
Information State for Markov Decision Processes with

Network Delays

Sachin Adlakha1 Sanjay Lall2 Andrea Goldsmith1

Abstract

We consider a networked control system, where each sub-
system evolves as a Markov decision process (MDP).
Each subsystem is coupled to its neighbors via commu-
nication links over which the signals are delayed, but are
otherwise transmitted noise-free. A controller receives
delayed state information from each subsystem. Such
a networked Markov decision process with delays can
be represented as a partially observed Markov decision
process (POMDP). We show that this POMDP has a
sufficient information state that depends only on a fi-
nite history of measurements and control actions. Thus,
the POMDP can be converted into an information state
MDP, whose state does not grow with time. The opti-
mal controller for networked Markov decision processes
can thus be computed using dynamic programming over
a finite state space. This result generalizes the previous
results on Markov decision processes with delayed state
information.

1 Introduction and Prior Work

We consider a network of interconnected subsystems,
where each subsystem evolves as a Markov decision pro-
cess (MDP). Each subsystem has a finite state space and
its state evolution is affected by delayed state of its neigh-
bors. A centralized controller receives delayed state mea-
surements from each subsystem. We refer to such sys-
tems as networked Markov decision processes.

Although the controller receives state information from
each subsystem, each of these states is delayed by differ-
ent amounts. Since the current state of each subsystem
is not available to the controller, this system can be rep-
resented as a partially observed Markov decision process
(POMDP). A standard approach for solving POMDPs
involves generating a policy in which the control action
at any time depends explicitly on the complete history of
observations. This history is called the information state
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and it grows without bound as time increases. In this
paper, we show that for a certain class of POMDPs, a
sufficient information state has finite memory, i.e., it de-
pends only on a finite number of past states and actions.

The optimal control design for POMDPs has been
studied extensively in literature [3, 7, 8]. It has been
shown that the optimal controller has a separation struc-
ture and is a function of the posterior distribution of the
current state given all the past observations. The con-
trol of a single MDP with delayed state information was
considered in [2]. It was shown that the optimal control
action depends upon the last observed state and a finite
number of previous actions. In [6], the authors consider
a single MDP with observation delays, action delays as
well cost delays. They also extend the result to the case
of random delays.

Among the earliest works in a networked system with
delays is [9], where a separation structure for the one-step

delay sharing pattern for a system with general nonlinear
dynamics was obtained. Algorithms to compute the op-
timal controller for such a system were obtained in [5] by
essentially reducing the problem to a centralized control
problem. An optimal controller is then synthesized using
standard algorithms. More general decentralized control
of MDPs has been shown to be intractable in [4].

A general networked system with arbitrary delay pat-
tern was considered in [1]. It was shown that a central-
ized optimal controller for such systems need only store
the past few states of each subsystem. In this paper, we
generalize the result given in [1] by considering a sys-
tem where control inputs are applied to all subsystems.
Furthermore, we show that for networked Markov de-
cision processes with delays, the sufficient information
state only depends on a finite history. Thus, the result
of [1] is a special case of the result presented in this paper.
Since the sufficient information state does not grow with
time, the computational difficulties associated with com-
puting the optimal policy can be significantly reduced for
such problems. Moreover, the amount of history required
to compute the optimal policy depends only on the un-
derlying network graph structure and the delays in the
network.

Notation In the remainder of the paper, we use the
following notation. We use superscripts to denote partic-
ular subsystems and subscripts for the time index. Thus
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x1
t denotes the state of the subsystem 1 at time t. For

simplicity, we ignore the superscript 1 if there is only
one subsystem. Similarly, we denote yi

t to be the ob-
servation received from subsystem i at time t and ui

t

to be the control input applied to subsystem i at time
t. We also denote z, s and a to be a realization of the
state x, observation y and control action u. We define
xi

0:t :=
(
xi

0, . . . , x
i
t

)
to refer to the list of variables corre-

sponding to the subsystem i from time 0 to t. If t < 0, we
interpret the list as empty. The notation x0:t = z0:t is in-
terpreted as element wise equality, i.e., x0 = z0, x1 = z1,
etc. To denote the list of variables corresponding to all
subsystems, we define xt :=

(
x1

t , . . . , x
n
t

)
. Similarly, we

denote ut :=
(
u1

t , . . . , u
n
t

)
as the control action applied

to all subsystems at time t. We define Ai
0···t to be the

product of the variables corresponding to times 0, . . . , t,
that is Ai

0···t := Ai
0A

i
1 . . . Ai

t. For a set X , we denote
Xn to be the n-fold cartesian product of the set, that
is Xn = X × · · · × X n-times, with the interpretation
that X 0 = φ. We write Z

+ for the set of non-negative
integers.

2 Model and Definitions

2.1 Markov Decision Processes

A Markov decision process provides a framework for se-
quential decision making in a stochastic environment.
The decision (also known as the action) taken at time t
affects the evolution of the future system. The goal of the
decision maker is to choose a sequence of actions to opti-
mize a predetermined criterion. For the purposes of this
paper, we assume that the decisions are made at discrete
times t ∈ Z

+.

At each decision time t, the system occupies a state.
We denote the set of all possible states by a finite set X .
At each time t, the decision maker choses a decision from
a finite set denoted by U . Formally,

Definition 1 (MDP). A Markov decision process is a

tuple (A, g) where,

1. A is a sequence A0, A1 . . . with A0 : X → [0, 1], such

that A0(z) ≥ 0 for all z ∈ X and
∑

z A0(z) = 1.

For t ≥ 1, we have At : X × X × U → [0, 1], such

that

At(z1, z2, a) ≥ 0, ∀ z1, z2 ∈ X and a ∈ U ,
∑

z1

At(z1, z2, a) = 1, ∀ z2 ∈ X and a ∈ U .

2. g is a sequence g0, g1, . . . with gt : X × U → R.

As an example of an MDP, consider a discrete time
dynamic system, where the state of the system at time
t ≥ 0 is denoted by xt. The system dynamics are

xt+1 = f (xt, ut, wt) . (1)

Here ut is the control action or the decision taken at
time t. The random variables wt for t ≥ 0 are indepen-
dent noise processes. The initial state x0 is chosen to
be independent of the noise process wt. Associated with
this dynamic system is an MDP (A, g) defined as follows.
For all p ∈ X , let A0(p) = Prob(x0 = p) be the probabil-
ity mass function of the initial state of the system. For
t > 0, let

At (zt, zt−1, at−1) = Prob
(

xt = zt | xt−1 = zt−1,

ut−1 = at−1

)

, (2)

be the conditional probability of state xt given the pre-
vious state xt−1 and the applied input ut−1. It is easy to
verify that the sequence A satisfies all the properties as
given in definition 1. The sequence gt (xt, ut) represents
the cost at time t and it depends on the current state xt

of the system as well as the action ut taken at time t.

As mentioned before, the decision maker (i.e., the con-
troller) needs to choose an action ut at time t. This is
chosen based upon the information available to the con-

troller at that time. We define hmdp
t to be the information

available to the controller at time t, given by

hmdp
t =

(
u0:t−1, x0:t

)
.

We will also use imdp
t to denote a realization of hmdp

t as

imdp
t =

(
a0:t−1, z0:t

)
.

Here the sequences z and a specify the values of a re-
alization of x and u, respectively. An MDP policy (also
known as the control policy) specifies the decision or con-
trol action to be taken at each time t.

Definition 2 (MDP Policy). An MDP policy is a se-

quence K = (K0,K1, . . . ) where Kt : U × X t+1 × U t →
[0, 1] for all t ∈ Z

+ such that

Kt(a, z, ã) ≥ 0, ∀ a ∈ U , z ∈ X t+1 and ã ∈ U t,
∑

a

Kt(a, z, ã) = 1, ∀ z ∈ X t+1 and ã ∈ U t.

For the discrete time dynamic system given in equa-
tion (1), we can interpret the MDP policy as

Kt(at, it) = Prob(ut = at | hmdp
t = it).

The MDP policies as described above are called as mixed

policies since the decision at time t is specified by a prob-
ability distribution which is a function of the information
available to the controller.

Stochastic Process Generated by MDP Consider
an MDP (A, g) and an MDP policy K. Associated with
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(A, g) and K, is a stochastic process that is induced by
the MDP and its policy. For MDPs evolving over a finite
time horizon T , we can define the sample space of the
stochastic process as

Ω = X × U × X . . .U × X = {X × U}
T−1

×X .

A typical element ω ∈ Ω is given by a sequence of states
and actions. For example, for infinite horizon model, a
typical sample path would be given as

ω = {z0, a0, z1, a1 . . . } .

Definition 3 (MDP Stochastic Process). Suppose (A, g)
is an MDP and K is an MDP policy. Define the state

process xt(ω) and the action process ut(ω) by

Prob (x0:t = z0:t, u0:t = a0:t) = A0(z0)×

t∏

k=1

Ak (zk, zk−1, ak−1) ×

t∏

k=0

Kk (ak, z0:k, a0:k−1) . (3)

Note that this implies that for all t we have

Prob (xt| x0:t−1, u0:t−1) = Prob (xt| xt−1, ut−1) ,

Prob (xt| xt−1, ut−1) = At (xt, xt−1, ut−1) ,

Prob (ut| x0:t, u0:t−1) = Kt (ut, x0:t, u0:t−1) .

The above equations show that the state Xt is condi-
tionally independent of the past states and actions given
the current state Xt−1 and the current action Ut−1. The
state evolution is thus Markov justifying the name.

As mentioned before, the goal of the Markov decision
process formulation is to make sequential decisions in a
stochastic environment. The controller’s objective is to
choose an MDP policy K so as to minimize a cost func-
tion. Typically, the cost function has the form

JK (A, g) , E

(
T∑

t=0

gt (xt, ut)

)

.

Here, the expectation is taken over the noise processes
and is with respect to the probability measure defined
in equation (3). The notation JK (A, g) represents the
cost of an MDP (A, g) under an MDP policy K. In this
sense, the sequence g represents the cost function or the
objective that the decision maker wishes to minimize.

2.2 Partially Observed Markov Decision

Processes

A POMDP is an extension of an MDP, where the state
of the system is not fully observable. Thus, the deci-
sion maker needs to make the decision with only partial

knowledge of the state of the system. The set of all possi-
ble observations as seen by the decision maker is denoted
by a finite set Y.

Definition 4 (POMDP). A partially observed Markov

decision process is a tuple (A,C, g) where,

1. (A, g) is a Markov decision process.

2. C is a sequence C0, C1 . . . with Ct : Y × X → [0, 1],
such that

Ct (s, z) ≥ 0, ∀ s ∈ Y,∀ z ∈ X ,
∑

s

Ct (s, z) = 1, ∀ z ∈ X .

Akin to MDPs, the decision in the POMDPs is made
based on the information available to the decision maker.
We define hpomdp

t to be the information available to the
controller at time t, given by

hpomdp
t =

(
u0:t−1, y0:t

)
.

Also, we use ipomdp
t to denote a realization of hpomdp

t as

ipomdp
t =

(
a0:t−1, s0:t

)
.

Definition 5 (POMDP Policy). A POMDP policy is a

sequence K = (K0,K1, . . . ) where Kt : U ×Yt+1 ×U t →
[0, 1] for all t ∈ N such that

Kt(a, s̃, ã) ≥ 0, ∀ a ∈ U , s̃ ∈ Yt+1 and ã ∈ U t,
∑

a

Kt(a, s̃, ã) = 1, ∀ s̃ ∈ Yt+1 and ã ∈ U t.

For partially observed discrete time dynamic process,
the POMDP policy gives the probability distribution over
possible actions or controls as a function of the informa-
tion available to the decision maker. That is

Kt(at, it) = Prob(ut = at | hpomdp
t = it).

Stochastic Process Generated by POMDP Con-
sider a POMDP (A,C, g) and a POMDP policy K. Asso-
ciated with every (A,C, g) and K is a stochastic process
that is induced by it. For a POMDP evolving over a
finite horizon T , we can define the sample space of the
stochastic process as

Ωpomdp = X × Y × U × X . . .Y × U × X

= {X × Y × U}
T−1

×X

A typical sample path for the infinite horizon POMDP
would be given as

ω = {z0, s0, a0, z1, s1, a1 . . . } .

Definition 6 (POMDP Stochastic Process). Consider a

POMDP (A,C, g) along with a POMDP policy K. Define

the state process xt(ω), the observation process yt(ω) and

the action process ut(ω) by

Prob (x0:t = z0:t, y0:t = s0:t, u0:t = a0:t) =

A0:tC0:tK0:t. (4)
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Here we have suppressed the arguments for notational
compactness. Note that this implies that for all t we have

Prob (xt | x0:t−1, u0:t−1) = Prob (xt | xt−1, ut−1) ,

Prob (xt | xt−1, ut−1) = At (xt, xt−1, ut−1) ,

Prob (yt | xt) = Ct (yt, xt) ,

Prob (ut | y0:t, u0:t−1) = Kt (ut, y0:t, u0:t−1) .

Similar to MDPs, the state evolution process Xt and the
observation process Yt are Markov. The POMDP policy
only depends on the observation vector y and not on
the actual state vector x, justifying the partially observed

part of the name.

Similar to MDPs, we can define a random variable f :
Ω → R on the sample space of the stochastic process
induced by a POMDP. The cost function for POMDPs
is given as

JK (A,C, g) = E

(
T∑

t=0

gt (xt, ut)

)

.

where the expectation is taken with respect to the
marginal probability measure derived from equation (4).
The objective of a decision maker is find a POMDP pol-
icy which minimizes the expected cost.

2.3 Information State for POMDPs

An information state for a POMDP represents all the
information about the history of POMDP that is relevant
to the selection of the optimal control. The POMDP can
be reformulated as an MDP using the information state.
For a POMDP, the information state consists of either
a complete history of observations and actions or their
corresponding sufficient statistics [7].

Definition 7. Suppose (A,C, g) is a POMDP and define

a sequence of functions

γt : U t × Yt+1 → Q.

Let ξt = γt (u0:t−1, y0:t). Then ξt is called a sufficient

information state for the POMDP if there exists an MDP

(Ã, g̃) over the state space Q and action space U such

that, for all POMDP policies K, we have

1. Ã is a sequence such that

Ãt+1 (qt+1, qt, at) =

Prob (ξt+1 = qt+1 | ξ0:t = q0:t, u0:t = a0:t) . (5)

2. g̃ is a sequence g̃0, g̃1 . . . such that

g̃t (qt, at) = E (gt (xt, at) | ξt = qt, ut = at) . (6)

3. For all t ≥ 0, we have

Prob
(

xt = zt | ξt = γt (s0:t, a0:t−1) , . . . ,

ξ0 = γ0(s0), u0:t−1 = a0:t−1

)

=

Prob (xt = zt | y0:t = s0:t, u0:t−1 = a0:t−1) . (7)

Note that Ã in equation (5), g̃t in equation (6) and the
conditional probability in equation (7) are independent of
the POMDP policy K. Furthermore, equation (5) shows
that the evolution of ξt is Markov.

3 Networked Markov Decision Processes

A networked Markov decision process (N-MDP) is a
weighted directed graph G = (V, E), where V =
{1, . . . , n} is a finite set of vertices and E ⊂ V × V is
a set of edges. Each vertex i ∈ V represents a Markov
decision process. An edge (i, j) ∈ E if the MDP at vertex
i directly affects the MDP at vertex j. Associated with
each edge (i, j) ∈ E is a nonnegative integer weight, Mij ,
which specifies the delay for the dynamics of vertex i to
propagate to vertex j. We assume that (i, i) /∈ E .

Associated with each j ∈ V, let Ij be the set of all
vertices with an incoming edge to vertex j, specifically

Ij = { i ∈ V | (i, j) ∈ E }.

Similarly, for each j ∈ V, let Oj be the set of all ver-
tices connected to by an edge outgoing from vertex j,
specifically

Oj = { i ∈ V | (j, i) ∈ E }.

At each time t, the state of the MDP at vertex i belongs
to a finite set X i. The decision or the control action
taken at vertex i is drawn out of a finite set U i.

Remark. In the remainder of the paper, we denote
X−i =

∏

j∈Ii X j . Also denote X (n) =
∏n

i=1 X
i as the

cartesian product of state space corresponding to all ver-
tices. Similarly, let U (n) =

∏n
i=1 U

i.

Definition 8. A networked Markov decision process is a

tuple (A, g) where

1. A is a set of transition matrices {Ai
t, t ≥ 0 | i ∈ V}

with Ai
0 : X i → [0, 1] for all i ∈ V, such that for all

z ∈ X i, we have

Ai
0 (z) ≥ 0 and

∑

z

Ai
0 (z) = 1.

For t ≥ 0, we have At : X i ×X i ×X−i ×U i → [0, 1]
such that, for all i ∈ V and for all a ∈ U i and z̃ ∈
X−i we have

Ai
t(z1, z2, z̃, a) ≥ 0, ∀ z1, z2 ∈ X i,

∑

z1

Ai
t(z1, z2, z̃, a) = 1, ∀ z2 ∈ X .
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2. g is a sequence g0, g1, . . . with gt : X (n) × U (n) →
[0, 1].

S4 S3

S2

S1

Controller

M43

M34

M23M42

M21 M12N4 N3

N2

N1

Figure 1: A network of interconnected subsystems with
delays. Subsystem i is denoted by Si, the network prop-
agation delay from Si to Sj is denoted by Mij and the
measurement delay from Si to the controller is denoted
by Ni.

4 3

2

1

Figure 2: Directed graph for the network of Figure 1.

As an example of a networked Markov decision process,
consider a networked system consisting of four subsys-
tems as shown in Figure 1. The corresponding directed
graph is shown in Figure 2. The system dynamics are

xi
t+1 = f i

(
xi

t, {x
j
t−Mji

| j ∈ Ii}, ui
t, w

i
t

)
, (8)

for all i ∈ V. Here ui
t ∈ U i is the control action applied

to subsystem i at time t. The random variables xi
0, w

i
t for

t ≥ 0 and i ∈ V are independent, i.e., the noise processes
are independent across both time and subsystems.

Associated with this system is a networked MDP (A, g)
as defined below. For p ∈ X i, let Ai

0(p) = Prob(xi
0 = p)

define the probability mass functions of the initial states

of subsystem i ∈ V. The initial states x1
0, . . . , x

n
0 are

chosen independently. For t > 0, let

Ai
t(z, p, q, a) = Prob

(

xi
t = z | xi

t−1 = p,

{xj
t−1−Mji

= qj | j ∈ Ii}, ui
t−1 = a

)

,

be the conditional probability mass function of state xi
t

given the previous states xi
t−1 and {xj

t−1−Mji
| j ∈ Ii}

and the applied input ui
t−1. It is easy to verify that

the sequence A satisfies the properties in Definition 8.
The sequence gt(xt, ut) represents the cost at time t and
depends on the state of the system xt = (x1

t , . . . , x
n
t ) as

well as the action ut = (u1
t , . . . , u

n
t ) applied at time t.

In a networked MDP, the controller needs to choose a
control action corresponding to each vertex i ∈ V. The
actions are chosen based on the information available to
the controller at time t. Associated with each vertex
i ∈ V of a networked MDP, we have a nonnegative in-
teger Ni which specifies the delay in receiving the state

measurement from system i. We define hn-mdp
t to be the

information available to the decision maker at time t,
given by

hn-mdp
t =

(
x1

0:t−N1
, u1

0:t−1, . . . , x
n
0:t−Nn

, un
0:t−1

)
.

Also define in-mdp
t to be a realization of hn-mdp

t as

in-mdp
t =

(
z1
0:t−N1

, a1
0:t−1, . . . , z

n
0:t−Nn

, an
0:t−1

)
.

Thus, the observations received by the decision maker at
time t consist of the state of the subsystem i delayed by
Ni time steps. A networked MDP policy specifies the
decisions taken at time t.

Definition 9 (Networked-MDP Policy). A networked

MDP policy is a sequence K = (K0,K1, . . . ) where

Kt : U (n) ×

n∏

i=1

(
X i
)t+1−Ni

×

n∏

i=1

(
U i
)t

→ [0, 1],

for all t ∈ Z
+ such that for all z̃ ∈

∏n
i=1

(
X i
)t+1−Ni

and

ã ∈
∏n

i=1

(
U i
)t

we have

Kt (a, z̃, ã) ≥ 0 ∀a ∈ U (n),
∑

a

Kt (a, z̃, ã) = 1.

For the networked systems as given in equation (8), a
general mixed control policy is defined as a sequence of
transition matrices Kt t ≥ 0 given by

Kt(at, it) = Prob(ut = at | hn-mdp
t = it).
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3.1 Networked MDP as a POMDP

In networked MDPs, although the controller receives
state information from the subsystems, these states are
delayed by different amounts. Thus, a networked MDP
can be written as a POMDP. Consider a networked MDP
as given in Definition 8. Let us define a new state
x̂t =

{
xi

0:t | i ∈ V
}
. The state x̂ is chosen such that in

the resulting system the observation at time t is only a
function of the current state at time t. It is easy to check

that there exists a function f̂ such that

x̂t+1 = f̂ (x̂t, ut, wt) .

Associated with this function is a transition probability
mass function Ât (ẑt+1, ẑt, at), where ẑt is the realization
of the state x̂t. The observation at any time t is given as

ŷt = ĥ(x̂t).

Corresponding to this observation process is a probability
mass function Ĉt (ŝt, ẑt), where ŝt is the realization of the
observation ŷt and is given as

ŝt =
{
zi
t−Ni

| i ∈ V
}

The cost function is given as

ĝt (x̂t, at) = gt (xt, at) (9)

It is easy to check that the functions Ât, Ĉt and ĝt satisfy
the properties given in the definition 4. The networked
MDP can thus be written as a POMDP

(
Â, Ĉ, ĝ

)
.

4 Information State for Networked
Markov Decision Processes

Before we present the main result of the paper, we make
the following definitions.

Definition 10. Let

di = max{Ni,max
k∈Ii

(Nk − Mki − 1)} (10)

and define the integers bi by

bi = max{di, max
k∈Oi

(dk + Mik)} − Ni (11)

Remark. In the remainder of the paper, we use the
following additional notation. We define a new function
Pt for t ≥ 0 by

Pt = A1
0:tA

2
0:t . . . An

0:t.

Define

αt = {zi
0:t−Ni

, ai
0:t−1 | i ∈ V},

βt = {zi
t−Ni−bi:t−Ni

, ai
t−di:t | i ∈ V}.

Furthermore, the notation z /∈ αt means the set

{z | z /∈ αt} = {zi
t−Ni+1:t | i ∈ V},

and the notation z /∈ βt and a /∈ βt mean the sets

{z | z /∈ βt} = {zi
0:t−Ni−bi−1 | i ∈ V}.

{a | a /∈ βt} = {ai
0:t−di−1 | i ∈ V}.

The following theorem is the main result in this pa-
per. It defines the sufficient information state for the
networked Markov decision processes. It shows that the
networked MDPs can be converted into a fully observ-
able MDP with a state that is bounded and does not
grow with time. Note that the networked MDP can be
written as a POMDP

(
Â, Ĉ, ĝ

)
, with state x̂.

Theorem 11. Consider a networked Markov decision

process. Then,

ξt =
{
ui

t−di:t−1, x
i
t−Ni−bi:t−Ni

| i ∈ V
}

. (12)

is the sufficient information state for the networked

MDP.

To prove this theorem, we check the conditions of the
sufficient information state as given in definition 7. The
following key lemma shows that ξt as defined in equa-
tion (12) satisfies the first condition of the sufficient in-
formation state as given in equation (5).

Lemma 12. Consider a networked Markov decision pro-

cess (A, g) and a networked MDP policy K. Define

Ãt+1 , Prob
(
ξt+1 = qt+1 | ξt = qt, ut = at

)
.

Then, ξt satisfies the following Markov property

Ãt+1 = Prob
(
ξt+1 = qt+1 | ξ0:t = q0:t, u0:t = a0:t

)
,

and Ã is independent of the policy K.

Proof. Using Bayes’ rule, we can write

L = Prob
(
ξt+1 | ξ0:t, u0:t

)
=

Prob
(
ξ0:t+1, u0:t

)

Prob (ξ0:t, u0:t)
. (13)

Note that the sequence ξ0:t consists of the variables
{xi

0:t−Ni
, ui

0:t−1 | i ∈ V}. Let us denote the denominator
of equation (13) by Lden. Then,

Lden =
∑

z/∈αt

PtK0:t, (14)

where we have used the definition of ξ0:t and the notation
that Pt = A1

0:t . . . An
0:t. Note that the transition kernel

Ai
t has arguments

zi
t, z

i
t−1, a

i
t−1, {z

k
t−1−Mki

| k ∈ Ii}.
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We first show that some of the Ai
t are independent of

the variables being summed over. Consider an arbitrary
s ≥ 0, and suppose Ai

t−s depends upon at least one of
z1
t−N1+1:t, . . . , z

n
t−Nn+1:t. Then, we must have

t − Ni + 1 ≤ t − s or

t − Ni + 1 ≤ t − s − 1 or

t − Nk + 1 ≤ t − s − 1 − Mki for some k ∈ Ii

where each inequality arises from the corresponding ar-
gument of Ai

t−s. This implies that

s ≤ Ni − 1 or s ≤ max{Nk − 1 − Mki | k ∈ Ii} − 1.

Hence for each i, the largest such s is exactly equal to di−
1 where di is defined by equation (10). Thus if s ≥ di then
Ai

t−s does not depend on any of z1
t−N1+1:t, . . . , z

n
t−Nn+1:t.

In other words, Ai
0:t−di

are independent of all the vari-
ables of summation. Further note that K0:t only depend
on the variables in {αt} and hence are independent of
the variables of summation. Thus, we can write the de-
nominator of equation (13) as

Lden = A1
0:t−d1

. . . An
0:t−dn

K0:t

∑

z/∈αt

A1
t−d1+1:t . . . An

t−dn+1:t.

(15)
Let us denote the numerator of equation (13) as Lnum.
Then,

Lnum =
∑

z/∈αt+1

Pt+1K0:t. (16)

Following the same argument as above, it is easy to verify
that if s ≥ di − 1, then Ai

t−s does not depend on any of

z1
t−N1+2:t+1, . . . , z

n
t−Nn+2:t+1. Thus, Ai

0:t−di+1 are inde-
pendent of the variables of summation of Lnum. We can
thus write Lnum as

Lnum = A1
0:t−d1

. . . An
0:t−dn

K0:t

∑

z/∈αt+1

A1
t−d1+1:t+1

. . . An
t−dn+1:t+1.

Canceling the common factors from the numerator and
denominator gives

L =

∑

z/∈αt+1
A1

t−d1+1:t+1 . . . An
t−dn+1:t+1

∑

z/∈αt
A1

t−d1+1:t . . . An
t−dn+1:t

. (17)

Using Bayes’ rule, we can write

R = Prob
(
ξt+1 | ξt, ut

)
=

Prob
(
ξt+1, ξt, ut

)

Prob (ξt, ut)
. (18)

Let Rden denote the denominator of equation (18). Using
the definition of ξt, we can write the denominator as,

Rden =
∑

a/∈βt

∑

z/∈βt

∑

z/∈αt

PtK0:t.

As before Ai
t−di

and K0:t are independent of the variables
of summation {z /∈ αt} and hence we can write Rden as

Rden =
∑

a/∈βt

∑

z/∈βt

A1
0:t−d1

. . . An
0:t−dn

K0:t×

∑

z/∈αt

A1
t−d1+1:t . . . An

t−dn+1:t

︸ ︷︷ ︸

R̂den

.

Let us determine explicitly what variables R̂den depends
on. For notational convenience, let us denote

T = A1
t−d1+1:t . . . An

t−dn+1:t.

If T depends on zi
s then we must have

t − di ≤ s or

t − dk − Mik ≤ s for some k ∈ Oi.

The first inequality holds if zi
s occurs in Ai

t−di+1···t and

the second holds if it occurs in Ak
t−dk+1···t. If R̂den de-

pends on on zi
t−Ni−r then,

t − di ≤ t − Ni − r or

t − dk − Mik ≤ t − Ni − r for some k ∈ Oi,

and these conditions imply that

r ≤ di − Ni or

r ≤ max{dk + Mik | k ∈ Oi} − Ni.

Using the definition of bi in equation (11), these two

inequalities imply that r ≤ bi. Thus R̂den depends on
{ai

t−di:t−1 | ∈ V} and {zi
t−Ni−bi:t−Ni

| i ∈ V} and hence
is independent of variables {a /∈ βt} and {z /∈ βt}. Thus,
we can write

Rden =




∑

a/∈βt

∑

z/∈βt

A1
0:t−d1

. . . An
0:t−dn

K0:t



×




∑

z/∈αt

A1
t−d1+1:t . . . An

t−dn+1:t



 . (19)

Let Rnum denote the numerator of the equation (18).
Then,

Rnum =
∑

a/∈βt

∑

z/∈βt

∑

z/∈αt+1

Pt+1K0:t.

Using the same argument as above we can write the nu-
merator as

Rnum =




∑

a/∈βt

∑

z/∈βt

A1
0:t−d1

. . . An
0:t−dn

K0:t



×




∑

z/∈αt+1

A1
t−d1+1:t+1 . . . An

t−dn+1:t+1



 . (20)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThA02.6

3846



From equation (19) and equation (20) we have

R =

∑

z/∈αt+1
A1

t−d1+1:t+1 . . . An
t−dn+1:t+1

∑

z/∈αt
A1

t−d1+1:t . . . An
t−dn+1:t

. (21)

The result follows from equations (17) and (21).

The next lemma evaluates the cost function g̃t for the
induced MDP and shows that it is independent of the
POMDP policy chosen.

Lemma 13. The cost function as defined in equation (6)
is independent of the POMDP policy K.

Proof. From equation (6), we have that

g̃t (qt, at) = E (ĝt (x̂t, at) | ξt = qt, ut = at) ,

Using the definition of ĝt from equation (9), we get that

g̃t (qt, at) = E (gt (xt, at) | ξt = qt, ut = at) ,

=
∑

zt

gt(zt, at)
Prob (zt, qt, at)

Prob (qt, at)
.

Using the definition of ξt we get that

Prob (qt, at) =
∑

a/∈βt

∑

z/∈βt

∑

z/∈αt

PtK0:t.

Thus, we get that g̃t is given as

g̃t (qt, at) =

∑

a/∈βt

∑

z/∈βt

∑

z/∈αt
gt(zt, at)PtK0:t

∑

a/∈βt

∑

z/∈βt

∑

z/∈αt
PtK0:t

,

=

∑

z/∈αt
gt(zt, at)A

1
t−d1+1:t . . . An

t−dn+1:t
∑

z/∈αt
A1

t−d1+1:t . . . An
t−dn+1:t

.

where the last equality follows from a similar argument
as given for equation (19). Thus the cost function is
independent of the POMDP policy K.

The following lemma shows that the conditional prob-
ability density function for the state at time t is same for
the induced MDP and the original POMDP.

Lemma 14. For all t ≥ 0, we have

Prob (x̂t = ẑt | ξ0:t = q0:t, u0:t−1 = a0:t−1) =

Prob (x̂t = ẑt | ŷ0:t = ŝ0:t, u0:t−1 = a0:t−1) , (22)

where we have used the notation γt (s0:t, a0:t−1) = qt.

Proof. Note that the sequence ξ0:t consists of the vari-
ables {xi

0:t−Ni
, ui

0:t−1 | i ∈ V}. Also for the subsec-

tion 3.1, we know that ŷt =
{
xi

t−Ni
| i ∈ V

}
. The lemma

follows trivially from these two facts.

Proof of Theorem 11. From lemmas 12, 13, and 14,
we get that ξt as defined in equation (12) is the sufficient
information state for the networked MDPs.

5 Conclusions

We studied networked Markov decision processes with
network delays between subsystems. Each subsystem
transmits its state to a centralized controller via a link
with an associated delay. Since the controller does not
have access to the current state of the system, these sys-
tems are a special case of partially observed Markov de-
cision processes. We show that for this special class of
POMDPs, the sufficient information state is a function of
finite history of the system state and the past controller
inputs. The number of past states as well as the past
inputs depends only on the underlying graph structure
of the networked Markov decision process. This result
shows that the controller synthesis can be achieved at
substantially lower computational cost. A dynamic pro-
gramming algorithm based on the finite information state
can be effectively used to compute the optimal controller
for such systems.
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