and qj for which,

E [pi(X)] = 0 = E [qj(Y )] . (12)

A key result is that for two free random variables X and
Y , RX+Y (z) = RX(z) + RY (z) [9].

Definition II.2 (Gaussian-Like Random Matrices). Let
An×m have i.i.d. zero-mean unit-variance elements with
bounded higher-order moments. Then we call B = 1√

m
A

a Gaussian-like random matrix.

III. RANDOM LYAPUNOV RECURSIONS

As mentioned earlier, Lyapunov matrix recursions fre-
quently appear in engineering and mathematical problems,
especially in control and system theory. In its most general
form, the Lyapunov matrix recursion for discrete and time-
varying systems can be written as,

Pi+1 = F∗i PiFi + Qi. (13)

We are interested in finding the empirical distribution func-
tion of the eigenvalues of a large dimensional Pi, as i →∞,
while Fi and Qi are random matrices themselves, with some
known probability distributions.

Since approaching the problem in its general form seems
quite formidable, we will begin by studying some special
cases.

A. Scalar and Non-random Fi

We will assume that F =
√

αI is simply a scaled version of
identity and that Qi is generated by a Gaussian-like matrix,
Hi. More explicitly,

Pi+1 = αPi + HiH∗i , (14)

where α ∈ (0, 1) and the Hi are independently drawn
n ×m Gaussian-like matrices as defined in Definition II.2.
It turns out that one can compute the moments of the
eigendistribution of Pi in closed form. The first few moments
of the empirical distribution function of Pi are given in the
theorem below.

Theorem III.1. When α < 1, the matrices Pi in (14)
converge to a steady-state distribution. The first few moments
of the empirical eigendistribution function of Pi are given by

m1 =
1

1− α
(15)

m2 =
1

(1− α)2
+

1/β

(1− α2)
(16)

m3 =
1

(1− α)3
+

3/β

(1− α)(1− α2)
+

1/β2

(1− α3)
(17)

where β = m/n. For α ≥ 1, the recursion (14) diverges.

Outline of Proof: Using Marcenko and Pastur’s result [10]
and the relation between the Stieltjes transforms of a random
matrix and its scaled version, the Stieltjes transform of the
eigenvalue distribution of Pi can be shown to satisfy

SPi+1(z) =
1
α

SPi

(
z

α
−

β
α

β + SPi+1(z)

)
. (18)

When α < 1, it is not too hard to show that the Stieltjes
transform converges and therefore we have,

SP (z) =
1
α

SP

(
z

α
−

β
α

β + SP (z)

)
. (19)

Expanding the Stieltjes transform as a power series around
infinity (which brings in the mi) and equating terms leads
to the result of the theorem.
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Fig. 1. Moments of the eigendistribution of Pi in recursion (14) as a function of β for α = 0.8 and α = 0.9 and n = 20.

Alternatively, one can also find the first few moments
using the R-transform. As mentioned in Section II, the R-
transform of the sum of two asymptotically free random
variables is simply the sum of their R-transforms. Here we
can readily show that given the independence of the Hi’s for
different i’s, αPi and HiH∗i are free random matrices and,

RP (z) = αRP (αz) +
β

β − z
, (20)

where β
β−z is the R-transform of HH∗ [11]. Therefore the

free cumulants of Pi, or in other words the coefficients in
the power series of RP (z) can be found to be,

RP (z) =
∞∑

j=0

β−j+1

1− αj
zj−1. (21)

Now one can use the combinatorial relation between the
free cumulants and the moments [12] to find the moments of
the eigendistribution. Having the simple representation of the
free cumulants, along with the systematic approach of finding
the moments from them provides a relatively straightforward
method for computing all the moments in this case.

Figure 1 shows a comparison of the analytic results with
simulations for α = 0.8 and α = 0.9 and n = 20. As can
be seen, even though the results are for large n, we obtain
quite good a fit for even n = 20.

B. General Lyapunov Recursions

The above analysis for F =
√

αI can be extended to
the recursions with more general Fi’s. In particular we will

assume that Fi is drawn from an n×n Gaussian-like random
matrix distribution (which is essentially only a condition on
the first and second moments of the elements and requires
the elements of Fi to be i.i.d.). Consider

Pi+1 = αF∗i PiFi + HiH∗i , (22)

in which we assume that Fi and Fj 6=i are independent. The
Hi’s are assumed to be the same as in (14). Once again we
can compute the moments of the eigendistribution of Pi as
i →∞.

Theorem III.2. When α < 1, the eigendistribution of the
matrices Pi in (22) converges to a steady-state distribution
whose Stieltjes transform satisfies the pair of implicit equa-
tions

SP (z) =
1
α

t

(
z

α
−

β
α

β + SP (z)

)
(23)

t2(z) = −1
z
SP

(
− 1

t(z)

)
. (24)

The first few moments of the corresponding distribution are

given by,

m1 =
1

1− α
(25)

m2 =
1

(1− α)2
+

1/β

(1− α2)
+

α2

(1− α2)(1− α)2
(26)
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m3 =
1

(1− α3)

{(
2 + m1

β
+

1
β2

+ 1
)

+ αm1

(
2
β

+ 3
)

+α2
(
3m2

1 + m2

)
+ α3

(
m3

1 + 3m1m2

)}
(27)

where β = m/n. When α ≥ 1, the recursion (22) does not
converge.

Proof: Follows the proof of Theorem III.1 by showing the
convergence of the Stieltjes transform to the solution of the
system of implicit equations (23) and (24). Expanding these
equations as a power series in terms of z−i and equating the
coefficients of z−i terms, we will obtain the moments.

C. LMS Lyapunov Recursion

In LMS adaptive filtering the following Lyapunov equation
appears frequently [1], [2], [3],

Pi+1 =
(
I− µhih

T
i

)
Pi

(
I− µhih

T
i

)
+ µ2rhih

T
i , (28)

where the hi (the regressors) are independently drawn n× 1
Gaussian-like vectors, µ is the so-called learning rate, and
r represents the variance of the measurement noise. Once
again we are interested in finding the empirical eigenvalue
distribution of Pi, as i →∞.

In this case, it turns out that one can directly compute the
Stieltjes transform of Pi (which then uniquely determines the
eigendistribution according to its inversion formula (7)).

Theorem III.3. When µ < 2
n the eigendistribution of the

matrices Pi in (28) converges to a steady-state distribution
whose Stieltjes transform satisfies the differential equation,

(z − γ)
dSP (z)

dz
+ S = 0, (29)

where,

γ =
r
n

2
nµ − 1

. (30)

This implies that SP (z) = 1
γ−z and p(λ) = δ(λ − γ), i.e.,

as n → ∞ Pi converges to γI . When µ > 2
n the recursion

(28) diverges.

Outline of Proof: One can first show convergence in distri-
bution for µ < 2

n . Once we have this convergence, we apply
the definition (5) to compute the Stieltjes transform to the
both sides of (28). Using the Matrix inversion lemma, which
gives the inverse of a matrix A = B + CDCT as

A−1 = B−1 −B−1C
(
D−1 + CT B−1C

)−1
CT B−1,

(31)

we obtain

SPi+1(z) = SPi(z)− 1
n

Etr
{
M1M

−1
2 MT

1

}
, (32)

where
M1 = (Pi − zI)−1 [ hi Pihi

]
, (33)

and

M2 =
[

µ2
(
r + hT

i Pihi

)
−µ

−µ 0

]−1

+ (34)[
hT

i

hT
i Pi

]
(Pi − zI)−1 [ hi Pihi

]
. (35)

Using the self-averaging property of large random matrices
[13],

lim
n→∞

hT
i (Pi − zI)−1hi = SPi

(z) a.s., (36)

and its direct consequence,

lim
n→∞

hT
i (Pi − zI)−2hi =

dSPi
(z)

dz
a.s., (37)

we can rewrite (32) in terms of the Stieltjes transform and its
derivative. With some computational effort, the differential
equation (29) will be obtained for the Stieltjes transform of
Pi as i → ∞. For µ ≥ 2

n , divergence follows from (30),
since γ becomes negative.

As can be seen from the simulations in Figure 2, this theo-
rem correctly predicts the accumulation of all the eigenvalues
of Pi at a single point. This is also consistent with what is
expected intuitively.

IV. RANDOM RICCATI RECURSIONS

Riccati recursions are found in various forms in systems
and control theory, estimation theory and many other fields.
When Pi is invertible the Riccati recursion can be written as,

Pi+1 = F∗i
(
P−1

i + HiH∗i
)−1

Fi + Qi. (38)

As in the Lyapunov case, we are interested in determining the
asymptotic eigenvalue structure of Pi for large dimensional
matrices. Once again, the general case appears to be quite
challenging and we begin by considering special cases, a
number of which are given below.

A. A simple Riccati Recursion with F = I, Q = I.

In the case of Fi = I and Qi = I, (38) simplifies to

Pi+1 =
(
P−1

i + HiH∗i
)−1

+ I. (39)

Assume that the Hi are independently drawn Gaussian-like
n × m matrices with β = m

n . In this case, the Stieltjes
transform of the limiting eigenvalue distribution can be found
from a system of implicit equations.

Theorem IV.1. As i → ∞, the eigendistribution of Pi in
(39) converges to a stationary distribution whose Stieltjes
transform satisfies the following system of implicit equations,

v(z) = −1
z
− 1

z2
SP (z−1) (40)

u(z) = v(z − β

β + u(z)
) (41)

SP (z + 1) = −1
z
− 1

z2
u(z−1) (42)
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Fig. 2. The eigendistribution of Pi in the Lyapunov recursion (28).

Proof: The proof uses Marcenko and Pastur’s result [10]
along with the relation between the Stieltjes transforms of
eigendistributions of a matrix and its inverse, namely,

SP−1(z) = −1
z
− 1

z2
SP (z−1). (43)

Attempting to solve explicitly the system of implicit
equations in Theorem IV.1 seems difficult. How to best find
SP (z) numerically is currently under investigation.

Following the above approach, we can also find the
eigendistribution for a more general Riccati recursion,

Pi+1 = αF∗i
(
P−1

i + HiH∗i
)−1

Fi + I, (44)

where Fi’s are n × n Gaussian-like random matrices. Each
Fi is independent of all Fj 6=i, α is a constant scalar, and Hi

are as in (39).

Theorem IV.2. As i → ∞, the eigendistribution of Pi

in the Riccati recursion of (44) converges to a stationary
distribution whose Stieltjes transform satisfies the following
system of implicit equations

v(z) = −1
z
− 1

z2
SP (z−1) (45)

u(z) = v(z − β

β + u(z)
) (46)

w(z) = −1
z
− 1

z2
u(z−1) (47)

α2zS2
P (αz + 1) = −w

(
−1

αSP (αz + 1)

)
(48)

B. A Riccati Recursion with Low-Rank Update

As another interesting special case of the Riccati recursion,
we look at the eigendistribution of Pi which satisfy the
following recursion

Pi+1 =
(

P−1
i +

1
r
hih

∗
i

)−1

+ qgig
∗
i , (49)

where the hi and gi are independently drawn n×1 Gaussian-
like vectors and r and q are constant parameters (This Riccati
recursion arises, for example, in H∞ adaptive filtering [14]).

In this case, we can directly obtain an expression for the
Stieltjes transform of Pi.

Theorem IV.3. As i → ∞, the eigendistribution of Pi in
(49) converges to a stationary distribution whose Stieltjes
transform satisfies the equation

z2S(z)− (q−1z2 + z − r)S(z) + q−1z + c = 0, (50)

where c is a constant.

Outline of Proof: Convergence of the eigendistribution of Pi

as i → ∞ can be shown. When this is the case, we can
proceed to find the Stieltjes transform of the steady-state
eigendistribution. To this end, using matrix inversion lemma
we can rewrite (49) as

Pi+1 = Pi −
Pihih

∗
i Pi

r + h∗i Pihi
+ qgig

∗
i . (51)
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Then we will employ the same techniques used in the
proof of Theorem III.3. M1 and M2 in (32) will be replaced
by the matrices

M ′
1 = (Pi − zI)−1 [ gi Pihi

]
, (52)

and

M ′
2 =

[
q 0
0 − 1

r+h∗i Pihi

]−1

+ (53)[
g∗i

h∗i Pi

]
(Pi − zI)−1 [ gi Pihi

]
. (54)

Now one can rewrite the counterpart of (32) in terms of the
Stieltjes transform and its derivative (once again, using the
self-averaging properties,) and (50) will be obtained after
some calculations.

If we attempt to find c using the series expansion of S(z),
we obtain

c =
m1

q
. (55)

Thus c cannot be separately determined. The reason is that
the Riccati recursion is nonlinear and there is no simple
algebraic equation for m1 = 1

nEtrPi. Solving the quadratic
equation of (50) for S(z), and using the inverse formula for
the Stieltjes transform yields

pλ(λ) =
1
π

Im

(√
(q−1λ2 + λ− r)2 − 4λ2(q−1λ + c)

2λ2

)
.

(56)
The constant c is then found such that the resulting pλ(·)
is a valid distribution, i.e.,

∫
p(λ)dλ = 1. Fig. 3 shows the

eigendistribution obtained from simulations for n = 20 and
r = 0.5. We have obtained the theoretical curve by assuming
S(z) = u + jv and numerically solving for u and v while
forcing the distribution to integrate to one.

V. CONCLUSIONS

In this paper, we employed techniques from the theory
of large random matrices to obtain various results on the
asymptotic eigendistribution of certain classes of random
Lyapunov and Riccati recursions. The preliminary results
seem encouraging and suggest that they are worthy of further
scrutiny and pursuit.
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