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Abstract— In this preliminary article we consider the prob-
lem of estimating an unknown noise-gain for a Markov chain
observed through a scaled Brownian motion. It is assumed that
the unknown noise-gain is time invariant.

Two objectives are addressed in this work, 1) compute an
estimation scheme that is fast, and 2) compute an estimation
scheme without recourse to stochastic integration. To address
the first objective we avoid the Expectation Maximization (EM)
algorithm, instead we develop an estimation scheme for a finite
number of candidate model hypotheses. To address the second
objective we develop a version of the Gauge-Transformation
technique introduced by J. M. C. Clark.

Index Terms— Wonham Filter, Martingales, Reference Prob-
ability, Filtering, Detection.

I. INTRODUCTION

The celebrated Wonham Filter, (see [10]), and it variants,
have received considerable attention in the literature. A
common problem with the Wonham Filter, (and indeed all
filters), is model calibration, that is, estimating the model
parameters. Traditionally the parameters considered in cal-
ibrating Wonham Filters are the so-called drift-coefficients
in the observation-process model and the rate-matrix for
the hidden Markov process. It is well known that these
parameters can be estimated offline, see for example [6].
It is also possible to estimate these parameters online, see
for example [4]. Curiously, by contrast, the literature shows
little emphasis upon the estimation of an unknown noise-gain
term.

In this work we propose an online detection scheme for
noise-gain estimation. Our main result is a closed form,
finite-dimensional discrete-time recursion for identifying the
best, (most likely), noise-gain from a candidate set of
possible noise-gains. It is shown that the usual stochastic-
integration in detection, (in our context), is not easily, if
at all, eliminated form the scalar-valued classical detector.
However, by considering an augmented state-space model
including the hidden Markov chain, one can develop esti-
mation dynamics amenable to the Clark Transformation and
thereby eliminate all stochastic integrations.

This article is organised as follows. In §I-A we describe
the class of dynamics we wish to consider and briefly sum-
marize reference probability for the task being considered.
In §II we derive the classical stochastic integral detector
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for a unknown noise-gain. Subsequently we compute the
corresponding matrix-valued detector on an augmented state-
space model. Finally in §II-C we compute our main result
which is a pathwise-deterministic detection scheme.

A. State Process Dynamics

All stochastic dynamics are defined (initially), on a fixed
probability space, that is,

(
Ω,F , P

)
.

Our partially observed dynamical system of interest con-
sists of a continuous-time Markov chain observed through a
linear mapping corrupted by additive noise, here a scaled
standard Brownian motion with a constant, but unknown
gain. To model the uncertainty in the noise gain we propose
a model taking M ∈ N possible values, according to the
state of a simple random variable.

Suppose a process X = {Xt; 0 ≤ t}, is a continuous-
time Markov process taking values in a discrete state space
L. The state space L is defined by the set {e1, e2, . . . ,en}
where ei are vectors in Rn. Each ei is a column vectors with
unity in the ith position and zero elsewhere. This convenient
canonical representation for a Markov chain has been widely
used in filtering and other areas and leads to the dynamics,

Xt = X0 +
∫ t

0

A Xu du + Mt. (1.1)

Here Mt is a vector-valued (P, σ
{
Xu, u ≤ t

}
)-martingale

and the parameter A is an n×n matrix whose elements are
the infinitesimal generators of the Markov chain.

B. Observation Process Dynamics

We suppose that the process X is not observed directly,
rather, we observe a scalar-valued process

yt =
∫ t

0

〈
Xu, g

〉
du + b Wt. (1.2)

Here W is a standard (scalar-valued) Wiener process on
(Ω,F , P ) and g =

(〈
g, e1

〉
, . . . ,

〈
g, en

〉)′ ∈ Rn, is a vector
of the so called drift-coefficients, or levels for the Markov
chain. The noise gain term b ∈ R, is taken as unknown.
Write

Yt = σ
{
yu, 0 ≥ u ≤ t

}
. (1.3)

To model the uncertainty in the noise gain term b, we
suppose that b can assume one of M values according to
the state of a simple random variable. We suppose that α is
a vector-valued simple random variable, whose state space
is a collection of M unit vectors {f1,f2, . . . ,fM}. Here
f j has unity in the jth position and zero elsewhere. Our
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candidate values of the noise gain b are written in vector
form,

b
∆= (b1, b2, . . . , bM ). (1.4)

We now suppose that our observation process has dynamics

yt =
∫ t

0

〈
Xu, g

〉
du +

〈
b,α

〉
Wt

=
∫ t

0

〈
Xu, g

〉
du +

( M∑
j=1

〈
α,f j

〉
bj

)
Wt.

(1.5)

The problem we wish to solve is, given a realisation y =
{yt1 , yt2 , . . . , ytK

}, assumed to be a discrete-time sampling
of the output generated by the dynamics at (1.1), estimate
the probabilities

p̂ j ∆= E[1{ω|α(ω)=bj} | Yt] j = 1, 2, . . . ,M. (1.6)

In what follows we will solve this problem via the change of
probability measure techniques, moreover, our final solution
will not involve stochastic integration.

C. Reference Probability

As is now quite standard, we consider two probability
measures, P (·) and P †(·). Under P (·), which we consider as
the ”real world” probability measure, our dynamical system
evolves in time according to the dynamics given by (1.1).
To facilitate the calculation of conditional expectations, we
suppose that under the so-called reference measure P †(·),
the observation process y is a standard Brownian motion.

To begin our description of reference probability, we first
suppose the observation process is generated by dynamics

yt =
∫ t

0

〈
Xu, g

〉
du + bj Wt (1.7)

Write

Γ j
t

∆= yt/bj =
∫ t

0

〈
Xu, g/bj

〉
du + Wt. (1.8)

The combination of the scaled process dynamics for Γ j and
the state process at (1.1), form a standard stochastic system,
whose optimal filtering solution is the Wonham filter. We
denote the real world probability measure for this system by
P j(·).
The Radon-Nikodym derivative for this system is, ¡

Λj
t

∆=
dP j

dP † |Gj
t

= exp
(∫ t

0

〈
Xu, g/bj

〉
dΓj

u−

1
2

∫ t

0

〈
Xu, g/bj

〉2
du

)
= 1 +

∫ t

0

〈
Xu, g/bj

〉
dΓ j

u .

(1.9)

Here Gj
t is the global sigma algebra generated by

{yu, Xu,α, 0 ≤ u ≤ t}, where here the process y is assumed
as generated by an observation model with noise gain bj .

In what follows we wish to consider a collection of M
different stochastic systems, each with a unique noise gain
term bj . Recall that our individual systems are collectively
written as a ”single system”, with dynamics given at (1.5).
We now write the corresponding general Radon-Nikodym
derivative as a convex combination of the individual noise-
gain-specific Radon-Nikodym derivatives, that is,

Λt
∆=

M∑
j=1

〈
α,f j

〉dP j

dP † |Gj
t

=
M∑

j=1

〈
α,f j

〉
Λj

t

= 1 +
M∑

j=1

〈
α,f j

〉 ∫ t

0

〈
Xu, g/bj

〉
Λj

udΓj
u

(1.10)

II. M -ARY DETECTION SCHEMES

In M -ary detection, in our context, we are interested to
estimate un-normalised conditional probabilities,

q̂ j
t

∆= E†[Λt

〈
α,f j

〉
| Yt

]
∈ Rn

+. (2.11)

A. Classical Results

THEOREM 1 The recursion for the estimated un-normalised
probability q̂ has dynamics

q̂ j
t = q̂ j

0 +
∫ t

0

〈
EP j [

Xu | Yj
t

]
, g/bj

〉
q̂ j
udΓ j

u (2.12)

Proof of Theorem 1.

q̂ j
t

∆= EP †[
Λt

〈
α,f j

〉
| Yt

]
= EP †

[(
1 +

M∑
`=1

〈
α,f `

〉 ∫ t

0

〈
Xu, g/b`

〉
Λ`

udΓ`
u

)
×

〈
α,f j

〉
| Yt

]
= EP †[〈

α,f j

〉
| Yt

]
+ EP †

[∫ t

0

〈
Xu, g/bj

〉
Λj

udΓ j
u

〈
α,f j

〉
| Yt

]
= q̂ j

0 +
∫ t

0

EP †
[
Λj

u

〈
Xu, g/bj

〉〈
α,f j

〉
| Yu

]
dΓ j

u

(2.13)

To simplify the expectation in the last line above, we note
the following factorization,

EP †
[
Λj

t

〈
Xt, g/bj

〉〈
α,f j

〉
| Yt

]
= EP j [〈

Xt, g/bj

〉〈
α,f j

〉
| Yt

]
× EP †[

Λj
t | Yt

]
= EP j [〈

Xt, g/bj

〉
| Yt &α = f j

]
×EP j [〈

α,f j

〉
| Yt

]
×

EP †[
Λt | Yt

]
=

〈
EP j

[Xt | Yt], g/bj

〉
q̂ j
t (2.14)

�.
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The recursive scheme in Theorem 1 estimates the probabil-
ities {q 1

t , . . . , q M
t }, with which one may determine the best

noise coefficient from the candidate set {b1, . . . , bM}, either
by a hard or soft decision, respectively, a MAP estimate, or
an MLE.

The term in the integrand of equation (2.12), namely
EP j [

Xt | Yj
t

]
, can easily be evaluated without stochastic

integration, however, the stochastic integral in (2.12) against
the process Γ j must still be approximated. What we would
like to do is eliminate this particular integration by identify-
ing a pathwise-deterministic version of our M -ary detection
scheme.

B. Augmented State-Space Detection

In order to eliminate the stochastic integration in the
dynamics at (2.12), we consider an estimation scheme on
an augmented state space, defined by the cartesian product
of α and X . Our estimator on this larger state-space will be
a joint, state-estimator, (filter), and M -ary detector, that is,
an estimator computing probabilities for events of the form
{α = f j &Xt = ei}. It will be shown that there exists
a version of this joint estimator which is independent of
stochastic integration and, from which the M -ary detector
can be directly recovered by marginalising out the hidden
state process X . To begin, we define a new process,

Zt
∆= αX ′

t. (2.15)

The process Z takes values on a finite matrix-valued basis
C, where, Z ∈ C =

{
H(j,i)

}
1≤j≤M
1≤i≤n

, that is,

C ∆=

{
1 0 . . . 0
0 . . . . . . 0
...

. . .
...

0 . . . . . . 0

 , . . . ,


0 . . . . . . 0
... . . . . . .

...

0
. . .

...
1 0 . . . 0

 ,

...
0 . . . 0 1
... . . . . . . 0
...

. . .
...

0 . . . . . . 0

 , . . . ,


0 . . . . . . 0
... . . . . . .

...
... . . . 0
0 . . . 0 1


}

.

(2.16)

We also note the following useful representation,

Zt =
M∑

j=1

n∑
i=1

(
f ′

jZtei

)
H(j,i)

=
M∑

j=1

n∑
i=1

〈
α,f j

〉〈
Xt, ei

〉
H(j,i).

(2.17)

The calculation below shows how the M -ary detector may
be directly computed by marginalising out the hidden state
process X . First, write

1n
∆=

(
1, 1, . . . , 1

)′
. (2.18)

Now, suppose one has obtained matrix-valued dynamics for
the expectation EP †[

ΛtαX ′
t | Yt

]
, we then note that,

EP †[
ΛtαX ′

t | Yt

]
1n = EP †[

Λtα
(
X ′

t1n

)
| Yt

]
= EP †

[
Λtα×( n∑

`=1

〈
Xt, e`

〉
e′`1n

)
| Yt

]
= EP †

[
Λtα

( n∑
`=1

〈
Xt, e`

〉)
| Yt

]
= EP †[

Λtα | Yt

]
∈ RM×1.

(2.19)

This calculation shows that the detector of interest may be
directly recovered from the corresponding detector on an
augmented state-space.

Write

q̃t
∆= EP †[

ΛtαX ′
t | Yt

]
∈ RM×n. (2.20)

THEOREM 2 The matrix-valued process q̃, defined at (2.20),
has dynamics

q̃t = q̃0 +
∫ t

0

q̃uA′du

+
M∑

j=1

n∑
i=1

〈
ei, g/bj

〉 ∫ t

0

(
f ′

j q̃uei

)
dΓ j

uH(j,i)

(2.21)

The corresponding normalised detector probability is com-
puted by normalising over all candidate model-hypotheses
and hidden state process values, that is

p(Xt = ei &α = f j | Yt) =
f ′

j q̃tei

1′M q̃t1n
. (2.22)

Proof of Theorem 2
Theorem 2 can be established by using the Ito product
rule and a stochastic calculus version of Fubini’s Theorem
developed in [11].

ΛtαX ′
t = αX ′

0 +
∫ t

0

ΛuαX ′
uA′du +

∫ t

0

ΛuαdM ′
u

+
∫ t

0

M∑
`=1

〈
α,f `

〉〈
Xu, g/b`

〉
Λ`

uαX ′
udΓ`

u

(2.23)

Now conditioning the dynamics at (2.23), under the measure
P †(·), and on the information Yt, we get,

q̃t = q̃0 +
∫ t

0

q̃uA′du

+
M∑

`=1

∫ t

0

EP †[
Λ`

u

〈
α,f `

〉〈
Xu, g/b`

〉
αX ′

u | Yu

]
dΓ`

u

(2.24)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC02.6

3229



Recalling the representation at (2.17), we see that

M∑
`=1

∫ t

0

EP †[
Λ`

u

〈
α,f `

〉〈
Xu, g/b`

〉
αX ′

u | Yu

]
dΓ`

u

=
M∑

`=1

∫ t

0

EP †
[
Λ`

u

〈
α,f `

〉〈
Xu, g/b`

〉
×

M∑
j=1

n∑
i=1

〈
α,f j

〉〈
Xu, ei

〉
H(j,i) | Yu

]
dΓ`

u

=
M∑

j=1

n∑
i=1

∫ t

0

EP †[
Λj

u

〈
ei, g/bj

〉
×

〈
α,f j

〉〈
Xu, ei

〉
H(j,i) | Yu

]
dΓj

u

=
M∑

j=1

n∑
i=1

〈
ei, g/bj

〉 ∫ t

0

(
f ′q̃uei

)
dΓj

uH(j,i) (2.25)

�
To check the correspondence of the dynamics give at

(2.21), with those given at (2.12), we project the joint
estimator on (2.21) down onto the state space of the simple
random variable α. That is, we consider product q̃t1n which
is the vector-valued form of the M -ary detector for the
simple random variable α.

It is immediate that the desired correspondence holds for
the two matrix-valued terms q̃t and q̃0. Checking the bounded
variation term in (2.21) we see that∫ t

0

q̃uA′du1n =
∫ t

0

q̃u

(
A′1n

)
du

=
∫ t

0

q̃u0du = 0.

(2.26)

Recall that the rate matrix in our formulation has zero
column-sums.

To check the correspondence of the Martingale term in
(2.21), we first note that

H(j,i)1n = f j . (2.27)

Further, using the representations at (2.17), we see that∫ t

0

(
f ′

j q̃uei

)
dΓ j

uf j

=
∫ t

0

EP †[
Λu

〈
Xu, ei

〉〈
α,f j

〉
| Yu

]
dΓj

uf j

=
∫ t

0

EP j [〈
Xu, ei

〉〈
α,f j | Yu

]
EP j [〈

α,f j

〉
| Yu

]
× EP †[

Λu | Yu

]
dΓj

uf j

=
∫ t

0

〈
EP j [

Xu | Yu

]
, ei

〉
q j
udΓj

uf j (2.28)

Finally, we note that
n∑

i=1

〈
ei, g/bj

〉 ∫ t

0

〈
EP j [

Xu | Yu

]
, ei

〉
q j
udΓj

uf j

=
∫ t

0

〈
EP j [

Xu | Yu

]
, g/bj

〉
q j
udΓj

uf j (2.29)

This calculation establishes the correspondence between the
dynamics at (2.12) and the dynamics at (2.21).

C. Pathwise-Determinsitic Detection Schemes

In this section we extend a seminal idea of J. M. C.
Clark, (see [2]), to identify a version of the dynamics at
equation (2.21) independent of stochastic integration. The
particular transformation used here is a Hadamard product
transformation. The following definitions are needed for our
calculations.

DEFINITION 1 Define a matrix-valued process Φ

Φt
∆=

[
φ

(j,i)
t

]
i=1,...,n
j=1,...,M

∈ RM×n, (2.30)

where

φ
(j,i)
t

∆= exp
(〈

g/bj , ei

〉
Γ j

t − 1
2 〈g/bj , ei〉2t

)
, (2.31)

∀ (j, i), j = 1, . . . ,M, i = 1, . . . , n.

DEFINITION 2 Define a constant Matrix K, where

K
∆=


〈g/b1, e1〉 〈g/b1, e2〉 . . . 〈g/b1, en〉
〈g/b2, e1〉 〈g/b2, e2〉 . . . 〈g/b2, en〉

...
...

. . .
...

〈g/bM , e1〉 〈g/bM , e2〉 . . . 〈g/bM , en〉

 .

(2.32)

DEFINITION 3 Define a new matrix-valued stochastic pro-
cess Ψ, where

Ψt
∆= Φ−1

t � q̃t. (2.33)

Here the symbol � denotes the Hadamard matrix product.
Note that this product is commutative.

What we would like to do, is compute dynamics for the
process Ψ. To this end, we start by applying the Ito rule we
obtain the dynamics for the process Φ−1, that is,

Φ−1
t = Φ−1

0 +
∫ t

0

(
K �K

)
� Φ−1

u du−

M∑
j=1

n∑
i=1

∫ t

0

(
K � Φ−1

u �H(j,i)
)
dΓ j

u . (2.34)

REMARK 1 The values taken by the process Φ−1
t are not

regular matrix inverses, rather Hadamard inverses.
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Now, recalling the dynamics for the matrix-valued process
q̃, we see that,

d
(
Φ−1

t � q̃t

)
=

(
dΦ−1

t

)
� q̃t + Φ−1

t �
(
dq̃t

)
+ d

[
Φ−1

t � q̃t

]
=

(
K �K

)
� Φ−1

t � q̃tdt

−
M∑

j=1

n∑
i=1

K � Φ−1
t H(j,i) � q̃tdΓj

t

+ Φ−1
t � q̃tA

′dt + Φ−1
t �( M∑

j=1

n∑
i=1

〈
ei, g/bj

〉(
f ′

j q̃tei

)
H(j,i)

)
dΓ j

t

−
( M∑

j=1

n∑
i=1

K � Φ−1
t �

H(j,i)
)
�

( M∑
j=1

n∑
i=1

〈
ei, g/bj

〉(
f ′

j q̃tei

)
H(j,i)

)
dt.

(2.35)

The only surviving term in the expansion above is the rate
matrix term, so it follows that

dΨt

dt
= Φ−1

t �
(
q̃tA

′
)
dt. (2.36)

The dynamics at (2.36) are a pathwise deterministic linear
ordinary differential equation (LODE). This LODE may be
discretized in a variety of ways, for brevity we consider
an Euler scheme on a regular time partition, whose epochs
are labelled tk, tk+1, . . . etc. The Euler scheme leads to the
approximation,

Ψt−k = Ψtk−1 +
∫ tk

tk−1

Φ−1
u �

(
q̃tA

′
)
du

≈ Ψtk−1 + Φ−1
tk−1

�
(
q̃tk−1A

′
)
∆t

(2.37)

Recalling the definition of Ψ, we take the Hadamard product
Φtk

�Ψtk
and get

q̃tk
= Φtk

� Φ−1
tk−1

� q̃tk−1+

Φtk
� Φ−1

tk−1
� q̃tk−1A

′∆t

= Φtk
� Φ−1

tk−1
�

[
Im×n + q̃tk−1A

′∆t

] (2.38)

Here IM×n is an M ×n matrix with unity in each element.

REMARK 2 The discrete-time matrix-valued recursion at
(2.38) provides a scheme to compute un-normalised probabil-
ities corresponding to all of the joint events {α = f j&Xtk

=
ei} without recourse to stochastic integration.

Finally, to recover our estimator of interest, that is, a vector
of conditional probabilities for the state of the simple random
variable α, we compute

{
q̃tk

1′M q̃tk
1n

}
1n =


P̂ (α = f1 | Ytk

)
P̂ (α = f2 | Ytk

)
...

P̂ (α = fm | Ytk
)

 . (2.39)

THEOREM 3 For the process αX ′, the quantity

π(αX ′
t)

∆=
Φt �Ψt

1′M
(
Φt �Ψt

)
1n

. (2.40)

defines a locally Lipschitz continuous version of the expecta-
tion E

[
αX ′

t | Yt

]
in the space of observation sample paths.

Theorem 3 is stated here without proof. Similar proofs are
given in [2].

III. CONCLUSION

In this article a detection scheme is developed to identify
the best of a candidate set of noise-gain values for a Markov
chain observed through a scaled Brownian motion. To elimi-
nate stochastic integration in the resulting detector dynamics,
a transformation based upon the ideas of J. M. C. Clark are
applied through a Hadamard product transformation. This
transformation is applied to an augmented state-space filter
which is essential a special Wonham filter on a product state-
space. A specific version of the detector dynamics is iden-
tified as a pathwise-deterministic linear ordinary differential
equation. This LODE may be discretized in a variety of ways.
It was shown that implementing the Euler approximation
leads to a discrete-time recursion for direct computation of
the estimated detector probabilities P̂ (α = f j | Yt).
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