
  

  

Abstract—A robust active queue management (AQM) scheme 
based on H-infinty theory is presented for the problem of 
congestion control in TCP communication networks. In TCP/IP 
networks, the packet-dropping probability function is 
considered as a control input, and network parameters are 
time-varying. Thus a TCP/AQM controller is modeled as a 
uncertain time-delay system with a saturated input. The 
corresponding existence condition of the observer and 
controller are obtained by applying Lyapunov-Krasovskii 
function approach and the linear matrix inequality technique. 
Simulation results show that the proposed scheme can track the 
desired queue length very quickly under various network 
conditions, and avoid the problem of dynamic network 
congestion. 

I. INTRODUCTION 
N the past few years, communication networks have 
become an essential part of many applications in 

engineering. Congestion control is a major problem because 
the quality of service cannot be guaranteed. The control 
mechanism often used to prevent the congestion phenomenon 
is the transmission control protocol (TCP). But as amount of 
the traffic over the Internet increases and the demand for 
quality of service (QoS) become stronger, it is no longer 
possible to exclusively rely on end hosts to perform 
end-to-end congestion control. There has been a growing 
recognition within the Internet community that the network 
itself must participate in congestion control. Active Queue 
Management (AQM) schemes have been proposed to 
complement the TCP network congestion control. AQM is 
router-based control mechanism which aims to reduce packet 
drops and improve network utilization. So the combination of 
TCP and AQM is the main approach to solve the problems of 
current Internet congestion control. 

The random early detection (RED)[1], the most famous 
AQM algorithm, has obtained great success in network 
congestion control. It can eliminate the flow synchronization 
problem and attenuates the traffic load by monitoring the 

 
Manuscript received March 10, 2008. This work is supported by the 

National Natural Science Foundation of China, under grant 60274009, and 
Specialized Research Fund for the Doctoral Program of Higher Education, 
under grant 20020145007, and also by Dogus University Fund for Science 
and Ministry of Education and Science of the Republic of Macedonia. 

Hongwei Wang, Yuanwei Jing and Xiaoping Liu are with Faculty of 
Information Science and Engineering, Northeastern University, 110004, 
Shenyang, Liaoning, P.R. of China. (email: wanghw0819@163.com). 

Georgi. M. Dimirovski is with Dogus University, Faculty of Engineering, 
Istanbul, TR-34722, R. of Turkey; and SS Cyril and Methodius University, 
Faculty of FEIT, Skopje, MK-1000, R. of Macedonia (email: 
gdimirovski@dogus.edu.tr). 

average queue length. However, it is difficult to tune RED 
parameters under different network environments, and the 
RED parameters are sensitive to the network load. In order to 
solve these problems existed in RED algorithm, some 
modified RED schemes, such as ARED[2], BLUE[3] and 
Random Exponential Marking (REM)[4] have been proposed 
in the literature. These AQM algorithms, however, show the 
weakness to detect and control congestion under large-delay 
network situations such as intercontinental TCP connection 
with hundreds of milliseconds’ round trip time. 

Recently, some AQM algorithms have been proposed 
based on control-theoretic analysis and design. In [5], the 
theory of stochastic equations is applied to develop a 
fluid-based model of the dynamics of the TCP. Several 
congestion control schemes based on this TCP model have 
been proposed to improve the performance of communication 
networks. For example, a PI controller is developed for a 
linearized system[6]. Compared with RED, the PI controller is 
more stable. However, the PI controller is sluggish with 
taking too long time to settle down to the referenced queue 
length. In [7], the differential component in the controller 
structure is introduced to avoid the overshoot and improve the 
damping and rise time of the controller in order to overcome 
the drawbacks of PI controller. Proportional-Integral- 
Differential (PID) controller can improve the dynamic 
response, reduce or eliminate the steady-state error. However, 
its performance gets bad based on the simplified TCP/AQM 
linearized model in large-delay networks. The further 
investigation shows that the previous simplified model 
ignores the delay term in some cases. So a robust sliding 
mode control scheme is introduced in [8] that possesses good 
performance and robustness for linear TCP/AQM model with 
the time delay and the uncertainties of the network parameters. 
In these papers they analyze the stability without considering 
the problem of input saturation. We know that the 
packet-dropping probability function is considered as a 
control input in TCP network, so the effect of a saturated 
actuator must be taken into account when designing a control 
scheme. Also communication networks are large-scale 
complex systems, it is impossible to measure the all state 
locally. So observer-based controllers are designed in [9], 
[10], but uncertainties and disturbance are not considered.  

In this paper, we design a robust H∞ controller for 
uncertain time-delay network system with input saturation, at 
the same time, mismatched uncertainties are considered in 
TCP mathematic model. For the practical TCP network, 
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constructing a Lyapunov-Krasovskii function, an observed- 
based controller is developed for AQM to support the TCP on 
the basis of the LMI technique. We show that the proposed 
control strategy has reliable asymptotic stability and robust 
against variations in the RTT, the number of TCP sessions, 
the bursting and the unresponsive flows, etc. 

The remainders of this paper are organized as follows. The 
TCP model and the control objective are discussed in Section 
II. Section III presents the observer-based H∞ controller for 
AQM, considering the effect of time-delay and uncertainties. 
Simulation results of the proposed scheme for various 
network conditions are shown in section IV. Finally, we 
conclude our work in section V. 

II. TCP NETWORK DYNAMIC MODEL  
In [7], a nonlinear dynamic model of the TCP behavior is 

developed using fluid-flow and stochastic differential 
equation analysis, which is as follows. 
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where W is the average TCP window size (in packets), q is 
the queue length at a router (in packets), pT is the propagation 
delay (in seconds), R  is the transmission RTT, equal to 

p
q TC + , C is the link capacity (in packets/s), N is the 
number of TCP sessions and p is the packet-dropping 
probability function ( )0 1p≤ ≤ . All variables are assumed 
non-negative.  

Assume ( ) 0R t R= , ( )N t N= , ( )C t C=  be the nominal 
values of ( )R t , ( )N t and ( )C t . Let ( ) 0W t = and ( ) 0q t = . 
The equilibrium point ( )0 0 0, ,W q p  could be obtained, which 
satisfies 2

0 0 2W p =  and 0 0 /W R C N= . Furthermore, Eq.(1) 
is linearized at the operating point such that the nonlinear 
model could be expressed in the form of the following linear 
time-delay model [2]. 
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Output equation is as follows. 
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where 0W W Wδ = − , 0q q qδ = − , 0p p pδ = − . 

Let ( )1x W tδ= , ( )2x q tδ= , ( ) [ ]T
1 2x t x x= , ( ) ( )u t p tδ=

( )( )0 01p u t p− ≤ ≤ − , 0Rτ = . The plant (3) can be described 

as 
( ) ( ) ( ) ( )
( ) ( )

dx t Ax t A x t Bu t

z t Cx t

τ τ= + − + −⎧⎪
⎨

=⎪⎩
            (4) 

where ( ) 2Rx t ∈ , ( ) 1Ru t ∈  and ( ) 1Ry t ∈  represent the state, 
the control input and the system output, respectively. A , dA , 
B  and C  are constant matrices of appropriate dimensions 
expressed in the following forms: 
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[ ]0 1C = . 
In practical network systems, all parameters will vary for 

external condition. So the controller design should take into 
account the time delay and uncertain nature of the linearized 
TCP fluid model of (4). Also, the control input ( )u t  is a 
saturated function. The following uncertain time-delay 
system with input saturation can be derived 

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )
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d d
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⎪
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        (5) 

where AΔ , dAΔ  and BΔ  are uncertainties depending on 

network parameters, ( )tω is external disturbance. 
In the process of designing controller, the following 

assumptions are taken. 
Assumption 1: the pairs ( ),A B  and ( ),A C  are controllable 
and observable, respectively. 
Assumption 2 : The matrices ( )A tΔ , ( )dA tΔ and BΔ  satisfy 

( )1 1 1A D F t EΔ = , ( )d 2 2 2A D F t EΔ = , ( )3 3 3B D F t EΔ = , where 

iD and iE  are constant matrices of appropriate dimensions, 

( )iF t  satisfies ( )iF t I≤ , 1, 2,3.i =  

The saturated input is expressed by the following 
nonlinearity.  
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where min 0u p= − and max 01u p= − , which implies 
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min max0u u< < . From Eq.(6), the saturation term in Eq.(5) 
can be rewritten as 

( )( ) ( )( ) ( )sat u t u t u tτ β τ τ− = − −                (7) 

where  
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⎪ − − <⎩

 (8) 

and  
( )( )0 1u tβ τ≤ − ≤ , for all 0t ≥                   (9) 

Therefore, based on Eqs.(6)~(9), the system in Eq.(5) can 
be rewritten in an equivalent form as  
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   (10) 

The AQM scheme will be proposed in the above- 
mentioned model. The designed robust H∞ controller could 
not only reduce the sensitivity to network parameters but also 
eliminate inaccuracies due to the use of the linear model with 
a saturated input. 

III. DESIGN OF H∞ CONTROLLER FOR AQM  

Since communication networks are large-scale complex 
systems, it is impossible to measure the size of the state 
variable window locally. A more practical approach is to 
design an observer-based H∞ controller, which is capable of 
achieving asymptotic stability of robust performance. 

For the system (10), state observer and memoryless 
feedback controller are given by 

( ) ( ) ( )( ) ( ) ( ) ( )( )ˆ ˆ ˆx t Ax t B u t u t L y t Cx tβ τ τ= + − − + − (11) 

( ) ( )ˆu t Kx t= −                                 (12) 

where L  is the gain matrix of the observer, K  is the 
feedback gain matrix. 

Define the state error 

( ) ( ) ( )ˆe t x t x t= −                             (13) 

Then from (10)~(13), we can obtain the following 
augmented system 
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The objective of this section is given as follows: (1) If 
disturbance input ( ) 0tω = , the closed loop system is 
asymptotically stable; (2) For any disturbance input 

( ) [ ]2 0,t Lω ∈ ∞ , the output ( )z t  satisfies  H∞   performance 

condition ( ) ( )2 22
2 2

z t tγ ω≤ , where γ  is a known positive 

constant. 
The following lemma is useful in designing an expected 

robust observer-based H∞ controller for the uncertain linear 
time-delay system (10). 
Lemma 1 For any n n, Rz y ×∈ , 

T T T2z y z z y y± ≤ + . 

Lemma 2 For any n n, Rx y ×∈ and real matrix ( )F t  with ap- 

propriate dimensions, where ( ) 1F t ≤ , 

T T T2x Fy x x y y± ≤ + . 
Next, we choose the Lyapunov-Krasovskii function, using 

the linear matrix inequality technology to guarantee the 
stability of the observer and to reduce the effect of model 
uncertainties on the estimated state. The following theorem 
offers the theoretical basis for achieving the desired design 
goal. 
Theorem: Consider the augmented system (14) along with 
the observer (11) and controller (12). If there exist symmetric 
positive definite matrices P and Q , which satisfy the 
following matrix inequality 
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                 (16) 

then the system (10) is asymptotically stable and ( )z t satisfy 

H∞ performance condition. The observer gain is 1 TL Q C−= , 
where 

T T T T T 2 T
1 1 1 2 2 3 3 2 2d dS D D D D D D A A BB GGγ −= + + + + +

T
2 4 3 32S S E E I= = + ,

T T T T 2 T
3 1 1 2 2 3 3 d d2 2S D D D D D D A A GGγ −= + + + + . 

Proof: If the disturbance input ( ) 0tω = , choose the 
following Lyapunov-Krasovskii function: 

( ) ( ) ( ) ( )1 2 3V t V t V t V t= + +                   (17) 
where  

( ) ( ) ( )T
1V t x t Px t=  

( ) ( ) ( )T
2V t e t Qe t=  

( ) ( ) ( ) ( ) ( )T T
3 1 2d d

t t

t t
V t x s H x s s e s H e s s

τ τ− −
= +∫ ∫  

P and Q are symmetry positive matrices, 1H and 2H satisfy 
the following form 
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T T T T
1 2 2 3 32 2 2H I E E K E E K K K= + + + , 

T T T
2 3 32H K E E K K K= + . 

Taking the time derivative of 1V , we have  
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Using the lemmas, Assumption 2 and Eq.(9), we have the 
following inequality 
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Using the same method, it can be shown that  
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We know that 3 0H < , 4 0H < , thus 0V < . The 
closed-loop system is asymptotically stable. 

In the following, we will prove ( )z t satisfying H∞  
performance condition. 

( ) ( ) ( ) ( )T 2 T

0
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∞
⎡ ⎤= −⎣ ⎦∫               (21) 

For any disturbance ( )tω , we have  
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( ) ( )

( ) ( ) ( ) ( )
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Then we have 

( ) ( ) ( ) ( )T T
5 6J x t H x t e t H e t≤ +  

where  
T 2 T

5 3 2H H C C PGG Pγ −= + + , 
2 T

6 4 2H H QGG Qγ −= + . 

By matrix inequality (15) and (16), we get 5 0H < , 6 0H < , 

which imply 0J < . The output ( )z t satisfies H∞ per- 
formance condition. The proof is completed. 
Remark: Theorem 1 illustrates that even existing network 
uncertainties and time delay, the queue length can track the 
desired queue length if we can design suitable controller.  

IV. SIMULATION RESULTS  
In this section, we validate the effectiveness and 

performance of the scheme of this paper by MATLAB/ 
SIMULINK. We will give simulation results for the proposed 
observer-base H∞ controller under the variations of network 
parameters. At the same time, we will draw comparisons 
between traditional observer-based controller (OBC)[10] and 
the observer-based H∞ controller about performance under 
disturbance. 

The choosing of the parameters is based on [10]. The 
number of the active TCP sessions 100N = , the link capacity 

1250C = packets/s, the equilibrium point of round-trip time 
0 0.2R s= , the desire queue size is d 150q = packets, the 

desired window size is 0 2.5W = packets, 2
0 2 / 2.5 0.32P = = . 

Therefore, min 0.32u = − , max 0.68u = . 
The following uncertainties parameters are considered: 

T
1 2 3 [0.2 0.1]D D D= = = , [ ]1 0 0.5E = , [ ]2 0.5 0E = ,

3 0.5E = , ( ) ( ) ( )1 2 3 sinF t F t F t t= = = , [ ]T1 1G = , 2γ = .  
For the proposed controller, we use LMI toolbox in the 

Matlab from the theorem to solve matrices P  and Q . 

13.0309 0.2444
0.2444 0.2410

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
13.0181 0.1659
0.1659 0.2436

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

It can be seen that matrices P and Q  are symmetry 
positive, so they satisfy the demand of the theorem. 

The following observer and feedback gains are obtained  

[ ]0.0521 0.0010K = , 
0.0540

4.1423
L

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

We can see that, in Fig.1, OBC and controller can obtain 
stability responses with disturbance, but the proposed 
controller enable the queue length to converge to its set value 
quickly and keep the queue oscillation small. 

Fig.2-Fig.5 plot the simulation results of observer-based 
H∞ controller of different network parameters. In Fig.2 we 
choose the parameters of network as above, we can see that 
the designed H∞ controller can obtained fast and stable 
responses without disturbance.  

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC06.6

1431



  

0 2 4 6 8 10
0

50

100

150

200

250

t/s

q(
t)/

pa
ck

et
s

 

 

H-inf controller
observer-based controller

 
Fig.1. The instantaneous queue length responses with disturbance 
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Fig. 2.  Queue length error with fixed network parameter 

In order to test the robust performance of H∞ controller for 
varied parameters, we vary N  from 50 to 80; the simulation 
results are given in Fig.3. The superior steady performance of 
H∞ controller is observed when network parameters change. 
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Fig. 3. Queue length error with varied network parameters 

In Fig.4-5, we add UDP flows (transmitting on1Mbit / s ) 
to the TCP flows at 5 th second, choosing fixed and varied 
network parameters, respectively. We can see H∞ controller 
shows better performance when UDP flows go down, with 
exhibiting faster responses and better regulation properties. 
From these simulations, it is obvious that the proposed 
scheme can be applied to a more complex network topology. 
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Fig. 4 Queue length error with fixed network and bursting flows 
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Fig. 5. Queue length error with varied network parameters and bursting flows 

V. CONCLUSION 
In this paper, we use linearization method to analyze a 

previously developed nonlinear model of TCP. For TCP 
network systems with the uncertain time-delay and external 
disturbance, an observer-based H-infinity controller is 
designed. On the basis of the Lyapunov-Krasovskii 
functional approach, by solving two linear matrices 
inequalities, the corresponding congestion control law is 
developed to achieve asymptotic stability. The simulation 
results demonstrate that the proposed AQM congestion 
control schemes possess well performance in various network 
conditions. 
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