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Abstract— In this paper, the problem of aircraft conflict
prediction is formulated as a reachability analysis problem
for a stochastic hybrid system. A switching diffusion model
is introduced to predict the future positions of an aircraft
following a given flight plan. The weak approximation of
the switching diffusion through a Markov chain allows us to
develop a numerical algorithm for computing an estimate of
the probability that the aircraft enters an unsafe region of
the airspace or come too close to another aircraft. Simulation
results are reported to show the efficacy of the approach.

I. INTRODUCTION

The rapidly increasing demand for air travel in recent

years has been a great challenge to the current Air Traffic

Management (ATM) systems. The primary tasks of ATM

systems are to maintain smooth air traffic flows and to

ensure air safety by avoiding the occurrence of aircraft

conflicts, namely, aircraft coming within a minimal allowed

separation or aircraft entering a forbidden zone. It is thus

of central importance to develop highly automated tools and

methodologies for the ATM systems to predict future aircraft

conflict, both for advance alerting and for conflict resolution.

The development of conflict prediction methods needs to

consider several characteristics of aircraft dynamics. First,

specified by the air traffic controller by a sequence of timed

way-points, the nominal path of an aircraft is typically a

piecewise linear one. Second, aircraft motions are subject to

various random perturbations such as wind, air turbulence,

etc., and thus may deviate from the nominal path. This

cross-track deviation may be corrected by the onboard Flight

Management System (FMS). In addition, aircraft dynamics

may exhibit several distinct modes, for example, keeping a

constant heading, turning, ascending, descending, and may

switch modes at proper times when following the nominal

paths. To accommodate these characteristics, we adopt the

modeling framework of stochastic hybrid systems, [1], [2].

Stochastic hybrid systems are hybrid systems with contin-

uous dynamics governed by stochastic differential equations

and with random discrete mode transitions governed by

Markov chains, and they are well-suited for modeling the

aircraft dynamics (see, e.g., [3], [4]) due to the random

perturbations and the mode-switching behavior exhibited in

the aircraft motion when reaching way-points. In this paper,
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we introduce a simplified version of the simulation model

proposed in [3] to predict the aircraft future positions. This

prediction model belongs to the family of the switching

diffusion systems. The aircraft conflict prediction problem is

formulated as a reachability analysis problem for the switch-

ing diffusion system, namely, estimating the probability that

the system state enters a certain subset of the state space

called the unsafe set.

Various previous works exist in studying aspects of the

reachability problem of stochastic hybrid systems. In [5],

[6], theoretical issues regarding the measurability of the

reachability events are addressed. In [6], [7], upper bounds

on the probability of reachability events are derived based

on the theory of Dirichlet forms associated with a right-

Markov process and on certain functions of the state of the

system known as barrier certificates, respectively. Another

reachability quantity, the exit time, is studied in [8]. In [9],

stochastic reachability is addressed in the discrete time case

by dynamic programming.

In this paper, we develop a numerical algorithm to com-

pute an asymptotically convergent estimate of the probability

that an aircraft conflict occurs. This algorithm is derived

based on the methodology for reachability computation of

stochastic hybrid systems introduced by the same authors

in [10]. The proposed algorithm is based on reachability

computations on a Markov chain approximation of the solu-

tion to the switching diffusion modeling the aircraft motion.

II. A SWITCHING DIFFUSION MODEL TO PREDICT THE

AIRCRAFT POSITION

Consider an aircraft flying at some constant altitude in

some region of the airspace during the time horizon T =
[0, tf ]. The aircraft position can be described through a

two-dimensional state vector x ∈ R
2 of coordinates with

respect to some global reference frame (0, x1, x2) in the

horizontal plane. The aircraft is assigned some flight plan

to follow that consists of an ordered sequence of way-

points {Oi, i = 1, 2, . . . ,M + 1}: Oi = (x1i, x2i) ∈ R
2,

i = 1, 2, . . . ,M + 1. Ideally, the aircraft should fly at some

constant speed along the reference path composed of the

concatenation of the ordered sequence {Ii, i = 1, 2, . . . ,M}
of line segments Ii with starting point Oi and ending point

Oi+1, i = 1, 2, . . . ,M . Deviations from the reference path

may be caused by the wind affecting the aircraft position and

by limitations in the aircraft dynamics in performing sharp

turns, resulting in cross-track error. The onboard 3D FMS

tries to reduce the cross-track error by issuing corrective

actions based on the aircraft’s current geometric deviation
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from the nominal path (without taking into account timing

specifications, however). Thus, the state of the aircraft at any

time instant t is given by a continuous component x(t) ∈ R
2

representing its position, and a discrete component q(t) ∈
Q := {1, 2, . . . ,M} depending on which line segment the

aircraft is currently tracking.

The aircraft motion is affected by different sources of

uncertainty, the main one being the wind. We assume that

the wind disturbance acts additively on the aircraft velocity

through some nominal contribution f : R
2 → R

2 that

depends on the aircraft position, and some stochastic con-

tribution modeled by a 2-D standard Brownian motion w(t).
Under the assumption that the aircraft velocity is constant

and equal to v ∈ R
+, the aircraft position x ∈ R

2 during the

time horizon T is governed by

dx(t) = v[cos(θ(t)) sin(θ(t))]T dt + f(x(t))dt + σdw(t),
(1)

where θ(t) is the heading angle at time t ∈ T .

In our model, the corrective actions of the 3D FMS are

modeled by setting the heading angle θ as an appropriate

function of x at any given time t ∈ T . For each segment

Ii of the reference path {Ii, i ∈ Q}, we define as reference

heading the angle Ψi = arg(x1i+1 − x1i + j(x2i+1 − x2i))
that segment Ii makes with the positive x1 axis of the

reference coordinate frame (see Figure 1).

Suppose that the aircraft is tracking the line segment

Ii, for some i ∈ Q, and is currently at a position x not

on Ii. For the aircraft to get on the reference segment Ii

as quickly as possible, it should assume a heading, called

correction heading, that is orthogonal to and points towards

Ii:Ψc(x, i) = Ψi − sgn(d(x, i))π
2 . Here, sgn : R →

{−1, 0,+1} denotes the sign function with sgn(0) = 0, and

d : R
2 × Q → R denotes the cross-track error function

d((x1, x2), i) = − sin(Ψi)(x1 − x1i) + cos(Ψi)(x2 − x2i).
On the other hand, the aircraft should also head towards

its next destination way-point Oi+1. To compromise between

these two objectives of reducing the cross-track error and

moving towards the next destination way-point, the heading θ
as specified by the FMS is modeled by a convex combination

of the reference heading Ψi and the correction heading Ψc:

θ = u(x, i) = γ(x, i)Ψc(x, i) + (1 − γ(x, i))Ψi, (2)

where the coefficient of the convex combination is a growing

function of the absolute value of the cross-track error:

γ(x, i) = min

(

1,
|d(x, i)|

dm

)

. (3)

Here, dm > 0 is a threshold value for the cross-track error:

the more closely it approaches dm, the more the aircraft

will follow the correction heading Ψc(x, i) rather than its

reference heading Ψi. Note that the resulting function u(·, i)
is continuous because γ(·, i) and d(·, i) are continuous.

Let q(t) ∈ Q be the index of the reference line segment

at time t ∈ T . Then the dynamics of the aircraft during T
can be obtained by plugging (2) into (1):

dx(t) = a(x(t),q(t))dt + σdw(t). (4)

Fig. 1. Reference frame for the “fly-by” turning method.

where we set a(x, q) = v[cos(u(x, q)) sin(u(x, q))]T +f(x).
The switching law from line segment Ii to the next one

Ii+1 is determined according to the commonly used “fly-

by” method of performing turns, where the aircraft turns

from Ii to Ii+1 without passing over the way-point Oi+1

but by “cutting the corner.” In the higher-order aircraft model

proposed in [3], the turn starts when the aircraft enters the

half-plane {(x1, x2) ∈ R
2 : α1ix1 + α2ix2 ≥ βi}, whose

boundary line α1ix1 + α2ix2 = βi is chosen so that an

aircraft tracking the reference line segment Ii can fly with

constant velocity v along an arc of circle joining Ii with Ii+1

(see Figure 1). If we denote by d∗i the distance from the way-

point Oi+1 at which an aircraft flying exactly on line segment

Ii should start turning, then, α1i = x1i+1−x1i

‖xi+1−xi‖
, α2i =

x2i+1−x2i

‖xi+1−xi‖
, βi = x1i+1(x1i+1−x1i)+x2i+1(x2i+1−x2i)

‖xi+1−xi‖
− d∗i . The

following expression for d∗i , d∗
i = v2

g tan(φ̄)
tan

( |Ψi+1−Ψi|
2

)

,

is derived in [3] from d∗
i = ri tan(ρi), where ρi = |Ψi+1−Ψi|

2
and ri is computed as the velocity v divided by the (constant)

angular velocity g
v tan(φ̄), which is obtained from a higher

order aircraft model by assuming that the bank angle is kept

constant and equal to φ̄.

Ideally, crossing the switching boundary α1ix1 +α2ix2 =
βi while tracking Ii should cause a jump in the state

component q of equation (4) from i to i + 1. In practice,

however, the switching time instant can be uncertain. For

this reason, we assume that q is a Markov chain with

switching rates λij : R
2 → R, i, j ∈ Q, i 6= j, that

depend on the aircraft position x. More specifically, for any

x = (x1, x2) ∈ R
2

λij(x) =

{

λ̄ g(α1ix1 + α2ix2 − βi), j = i + 1, i < M

0, otherwise,

(5)

where λ̄ is some positive real constant and g : R → [0, 1] is

a continuous function increasing monotonically from 0 to 1.

Thus, the switching rate from Ii to Ii+1 grows from 0 to λ̄
while crossing the switching boundary.

As detailed next, the described stochastic hybrid system

modeling the aircraft motion generates a switching diffusion

process (x(t),q(t)), t ∈ T , for any initial condition (x0, q0).
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A. Switching diffusions

A switching diffusion is a stochastic hybrid system with

state s characterized by a continuous component x and a

discrete component q that take values, respectively, in the

Euclidean space R
n and in the finite set Q = {1, 2, . . .M}.

Thus, the hybrid state space is given by S := R
n ×Q.

The evolution of the discrete state component q is piece-

wise constant and right continuous, i.e., for each trajectory

of q there exists a sequence of consecutive left closed, right

open time intervals {Ti, i = 0, 1, . . . }, such that q(t) = qi,

∀t ∈ Ti, with qi ∈ Q, and qi 6= qi±1.

During each time interval Ti when q(t) is constant and

equal to qi ∈ Q, the continuous state component x evolves

according to the stochastic differential equation (SDE)

dx(t) = a(x(t), qi)dt + b(x(t), qi) Σ dw(t), (6)

initialized with x(t−i ) = limh→0+ x(ti − h) at time ti :=
inf{t : t ∈ Ti}. Functions a(·, qi) : R

n → R
n and b(·, qi) :

R
n → R

n×n are the drift and diffusion terms, and matrix

Σ ∈ R
n×n is diagonal with positive entries modulating the

variance of the standard n-dimensional Brownian motion

w(t). During the time interval Ti between consecutive jumps

in q, then x(t) behaves as a diffusion process with local

properties determined by a(·, qi) and b(·, qi).
A jump in the discrete state may occur during the con-

tinuous state evolution with an intensity and according to

a probabilistic reset map that both depend on the current

value taken by s. Specifically, q is a continuous time process,

whose evolution at time t is conditionally independent on

the past given s(t−) = (x, q) ∈ S , and is governed by the

transition probabilities

P{q(t + ∆) = q′|s(t−) = (x, q)} = λqq′(x)∆ + o(∆),

for q′ 6= q ∈ Q, where λqq′ : R
n → R is the transition rate

function.

The transition rate functions determine switching intensity

and reset map of the discrete state q. More precisely, during

the infinitesimal time interval [t, t+∆], q(t) will jump once

with probability λ(s)∆+ o(∆), and two or more times with

probability o(∆), starting from s(t−) = s, where λ : S →
[0, +∞) is the jump intensity function given by

λ(s) =
∑

q′∈Q,q′ 6=q

λqq′(x), s = (x, q) ∈ S. (7)

If s ∈ S is such that λ(s) = 0, then no instantaneous jump

can occur from s. Let s ∈ S be such that λ(s) 6= 0. Then,

the distribution of q(t) over Q, after a jump indeed occurs

at time t from s(t−) = (x, q), is given by the reset function

R : S ×Q → [0, 1]:

R((x, q), q′) =

{

λqq′ (x)

λ(s) , q′ 6= q

0, q′ = q.
(8)

Assumption 1: λqq′(·) is a non-negative function, which

is bounded and Lipschitz continuous for each q, q′ ∈ Q,

q 6= q′. a(·, q), b(·, q) are bounded and Lipschitz continuous

for each q ∈ Q. ¤

Under Assumption 1, the stochastic hybrid system de-

scribed above initialized with s0 = (x0, q0) ∈ S admits a

unique strong solution s(t) = (x(t),q(t)), t ≥ 0, represent-

ing a switching diffusion process. Moreover, s is a Markov

process and the trajectories of the continuous component x

are continuous.

III. AIRCRAFT CONFLICT PREDICTION BY

REACHABILITY COMPUTATIONS

Our objective is to evaluate the possibility that the aircraft

will enter some forbidden area of the airspace D ⊂ R
2,

characterized, for example, by Special Use Airspace (SUA)

areas, bad weather or congested zones that could make the

flight uncomfortable or even unsafe, during the look-ahead

time horizon T = [0, tf ].
With the aircraft dynamics modeled by a switching dif-

fusion process with state s = (x,q), the aircraft conflict

prediction problem can be reformulated as the following

stochastic reachability problem: Given the unsafe set D ⊂
R

n, determine the probability that the continuous component

x(t) solving (6) reaches D during the look-ahead time hori-

zon T = [0, tf ] when the switching diffusion is initialized

with s0 = (x0, q0) ∈ S :

Ps0

{

x(t) ∈ D for some t ∈ T
}

, (9)

where Ps0
is the probability measure induced by the switch-

ing diffusion s with initial condition s0. If D is measurable

and closed, the problem is well-posed since the reachability

event “x(t) ∈ D for some t ∈ T ” is measurable given that

the process x has continuous trajectories, [6].

To evaluate the probability (9) numerically, we introduce

a bounded open set U ⊂ R
n containing D that is chosen

large enough so that the situation can be declared safe once

x wonders outside U . Let U c denote the complement of U
in R

n. Then, with reference to the domain U , the probability

of entering D can be approximated by

Ps0
:= Ps0

{

x hits D before hitting U c within T
}

. (10)

Hence, for the purpose of computing (10), we can assume

that x in (6) is defined on the open domain U \D with initial

condition x0 ∈ U \ D, and that x is stopped as soon as it

hits the boundary ∂ U c ∪ ∂D of U \ D.

We now describe a method to estimate Ps0
by weakly

approximating the switching diffusion process s using the

piecewise constant interpolation of a suitably defined discrete

time Markov chain.

A. Markov chain approximation

The discrete time Markov chain {vk, k ≥ 0} is char-

acterized by a two-component state: v = (z,m), where

z takes on values in a finite set Zδ obtained by gridding

U \ D, whereas m takes on values in the finite set Q. Note

that the two components of the Markov chain state v =
(z,m) are introduced to approximate the two components

of the switching diffusion s = (x,q), respectively. The

interpolation time interval ∆δ is a positive function of the
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gridding scale parameter δ and tends to zero faster than δ:

∆δ = o(δ).

In order to take into account the properties of the pure

jump process q when defining the transition probabilities

of the approximating Markov chain {vk, k ≥ 0}, it is

convenient to introduce an enlarged Markov chain process

{(vk, jk), k ≥ 0}. The discrete time process {jk, k ≥ 0}
is an i.i.d. Bernoulli process that represents the jump occur-

rences: if jk = 1, then a jump, possibly of zero entity, occurs

at time k; whereas if jk = 0, then no jump occurs at time

k. Under the assumption that jk is independent of the past

variables vi, i = 0, 1, . . . , k, ∀k ≥ 0, then, it is easily shown

that {vk, k ≥ 0} is a Markov chain. Also, the transition

probabilities of the Markov chain {vk, k ≥ 0} under the

grid scale δ are given by Pδ

{

vk+1 = v′ | vk = v
}

=
∑

j∈{0,1} Pδ

{

vk+1 = v′ | vk = v, jk = j
}

Pδ

{

jk = j
}

,

which are specified by the jump probability Pδ

{

jk = 1
}

,

the inter macro-states transition probability Pδ

{

vk+1 =
v′ | vk = v, jk = 1

}

, and the intra macro-states transition

probability Pδ

{

vk+1 = v′ | vk = v, jk = 0
}

.

Jump probability: We set, for each k = 0, 1, . . .,

Pδ

{

jk = 1
}

= 1 − e−λmax∆δ = λmax∆δ + o(∆δ), (11)

where λmax := maxx∈Rn

∑

q,q′∈Q,q 6=q′ λqq′(x).

Inter macro-states transition probability: If jk = 1 (a jump

occurs at time k), then, zk+1 = zk since the continuous state

component x of the diffusion process s is reinitialized with

the same value prior to the jump occurrence; whereas the

value of mk+1 is determined based on that of vk through

the (conditional) transition probabilities pδ(q → q′|z) :=
Pδ

{

mk+1 = q′ | vk = (z, q), jk = 1
}

. In other words,

Pδ

{

(zk+1,mk+1) = (z′, q′) | vk = (z, q), jk = 1
}

=

{

0, z′ 6= z

pδ(q → q′|z), z′ = z.

We set

pδ(q → q′|z) =

{

λq q′ (z)

λmax
, q′ 6= q

1 − 1
λmax

∑

q∗∈Q,q∗ 6=q λq q∗(z), q′ = q.

This way, the probability distribution of mk+1 when a

jump of non-zero entity occurs at time k from (z, q) is

Pδ

{

mk+1 = q′ | vk = (z, q), jk = 1,mk+1 6= mk

}

=
R((z, q), q′), where R(·, ·) is the reset function defined in

(8). Also, the probability that a jump of non-zero entity

occurs at time k from (z, q) is given by Pδ

{

jk = 1,mk+1 6=
q | vk = (z, q)

}

= λ((z, q))∆δ + o(∆δ), where λ(·) is the

jump intensity function defined in (7).

Intra macro-state transition probability: If jk = 0 (no

jump occurs at time k), then mk+1 = mk; whereas the value

of zk+1 is determined from that of vk through the (condi-

tional) transition probabilities pδ(z → z′|q) := Pδ

{

zk+1 =
z′ | vk = (z, q), jk = 0

}

describing the evolution of z within

the “macro-state” q ∈ Q. In other words,

Pδ

{

(zk+1,mk+1) = (z′, q′) | vk = (z, q), jk = 0
}

=

{

0, q′ 6= q

pδ(z → z′|q), q′ = q.

For the weak convergence result to hold, the probabil-

ities pδ(z → z′|q) should be suitably selected so as to

approximate locally the evolution of the x component of

the switching diffusion s = (x,q) with absorption on the

boundary ∂U c ∪ ∂D when no jump occurs in q.

To clarify this “local consistency” notion, we need first

to introduce some notations. Let Σ = diag(σ1, σ2, . . . , σn)
with σi > 0, i = 1, . . . , n. Fix δ > 0. Denote by Z

n
δ

the integer grids of R
n scaled according to δ and the

positive diagonal entries of matrix Σ as follows Z
n
δ =

{(m1η1δ,m2η2δ, . . . ,mnηnδ)| mi ∈ Z, i = 1, . . . , n},
where ηi := σi

σmax
, i = 1, . . . , n, with σmax = maxi σi. For

each grid point z ∈ Z
n
δ , define the immediate neighbors

set as a subset of Z
n
δ whose distance from z along the

coordinate axis xi is at most ηiδ, i = 1, . . . , n, i.e., Nδ(z) =
{z + (i1η1δ, . . . , inηnδ) ∈ Z

n
δ | (i1, . . . , in) ∈ I}, where

I ⊆ {0, 1,−1}n \ {(0, 0, . . . , 0)}. Nδ(z) represents the set

of states to which z can evolve in one time step within a

macro-state, starting from z.

The finite set Zδ where z takes on values is defined as the

set of all those grid points in Z
n
δ that lie inside U but outside

D: Zδ = (U \D)∩Z
n
δ . The interior Z◦

δ of Zδ consists of all

those points in Zδ which have all their neighbors in Zδ . The

boundary ∂Zδ = Zδ\Z
◦
δ of Zδ is the union of the sets ∂ZδUc

and ∂ZδD, where ∂ZδUc is the set of points with at least

one neighbor inside U c and ∂ZδD is the set of points with at

least one neighbor inside D. The points that satisfy both these

conditions, if any, are assigned to either ∂ZδD or ∂ZδUc , so

as to make these two sets disjoint. This eventually introduces

an error in the estimate of the probability of interest, which

however becomes negligible if U is chosen sufficiently large.

For each q ∈ Q, we define pδ(z → z′|q) so that:

• each state z in ∂Zδ is an absorbing state;

• from any state z in Z◦
δ , z moves to one of its neighbors in

Nδ(z) or remains at z according to probabilities determined

by its current location:

pδ(z → z′|q) =

{

πδ(z
′|(z, q)), z′ ∈ Nδ(z) ∪ {z}

0, otherwise,
z ∈ Z◦

δ ,

(12)

where the probability distributions πδ(·|(z, q)) : Nδ(z) ∪
{z} → [0, 1], z ∈ Z◦

δ , are appropriate functions of the drift

and diffusion terms in (6) evaluated at (z, q).
Fix some time step k and consider the conditional mean

and variance of the finite difference zk+1 − zk given that

vk = v and jk = 0 (intra macro-state evolution):

mδ(v) = Eδ

[

zk+1 − zk | vk = v, jk = 0
]

Vδ(v) = Eδ

[

(zk+1 − zk)(zk+1 − zk)T | vk = v, jk = 0
]

For the local consistency property to hold, Nδ(z) and

πδ(·|(z, q)) : Nδ(z) ∪ {z} → [0, 1], z ∈ Z◦
δ , should
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be chosen so that 1
∆δ

mδ(z, q) → a(x, q), 1
∆δ

Vδ(z, q) →

b(x, q)Σ2b(x, q)T , as δ → 0, for all x ∈ U \ D, where, for

any δ, z is a point in Z◦
δ closest to x. Different choices are

possible that satisfy the local consistency property (see [11]).

Discrete time Markov chain interpolation: Let {∆τ k, k ≥
0} be an i.i.d. sequence of random variables exponentially

distributed with mean value ∆δ , independent of {vk, k ≥ 0}
and {jk, k ≥ 0}. Denote by {v(t), t ≥ 0} the continuous

time stochastic process that is equal to vk on each interval

[τ k, τ k+1), with τ 0 = 0 and τ k+1 = τ k + ∆τ k, k ≥ 0.

Theorem 1 ([10]): Suppose that the approximating

Markov chain {vk, k ≥ 0} is initialized at a point

v0 ∈ Z◦
δ × Q closest to s0 ∈ (U \ D) × Q and satisfies

the local consistency properties. Then, under Assumption 1,

the process {v(t), t ≥ 0} obtained by interpolation of

{vk, k ≥ 0} converges weakly as δ → 0 to the switching

diffusion process {s(t) = (x(t),q(t)), t ≥ 0} associated

with the initial condition s0, with x(t) defined on U \ D
and absorption on the boundary ∂U c ∪ ∂D. ¤

Estimation of the probability of reaching the unsafe set:

Consider the look-ahead time horizon T = [0, tf ].
Fix δ > 0 so that kf :=

tf

∆δ
is an integer,

and construct the approximating Markov chain {vk =
(zk,mk), k ≥ 0} satisfying Theorem 1. Then, the estimate

P̂s0
:= Pδ

{

zk hits ∂ZδD before ∂ZδUc within [0, kf ]
}

converges with probability one to the probability of interest

Ps0
in (10). Since both the boundaries ∂ZδUc and ∂ZδD are

absorbing, then P̂s0
reduces to

P̂s0
= Pδ

{

zkf
∈ ∂ZδD

}

. (13)

B. Application to the aircraft conflict prediction

In order to complete the definition of the Markov chain

approximating the diffusion process modeling the aircraft

motion in Section II, we only need to specify the immediate

neighbors set Nδ(z), the family of distribution functions

{πδ(·|v) : Nδ(z) ∪ {z} → [0, 1], z ∈ Z◦
δ }, and the

interpolation time interval ∆δ , so that the local consistency

property holds.

Note that the diffusion term b(x, q) in equation (4) gov-

erning the aircraft position x is given by b(x, q) = σI ,

where I is the identity matrix of size 2. Then, the immediate

neighbors set Nδ(z), z ∈ Zδ , can be confined to the set of

points along each one of the xi axis whose distance from q
is δ, i = 1, 2: z1+

= z + (+δ, 0), z1−
= z + (−δ, 0), z2+

=
z+(0, +δ), and z2−

= z+(0,−δ). The transition probability

function πδ(·|v) over Nδ(z)∪{z} from v = (z, q) ∈ Z◦
δ ×Q

can be chosen as follows:

πδ(z
′|v) =











c(v) ξ0(v), z′ = z

c(v) e+δξi(v), z′ = zi+ , i = 1, 2

c(v) e−δξi(v), z′ = zi− , i = 1, 2,

(14)

with ξ0(v) = 2
ρσ2 − 4, ξi(v) = [a(v)]i

σ2 , i = 1, 2, c(v) =
1

2
∑

2
i=1

csh(δξi(v))+ξ0(v)
, where for any y ∈ R

n, [y]i denotes

the component of y along the xi direction, i = 1, 2. ρ is a

positive constant that has to be chosen small enough such

that ξ0(v) defined above is positive for all v ∈ Z◦
δ × Q.

In particular, this is guaranteed if 0 < ρ ≤ 1
2σ2 . As for

the interpolation time interval ∆δ , it can be set equal to

∆δ = ρδ2.

With the above choices, it is then easily verified that the

local consistency property holds, which implies the weak

convergence result in Theorem 1. The estimate P̂s0
in (13)

of the probability of conflict can be computed by the iterative

algorithm described hereafter.

Define a set of probability maps p̂
(k) : Zδ × Q → [0, 1],

k = 0, 1, . . . , kf , where

p̂
(k)(v) := Pδ

{

zkf
∈ ∂ZδD | vkf−k = v

}

(15)

is the probability of zk hitting ∂ZδD before ∂ZδUc within

the discrete time interval [kf −k, kf ] starting from v at time

kf − k. Then, P̂s0
can be computed as P̂s0

= p̂
(kf )(v0).

Moreover, it is easily seen that p̂
(k)
δ : Zδ × Q → [0, 1],

0 ≤ k < kf , satisfies the recursion

p̂
(k+1)(v) =

∑

v′∈Zδ×Q

pδ(v → v′)p̂(k)(v′), v ∈ Zδ ×Q.

Hence p̂
(kf )

can be computed by iterating this equation kf

times starting from k = 0, initialized with the indicator

function of the set ∂ZδD ×Q by the definition (15) of p̂
(k)

.

Recalling that any v ∈ ∂Zδ ×Q is an absorbing state and

that, for each k = 0, . . . , kf , p̂
(k)(v) = 1 if v ∈ ∂ZδD ×Q,

and p̂
(k)(v) = 0 if v ∈ ∂ZδUc ×Q, we get

p̂
(k+1)(v) =



















∑

v′∈Zδ×Q

pδ(v → v′)p̂(k)(v′), v ∈ Z◦
δ ×Q

1, v ∈ ∂ZδD ×Q

0, v ∈ ∂ZδUc ×Q.

Remark 1 (Computational Complexity): The proposed it-

erative algorithm to compute P̂s0
determines all the kf + 1

maps p̂
(k)

, k = 0, 1, . . . , kf . Consider the general case

where the continuous state space has dimension n and

there is a total of M discrete modes. Then for a grid size

δ, since ∆δ = ρδ2, the computational complexity of the

above reachability computation as measured by the total

number of recursive iterations is of the order O( M
δn+2 ), which

grows exponentially fast with the continuous state dimension.

This unfavorable feature, however, is also shared by other

reachability computation algorithms of general deterministic

and stochastic hybrid systems. For practical purpose, the

grid size δ should be chosen to balance the two conflicting

considerations that large δ’s may not allow for the simulation

of fast moving processes and may lead to larger estimation

errors, but for small δ’s the running time may be too long.

Despite the computation intensity, our algorithm has the

advantage over simulation-based methods, [8], that, after its

completion, an estimate of the probability of conflict over

the residual time horizon [tf − t, tf ] of length t is readily

available for any t ∈ (0, tf ), and is given by the map

p̂
(⌊(tf−t)/∆δ⌋) evaluated at the state value at time tf − t .

This fact may enable one to design a resolution maneuver to

avoid the unsafe region during [0, tf ] by adaptively adjusting
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the aircraft heading based on the probability-to-go map

p̂
(⌊(tf−t)/∆δ⌋) pre-computed at the very beginning of the

time interval. For instance, the heading of the aircraft could

be chosen as the negative gradient direction of p̂
(⌊(tf−t)/∆δ⌋),

i.e., the direction along which the probability of conflict

decreases the fastest. ¤

IV. NUMERICAL EXAMPLE

Consider the sequence of way-points O1 = (60,−40),
O2 = (40,−20), O3 = (40, 0), and O4 = (60, 20) (all

coordinates have the unit of km), and a disk D of radius

5 km centered at the point (60, 15). Our goal is to estimate

the probability Ps0
that an aircraft with flight plan {Oi, i =

1, 2, 3, 4}, velocity v equal to Mach 0.8, and located at an

arbitrary initial position x0 will ever enter the forbidden zone

D within the time horizon T = [0, 200] s. Note that we

have chosen a case where the nominal flight path crosses

the forbidden zone to allow a more prominent visualization

of the influence of the FMS correction action on Ps0
.

We perform two experiments with the same set of param-

eters (φ̄ = 0.2◦, g = 9.81 m s−2, dm = 200 km, σ = 0.3
km1/2s−1, f(·) = 0, λ̄ = 0.03 s−1, η= 0.5 km−1s2), except

that in the second experiment we set γ(x, i) = 1 in (2)

so that there is no cross-track error correction effort from

the FMS in the aircraft dynamics. In both experiments, we

choose the gridding scale parameter δ = 1 km and the region

U as the rectangle U = (−10, 110)× (−90, 30). In addition,

we assume that the function g(·) in equation (5) is given by

g(y) = 1/(1+0.1e−500y), y ∈ R. The estimated probability

of conflict P̂s0
is plotted in Figure 2 (first experiment on

the top and second on the bottom) as a function of the

initial position x0 within U . Note that the region with higher

probability of conflict shrinks considerably in the case of no

cross-track error correction. This is because, regardless of the

aircraft initial location, the cross-track error correction term

tends to cause the aircraft to converge along the reference

path, which in itself will pass through the forbidden zone.

Without the cross-track error correction, the aircraft will

deviate from the reference path with increased probability,

thus reducing the likelihood of a conflict.

V. CONCLUSIONS

We studied the problem of aircraft conflict prediction as

a reachability analysis problem for a switching diffusion. A

stochastic approximation scheme to estimate the probability

that a single aircraft will enter a forbidden area of the

airspace within a finite time horizon was presented. Exten-

sion of the approach to more complex aircraft conflict pre-

diction problems is straightforward, although the increased

problem dimension causes an exponential growth in the

computational effort. The ongoing development of efficient

model checkers for Markov chains is much relevant in this

respect.
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