
Control Software Model Checking Using

Bisimulation Functions for Nonlinear Systems

James Kapinski1, Alexandre Donzé2, Flavio Lerda2,

Hitashyam Maka1, Silke Wagner2, and Bruce H. Krogh1

1 Dept. of Electrical and Computer Engineering, 2 Dept. of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213
1{jpk3|hmaka|krogh@ece.cmu.edu} 2{adonze|flerda|silkwa@cs.cmu.edu}

Abstract— This paper extends a method for integrating
source-code model checking with dynamic system analysis to
verify properties of controllers for nonlinear dynamic systems.
Source-code model checking verifies the correctness of control
systems including features that are introduced by the software
implementation, such as concurrency and task interleaving. Sets
of reachable continuous states are computed using numerical
simulation and bisimulation functions. The technique as origi-
nally proposed handles stable dynamic systems with affine state
equations for which quadratic bisimulation functions can be
computed easily. The extension in this paper handles nonlinear
systems with polynomial state equations for which bisimulation
functions can be computed in some cases using sum-of-squares
(SoS) techniques. The paper presents the convex optimizations
required to perform control system verification using a source-
code model checker, and the method is illustrated for an
example of a supervisory control system.

I. INTRODUCTION

Verifying that a control system design satisfies given spec-

ifications requires a representation of the real-time control al-

gorithm running on a computer interacting with the dynamic

system being controlled. Usually control system designs are

evaluated using numerical simulation. In simulation models,

there is typically no explicit representation of the actual real-

time control program. Recently, we introduced a method of

verifying control systems using a source-code model checker

to manage the exploration of the state space of the control

software [4]. In this approach, sets of reachable continuous

states are computed using numerical integration and the

concept of bisimulation functions proposed by Girard and

Pappas [3]. The technique described in [4] handles stable dy-

namic systems with affine state equations for which quadratic

bisimulation functions can be computed easily. This paper

presents an extension of our model checking technique to

nonlinear systems with polynomial state equations for which

bisimulation functions can be computed in some cases using

sum-of-squares (SoS) techniques [6], [1].

This research was sponsored by the Air Force Office of Scientific
Research (AFOSR) under contract no. FA9550-06-1-0312, the National
Science Foundation (NSF) under grant no. CCR-0411152, the Gigascale
Systems Research Center (GSRC), Semiconductor Research Corporation
(SRC), the Naval Research Laboratory (NRL), and the General Motors
Collaborative Research Lab at CMU. The views and conclusions contained
in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of AFOSR,
NSF, GSRC, SRC, NRL, GM, or the U.S. government.

Using a source-code model checker rather than simulation

to verify properties of real-time control systems offers a

number of advantages. Software verification applies to the

actual code that implements the controller, rather than just a

model of the control law. This assures that bugs introduced

in the generation of the source code will be detected. It also

makes it possible to verify aspects of the system behavior

introduced by the software implementation, such as con-

currency and task interleaving. A model checker efficiently

manages the exploration of multiple paths of execution,

whereas a simulation run represents only a single system

trajectory. Model checkers identify states that have been

visited previously so that every run of the system does not

have to be executed.

In a manner similar to the work of [1] and [3], our

approach uses the sublevel sets of bisimulation functions to

verify the properties of entire sets of continuous-time trajec-

tories based on individual numerical simulations. The exten-

sion to nonlinear dynamic systems presented in this paper

is critical for verifying properties of supervisory controllers

that must operate correctly beyond the range of conditions

covered by linearized dynamic models. The paper makes the

following contributions: (a) we formulate the optimization

problems that need to be solved to perform model-checking-

based verification for nonlinear dynamic systems; (b) we

show how SoS techniques can be applied to solve these

problems; (c) we discuss and illustrate practical aspects of

achieving effective computational results in the context of our

verification procedure; and (d) we illustrate the approach for

an example of a supervisory control system for a nonlinear

dynamic system. The concluding section discusses directions

for further research on the theory of model checking for

control system software and on methods for improving the

performance of our model checking tool.

II. VERIFICATION OF CONTROL SOFTWARE

This section briefly reviews the verification algorithm

presented in [4]. We consider sampled-data control systems

(SDCS) comprising a plant described by dynamic state

equations and a controller implemented as software that

periodically updates the commands to the plant. The behav-

ior of the controller may be nondeterministic due to task

interleaving.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThTA08.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 4024

A state s of an SDCS consists of a control location L,

which corresponds to a location in the control software, a

valuation of the controller variables v, and a valuation of the

plant variables x. The pair q = (L,v) is called the controller

state and x is called the plant state. We will denote the

SDCS state by either s = (q,x) or s = ((L,v),x). The

controller executes periodically at multiples of the sampling

time ts. We assume that the time required to execute the

control program is negligible relative to the sampling period

ts. A controller transition corresponds to the execution of an

atomic operation in the control program, which takes the con-

troller to a new control state. When the controller executes

at a sampling instant, several controller transitions can occur.

We assume that every sequence of controller transitions starts

at an initial control location Linitial and eventually terminates

in a finite number of controller transitions at the final control

location Lfinal. No controller transition is allowed from

control location Lfinal. Since we assume that the control

program execution time is negligible, the plant state does

not change while controller transitions occur.

Plant dynamics are described by state equations of the

form ẋ = fv(x), where the plant dynamics fv(·) depend on

the valuation of the controller variables v. Let ξx0

v
: R →

Rn denote a solution to the initial value problem ẋ(t) =
fv(x(t)),x(0) = x0. We assume fv(·) is differentiable and

that the solution ξx0

v
(·) to the state equation for given v and

x0 always exists and is unique. A plant transition for given v

and x0 corresponds to the evolution of the dynamical system

for the sampling time ts from x0 to ξx0

v
(ts). Plant transitions

are allowed only from control location Lfinal (i.e., when the

controller’s execution has terminated). Controller variables

do not change during plant transitions but the control location

is reset to Linitial at the end of a plant transition.

A trace of an SDCS is a finite sequence of states σ =
s0 . . . sK such that sk −→ sk+1 corresponds to either a

controller transition or a plant transition. The duration of

a trace is given by the number of plant transitions multiplied

by the sampling time ts. Figure 1 illustrates traces of an

SDCS. The plant states correspond to the x1 and x2 axes. The

vertical axis corresponds to the controller variables. Plant

transitions are represented by continuous arrows; sequences

of controller transitions from Linitial to Lfinal are represented

by dotted arrows.

Bounded-Time Safety: Let Fail denote a set of fail

states for the SDCS. The property we want to verify is

bounded-time safety: Given a time bound T (assumed to

be a multiple of the sampling period ts) and a set of initial

states I , we want to prove that no trace of the SDCS that

starts at an initial state s0 ∈ I and whose duration is less

than the time bound T contains a system state that is in Fail.

Our approach for checking bounded-time safety of an

SDCS is based on performing simulations of a subset of

its traces while pruning some of the traces by merging

states. Model checking merges only identical states, while

our approach performs a merge also when two states are

in proximity to each other, provided the pruned traces are

guaranteed to be safe. The pruned traces are shown to be

Fig. 1. An illustration of the traces of an SDCS. Solid arrows represent
plant transitions. Dotted arrows represent sequences of controller transitions.

safe by using bisimulation functions (presented formally in

the following section) to compute sets of safe plant states

around the points in a trace. These sets correspond to traces

that are in proximity of the visited trace and are guaranteed

to be safe. When the algorithm reaches a state within a safe

set, the corresponding trace is pruned.

The algorithm computes safe sets surrounding points on

the simulation traces and propagates them backwards from

the end points. A set of plant states X is a safe set for

controller state q and time bound τ if and only if for every

plant state x ∈ X , every trace of the SDCS starting at (q,x)
of duration less than or equal to τ does not reach a state in

the Fail set.

In general, given a dynamical system and two initial states

that are in proximity to each other, the trajectories starting

at those states may diverge. Bisimulation functions were

introduced by Girard and Pappas as a way to extend the

notion of bisimulation relations from discrete systems to

continuous systems [2]. We use bisimulation functions to

determine safe sets of plant states and then to propagate safe

sets backward in time along plant transitions.

To characterize the control program behavior for sets of

continuous states we define the notion of program equiva-

lence. Let the set of discrete successors of a state (q,x),
denoted by Q̂(q,x), be the set of controller states q̂ such

that (q,x) −→ (q̂,x) is a controller transition. Given two

plant states x
′ and x

′′ and a controller state q, we say

that x
′ and x

′′ are program equivalent at q, denoted by

x
′ ≈q x

′′, if and only if the set of discrete successors of

(q,x′) is equal to the set of discrete successors of (q,x′′),
i.e., Q̂(q,x′) = Q̂(q,x′′). The equivalence class of x

′ with

respect to ≈q, denoted by [x′]
≈q

, is a set of plant states that

cannot be distinguished by the program (i.e., the program

generates the same successors for all states in the set). The

equivalence classes of the program equivalence relation are

used to compute a safe set for a given state given the safe

sets for the states reachable from it by performing controller

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA08.2

4025

transitions.

The algorithm presented in [4] assumes that plant dy-

namics are provided as stable, affine state equations, for

which quadratic bisimulation functions can be computed by

solving Lyapunov equations. Sublevel sets of the computed

bisimulation functions (defined in the next section) are used

to approximate the safe sets computed by the algorithm.

The technique requires several optimizations be performed

on the fly. These are needed when propagating the safe sets

backward along a trace. The two basic operations required

are: (i) maximizing the size of a sublevel set subject to a

set of constraints; and (ii) maximizing the size of a sublevel

set so that it remains within a given sublevel set. Section IV

addresses how these operations can be performed for a class

of nonlinear systems.

III. BISIMULATION FUNCTIONS

To perform the algorithm described in Sec. II, a bisim-

ulation function must be computed for each possible value

of the controller variables v. The bisimulation functions are

used to produce conservative estimates of the set of reachable

plant states. This section describes methods for computing

bisimulation functions for nonlinear systems.

We begin with the definition of a bisimulation function for

a dynamical system

Σ : [ẋ(t) = f(x(t)),x ∈ R
n] ,

whose transition relation → is given by

x
t
→ x

′ iff ∃ξ : [0, t] → Rn such that

ξ(0) = x, ξ(t) = x
′, and ∀t̄ ∈ [0, t] : ξ̇(t̄) = f(ξ(t̄)) .

We define a bisimulation function to be a differentiable

function ϕ : R
n × R

n → R that satisfies the following

requirements [3]:

ϕ(x1,x2) ≥ 0 and (1)

∂ϕ(x1,x2)

∂x1

f(x1) +
∂ϕ(x1,x2)

∂x2

f(x2) ≤ 0 (2)

for every x1,x2 ∈ Rn.

Given a bisimulation function ϕ for a dynamical system

Σ, a state x ∈ Rn of Σ, and a real value r ≥ 0, the sublevel

set around x of size r, denoted by Nϕ(x, r), is defined as

Nϕ(x, r) = {z ∈ R
n |ϕ(x, z) ≤ r} .

The following proposition ensures that our approximation

of reachable plant states using bisimulation functions is

conservative.

Proposition 1: Let ϕ be a bisimulation function, x1,x2 ∈

R
n be arbitrary states of Σ, t ≥ 0, r ≥ 0, and xi

t
→ x

′
i for

i ∈ {1, 2}. Then the following holds:

x2 ∈ Nϕ(x1, r) =⇒ x
′
2 ∈ Nϕ(x′

1, r)
The proof of this proposition is a direct consequence of

Corollary 1 of [3]. In the following, we present a technique

for computing bisimulation functions for a class of nonlin-

ear systems using sum-of-squares (SoS) techniques inspired

from [1].

A multivariate polynomial, p(x) : R
n → R, is a sum-of-

squares (SoS) if there exists polynomials si(x) : Rn → R,

for i ∈ {1, . . . , m}, such that

p(x) =

m
∑

j=1

s2
i (x).

Let S be the set of all SoS. Efficient techniques exist

for determining that a polynomial is a SoS [6], [7], [5].

Also, optimization problems involving constraints requiring

that polynomials be SoS can be posed as semi-definite

programming problems and solved using efficient numerical

techniques.
For problems where we require that a polynomial be

positive, we instead require that the polynomial be a SoS,
which is an easier problem to solve. For the computation
of a bisimulation function ϕ for a dynamical system Σ this
means that, instead of computing ϕ such that (1) and (2)
hold, we compute ϕ such that

ϕ ∈ S and − Dϕ , −

„

∂ϕ

∂x1

f(x1) +
∂ϕ

∂x2

f(x2)

«

∈ S . (3)

Assume that the plant dynamics and the bisimulation

function are polynomial. We select the degree and the form of

the bisimulation function (i.e., the degree and the monomial

terms that occur in the polynomial bisimulation function)

and then pose a convex feasibility problem. The solution to

this problem identifies the coefficients in the bisimulation

function such that the bisimulation function satisfies (1) and

(2)

For a given dynamic state equation, it may not be possible

to find a bisimulation function that satisfies (3) for the entire

state space. If we are only interested in behaviors within a

subset of the state space, as suggested in [6], we can loosen

the restrictions on the bisimulation functions so that (3) must

hold only within a subset of the state space. The following

describes how this is accomplished.

We first choose two functions g1 and g2 such that the set

{(x1,x2) ∈ R
n × R

n | g1(x1) ≥ 0 ∧ g2(x2) ≥ 0} (4)

represents a region of the state space for which we want to

find a bisimulation function.1 The conditions (1) and (2) thus

become

∀(x1,x2) such that g1(x1) ≥ 0 ∧ g2(x2) ≥ 0,

ϕ(x1,x2) ≥ 0 and Dϕ(x1,x2) ≤ 0.
(5)

Then we relax (5) into the following SoS problem

formulation:

Find ϕ, Dϕ, and si for 1 ≤ i ≤ 4 such that:

ϕ(x1,x2) − s1(x1) g1(x1) − s2(x2) g2(x2) ∈ S , (6)

−Dϕ − s3(x1) g1(x1) − s4(x2) g2(x2) ∈ S , (7)

si(x) ∈ S ∀i ∈ {1, . . . , 4} . (8)

1Note that the technique generalizes in a straigthforward way to a set
defined by an arbitrary number of functions.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA08.2

4026

It is easy to see that if (6), (7) and (8) are satisfied

then (5) holds. Efficient numerical techniques can then be

used to solve the constraints (6), (7), and (8) [6]. The idea

of introducing the additional unknown polynomials si to

solve this problem is a generalization of the so-called S-

procedure [10].

The form of the bisimulation must be selected before the

coefficients can be computed. The bisimulation function that

is computed can be constrained to have certain desirable

properties. Since we are ultimately interested in sublevel

sets of the bisimulation functions, it is essential to know

at least one point that is within each sublevel set. For every

Nϕ(x, r), we call x the center of Nϕ(x, r). We select the

form of the bisimulation function such that the center of

every sublevel set of the bisimulation function is contained

within the sublevel set.

Property 1: For every x ∈ Rn the following holds: if a

bisimulation function satisfies ϕ(x,x) = 0, then for every

r ∈ R, x ∈ Nϕ(x, r).
We choose the following form for the bisimulation func-

tion:

ϕ(x1,x2) = Z
T
MZ, (9)

where Z is a vector of length m with entries Zj for

j ∈ {1, . . . , m}. Each entry Zj of Z is given by a polynomial

of the form

Zj = (x1,k − x2,k)hj

for hj ∈ N+ and k ∈ {1, . . . , n}, where xi,k denotes the

k-th entry of the vector xi, i = 1, 2. In this case we have

ϕ(x,x) = 0 and Property 1 holds.

To compute the bisimulation function ϕ we select the

polynomials in Z and the size of the matrix M. The entries

of M are the decision variables.

If we also have that each Zj is given by

Zj = (x1,j − x2,j),

then the following holds: i.)
√

ϕ(·, ·) is a pseudo metric (that

is, one may have
√

ϕ(x1,x2) = 0 for distinct values x1 6=
x2) and ii.) the set Nϕ(x, r) is ellipsoidal.

IV. OPTIMIZING POLYNOMIAL SUBLEVEL SETS

The verification framework that we use requires that we

perform certain convex optimizations involving sublevel sets

and constraints imposed by the software. In this section, we

describe how to optimize the size of a polynomial sublevel

set subject to constraints. The operations are used by our

verification technique to compute maximally safe sublevel

sets and to perform the merging operation. We provide a

means by which the problems can be solved numerically

using convex optimization techniques.

A. Optimizing Sublevel Sets

To compute safe sets, the sizes of a polynomial sublevel

sets are maximized subject to the linear constraints from

the software that characterize program equivalence sets.

The following describes how this optimization problem is

formulated and solved.

Let z be a state in R
n and consider the conjunction of

linear constraints
∧

i∈I

l
T
i x ≤ di,

for some set I = {1, . . . , imax}, where each li ∈ R
n and

di ∈ R. To maximize the size of a sublevel set of ϕ around z,

Nϕ(z, r), subject to these constraints, we solve the following

optimization problem:

maximize r (10)

subject to ∀x :
∧

i∈I

[ϕ(z,x) ≤ r ⇒ l
T
i x ≤ di].

Applying an S-procedure and introducing a new unknown

variable λi > 0 for each i in I, we can relax the constraint

in (10) to the following:

∀x :
∧

i∈I

[ϕ(z,x) − r − λi(l
T
i x − di) ≥ 0]

Because ϕ is a polynomial, the constraints can be further

relaxed to yield the following optimization problem with SoS

constraints:

maximize r (11)

subject to
∧

i∈I

[ϕ(z,x) − r − λi(l
T
i x − di) ∈ S]

λi > 0 for each i ∈ I.

Since ϕ is a polynomial and the only decision variables are

r and λi, (11) is an SoS program.

To use sublevel sets of polynomial functions to perform the

model checking technique described above, we must also be

able to compute the maximum sized sublevel set Nϕ2
(z2, r2)

of a polynomial function such that it is contained within the

sublevel set Nϕ1
(z1, r1) of a second polynomial. We must

solve the following optimization problem:

maximize r2 (12)

subject to ∀x :

[ϕ2(z2,x) ≤ r2 ⇒ ϕ1(z1,x) ≤ r1].

Applying the S-procedure and introducing a new unknown

variable λ > 0 we can relax the constraint in (12) to the

following:

∀x : [ϕ2(z2,x) − r2 − λ(ϕ1(z1,x) − r1) ≥ 0]

Since ϕ1 and ϕ2 are polynomials, the constraints can be

further relaxed, yielding the following optimization problem

with SoS constraints:

maximize r2 (13)

subject to ϕ2(z2,x) − r2 − λ(ϕ1(z1,x) − r1) ∈ S

λ > 0.

Since ϕ1 and ϕ2 are polynomials and the only decision

variables are r2 and λ, (13) is an SoS program.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA08.2

4027

V. EXAMPLE

Our verification technique is implemented using the

explicit-state source-code model checker Java PathFinder [9].

We use the SoS tools built into the YALMIP optimization

package with the SeDuMi convex optimization package

to solve the optimization problems that arise during the

verification [5], [8]. A Runge-Kutta numerical integration

algorithm is used to provide the simulations of the nonlinear

system over sample periods of duration ts.

We consider a computer controlled system with two plant

state variables. The plant dynamics are derived from an

example in a previous paper [6]. The supervisory controller

measures the state of the plant and produces an output

that represents the desired system mode. In this model, the

supervisor represents a high-level controller that switches

modes of the lower-level controller (e.g., a PID loop with

a sampling rate that is fast with respect to the sampling rate

of the supervisor). The purpose of the supervisory controller

is to move the system through a series of waypoints.

The system switches between three modes, beginning with

Mode 1. When the controller detects that the plant state is

within the set

GUARD1→2 = {x| − 0.5 ≤ x1 ≤ 0.5∧−0.5 ≤ x2 ≤ 0.5},

it will switch to Mode 2. In Mode 2, when the controller

detects that the plant state is within the set

GUARD2→3 = {x|1.5 ≤ x1 ≤ 2.5 ∧−1.5 ≤ x2 ≤ −0.5},

it will switch to Mode 3. The dynamics for each mode are

as follows:

Mode 1:

f(x) =

[

−x1 − 2x2
2

−x2 − x1x2 − 2x3
2

]

,

Mode 2:

f(x) =

[

2 − x1 + 2(x2 + 1)2

−3 − 3x2 + x1 + x1x2 − 2(1 + x2)
3

]

,

Mode 3:

f(x) =

[

4 − 2x1 + x1x2 − 2x2 − 2(x1 − 2)3

1 − x2 + 2(x1 − 2)2

]

.

The system requirement is that once the plant has entered

the set FINAL = {x|1.5 ≤ x1 ≤ 2.5∧ 0.5 ≤ x2 ≤ 1.5} and

the controller is in Mode 3, the plant should remain within

FINAL until the time bound is reached. Also, the system

should satisfy the safety constraint −2.0 ≤ x2 ≤ 2.0 for

0 ≤ t ≤ Tfinal.

The supervisory controller for this system is implemented

by two concurrent tasks: one task determines the target

position based on a given list of waypoints; the other sends

position commands to the plant. Due to the interleaving of

the two tasks, the plant might receive the updated target

position with a sampling period delay, and the system might

follow slightly different traces every time a new waypoint is

generated.

1.4 1.6 1.8 2 2.2 2.4 2.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x1

x
2

1.7 1.8 1.9 2 2.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

x1

x
2

(a) (b)

Fig. 2. (a) First bisimulation sublevel set computed during verification; (b)
Result of first merging operation during the verification.

A fourth-degree polynomial bisimulation function was

computed for each of the three system modes. Each bisimu-

lation function was selected to have the form

ϕ(x1,x2) = Z
T
MZ,

where

Z =

x1 − y1

x2 − y2

(x1 − y1)
2

(x1 − y1)(x2 − y2)
(x2 − y2)

2

.

The polynomials si(x) used in the constraints (6), (7), and

(8) were each selected to be second degree polynomials. The

functions g1(x) and g2(x) from constraints (6), (7), and (8)

were chosen to define circular sets of radius 2.0 that represent

regions of interest for each of the three modes.

For each of the SoS problems used to compute the

bisimulation functions for Modes 1, 2, and 3, there were

235 parametric variables, 4 independent variables, 4 linear

matrix inequality constraints, and 34 monomial terms. The

computation times for the SoS optimizations performed to

compute the bisimulation functions for each mode were 9.54,

9.43, and 10.58 seconds for Modes 1, 2, and 3, respectively.2

A time bound of Tfinal = 15.0 seconds with a sample

period of ts = 0.5 seconds was used for the bounded-time

verification. Figures 2 and 3 illustrate the results from the

computations. Figure 2-(a) shows the result of the first opti-

mization that was performed, in which the size of a sublevel

set was maximized such that it is contained within FINAL.

Figure 2-(b) shows the result of the first merging operation.

In this figure, the size of the sublevel set corresponding to a

point that is being merged is maximized such that it remains

within the sublevel set of the point that it is being merged

with. Figure 3 shows each plant state that was visited and

the sublevel set that corresponds to each visited state. Note

that some of the sublevel sets are so small that they are not

distinguishable from the points they are associated with. The

boxes in Fig. 3 represent sets GUARD1→2 , GUARD2→3 ,

and FINAL.

2All computation times are for a Intel Dual Core II 2.16 GHz machine
with 2GB of RAM, running Windows XP.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA08.2

4028

−0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

Fig. 3. Results from verification technique.

We performed the analysis both with and without state

merging. The results, presented in Table I, show a significant

reduction in number of visited states and memory usage.

Such a reduction was obtained with only six conservative

state merges: a single merge can lead to a significant re-

duction in visited states since every state reachable from the

merged state no longer needs to be visited. The approach

as implemented showed a significant overhead in terms of

running time, however, which could be reduced by further

optimizing the operations involving storing and lookup of

sublevel sets.

TABLE I

RESULTS FROM BOUNDED-TIME VERIFICATION WITH Tfinal = 15.0 sec

WITH AND WITHOUT MERGING OF SAFE STATES.

Model-Checking-Guided Model Checking

Simulation without Merging with Safe Sets and Merging

Visited states 17,181 6,537

Running time 9.0 sec 151.0 sec

Memory usage 24.0MB 15.4MB

We encountered several challenges in computing the

bisimulation functions. If a bisimulation function is not found

for a selected form of Z in (9), there is no way to determine

whether it is because no bisimulation function exists or

whether one exists for some other form of Z. A related

issue is that of determining an appropriate analysis region

for the S-procedure. Methods for selecting these regions such

that they contain the area of interest and satisfy (6) and (7)

should be investigated. Also, the behavior of the polynomial

functions are sensitive to changes in the coefficient terms.

For some of our experiments, truncation of coefficient terms

to five decimal places caused the positive definite poly-

nomial bisimulation functions to produce negative values.

Care should be taken in manipulating the coefficients, and

work should be done to develop methods for making the

bisimulation function solutions more robust.

VI. DISCUSSION

This paper presents how to use bisimulation functions

for nonlinear dynamic systems to aid in the verification of

control software for sampled-data control systems using a

source-code model checker. This extends previous work that

applied only to affine, stable dynamic systems.

Although the theoretical framework presented in this pa-

per for performing model-checking-based verification looks

promising, further research is needed to make this approach

valuable for a broad range of control systems. We aim to

expand the type of specifications that can be verified beyond

the simple safety specifications considered thus far. Another

direction for research is the use of abstractions that will make

it possible to handle longer time horizons.

As noted in Sec. V, there are issues to be addressed in

the application of SoS tools to computation of bisimulation

functions for systems with polynomial dynamics. We found

that due to numerical issues, it is difficult to handle systems

with more than a few state variables using current SoS

tools. There are also many improvements to be made in

the efficiency of the model checking implementation. Data

structures and the iterations in our current implementation

should be optimized for performance.

VII. ACKNOWLEDGMENTS

The authors would like to thank Edmund M. Clarke for

providing useful comments during the preparation of this

paper.

REFERENCES

[1] Antoine Girard and George J. Pappas. Approximate Bisimulations for
Nonlinear Dynamical Systems. In Proc. of the 44th Conference on

Decision and Control, 2005.
[2] Antoine Girard and George J. Pappas. Approximation Metrics for

Discrete and Continuous Systems. Technical Report MS-CIS-05-10,
University of Pennsylvania, 2005.

[3] A. Agung Julius, Georgious E. Fainekos, Madhukar Anand, Insup
Lee, and George J. Pappas. Robust Test Generation and Coverage
for Hybrid Systems. In Proc. of the 10th International Workshop on

Hybrid Systems: Computation and Control, 2007.
[4] Flavio Lerda, James Kapinski, Edmund M. Clarke, and Bruce H.

Krogh. Verification of Supervisory Control Software Using State
Proximity and Merging. In Proc. of the 11th International Workshop

on Hybrid Systems: Computation and Control, 2008.
[5] J. Löfberg. Yalmip : A toolbox for modeling and optimization in

MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[6] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic

Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, 2000.

[7] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOS-
TOOLS: Sum of squares optimization toolbox for MATLAB, 2004.

[8] J. F. Sturm. Using SeDuMi 1.02, A MATLAB Toolbox for Opti-
mization over Symmetric Cones. Optimization Methods and Software,
11/12(1-4):625–653, 1999.

[9] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,
and Flavio Lerda. Model Checking Programs. Automated Software

Engineering, 10(2):203–232, 2003.
[10] Vladimir A. Yakubovich, G. A. Leonov, and A. Kh. Gelig. Stability of

Stationary Sets in Control Systems With Discontinuous Nonlinearities

(Series on Stability, Vibration and Control of Systems, Series a, Vol.

14). World Scientific Publishing Company, 2004.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA08.2

4029

