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Abstract— In this paper the authors study the problem of
the existence of multiple local operating points in control
systems. In particular, they consider a method of going from
local to global control, i.e. given a number of local, linearized
systems, from which global system do they come, and, can
global controllers be determined in this case?

I. INTRODUCTION

In many practical applications of the control of nonlinear

systems, the dynamics are usually linearised about

”operating points” (such as trim conditions in aircraft).

These local models are then used to design local controllers

and some gain scheduling procedure is used to switch

between the controllers at different operating points. In

fact, in many industrial plants or aerospace systems, only

a small number of operating conditions are known and

the global nonlinear dynamical system is not known. Gain

scheduling methods are widely used and are object of

many research papers, (see [1], [2], [3] and references

within as example). In this paper, the problem of going

from some known local models to a global one will be

considered. Furthermore, the obtained global model can

then be used instead of gain scheduling for control purposes.

The contains of this paper are as follows: Section II

recalls the basics of nonlinear systems linearisation

procedure, operating conditions and trackability properties.

Section III introduces an algebraic method that allows

the reconstruction of an unknown nonlinear system taking

as starting points its linear representations at some given

operating conditions. Section IV presents a global control

method that can be used instead of the well-known of gain

scheduling once the nonlinear system is known. Section V

tackles the problem of going from the local models to the

topology of the manifold on which the system is defined.

Section VI contains a summary of the ideas here presented.

II. NONLINEAR SYSTEMS, OPERATING

CONDITIONS AND TRACKABILITY

Consider the following nonlinear system:

ẋ = f (x,u) (1)

defined on ℜnxℜm. This is in fact, a kind of local model for

systems on manifolds - this point will be addressed later.

Intuitively, by an operating point it is understood a

pair (xd(t),ud(t)) ∈ ℜ consisting of an open loop control

and a function xd(t) which satisfies equation (1) when the

control ud(t) is applied, i.e.:

ẋd(t) = f (xd(t),ud(t)) (2)

On the other hand, the desired function xd(t) is trackable if

there exists a control ud(t) such that (2) holds.

If xd(t) is trackable for (1), the local variables around

the operating point y(t) and v(t), are defined as:

y(t) = x(t)− xd(t)
v(t) = u(t)−ud(t)

(3)

Then by applying Taylor′s theorem:

ẏ(t) = ẋ(t)− ẋd(t) = f (x,u)− f (xd(t),ud(t))
∼= A(t)y(t)+B(t)v(t)

(4)

where

A(t) =
∂ f (xd(t),ud(t))

∂x

and

B(t) =
∂ f (xd(t),ud(t))

∂u

for ′small′ y(t) and v(t).

If (A(t),B(t)) is a controllable pair, then the control
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of system (1) around the operating condition is achievable

by using the control:

u(t) = ud(t)+ v(t) (5)

In general, there could be a number i of these operating

points:
(

x
(i)
d ,u

(i)
d

)
∈C

(
[0,∞];ℜn+m

)
, 1 ≤ i ≤ K (6)

associated to a correspondent number i of ′local models′ of

the nonlinear system (1):

ẏ(i)(t) = A(i)(t)y(i)(t)+B(i)(t)v(i)(t), (7)

The problem to be considered now is the inverse one: How to

go from a set of i local models (7) to the global one (1)?. For

simplicity, it will be assumed that all the operating points are

constant, so that the local models are linear, time-invariant

systems of the form:

ẏ(i) = A(i)y(i)(t)+B(i)v(i)(t), 1 ≤ i ≤ K (8)

Also, in this case, (2) becomes an algebraic condition of the

form:

f (x
(i)
d ,u

(i)
d ) = 0 (9)

if the values of x
(i)
d are constant, 1 ≤ i ≤ K.

Having obtained a global model from the i local ones, a

global controller which will drive the system from one

operating point to another has to be determined. This

will involve an application of an iteration scheme [4]

which replaces a nonlinear (not necessarily quadratic)

optimal control problem which is linear (time-varying) and

quadratic, which can be solved by classical methods.

Finally, the authors will consider the tracking global

problem of determining (to some degree) the topology of

the manifold on which a nonlinear system is defined from

a knowledge of the local representatives assuming that the

local systems are complete in the sense that their defining

neighborhoods cover the manifold.

III. FROM LOCAL TO GLOBAL

Suppose the set of k unknown constant operating points:
(

x
(i)
d ,u

(i)
d

)
, 1 ≤ i ≤ k (10)

at which there exist k linearisations of the form:

ẏ(i)(t) = A(i)y(i)(t)+B(i)v(i)(t), 1 ≤ i ≤ k (11)

of some unknown nonlinear system on ℜn.

If the unknown system is of the form (1)

ẋ = f (x,u) (12)

then
∂ f (x

(i)
d ,u

(i)
d )

∂x
= A(i)

, (13)

∂ f (x
(i)
d ,u

(i)
d )

∂u
= B(i)

, (14)

for 1 ≤ i ≤ k, and moreover, f must satisfy:

f (x
(i)
d ,u

(i)
d ) = 0, 1 ≤ i ≤ k. (15)

Consider the equations:

0 = fp(x
(l)
d ,u

(l)
d ) (16)

=
N1

∑
i1=0

· · ·
Nn

∑
in=0

· · ·
M1

∑
j1=0

· · ·
Mm

∑
jm=0

a
p
i1...in, j1... jm

(x
(l)
d )i(u

(l)
d ) j

with

1 ≤ l ≤ k, 1 ≤ p ≤ n. (17)

and

A
(l)
pq = ∑

N1
i1=0 · · ·∑

Nq

iq=1 · · ·

∑
Nn
in=0 · · ·∑

M1
j1=0 · · ·∑

Mm
jm=0 a

p
i1...in, j1... jm

iq(x
(l)
d )i−1q(u

(l)
d ) j

(18)

B
(l)
pq = ∑

N1
i1=0 · · ·∑

Nu
in=0 · · ·

∑
M1
j1=0 · · ·∑

Mq

jq=1 · · ·∑
Mm
jm=0 a

p
i1...in, j1... jm

jq(x
(l)
d )i(u

(l)
d ) j−1q

(19)

where

i = (i1, · · · , in),

j = ( j1, · · · , jm)

and

1q = (0, · · · ,0, 1︸︷︷︸
q

,0, · · · ,0)

in the ∏
n
i=1(Ni + 1)∏

m
j=1(M j + 1) variables a

p
i, j, where f is

assumed to be able to be approximated by a polynomial

function. The number of equations is

(n+n2 +nm)k (20)

and they can be written in the form:

LV = W (21)

where L is a linear operator, V is a vector of the unknown pa-

rameters a
p
i, j and W contains the known local representations

A(i),B(i). L maps ℜα into ℜβ , where:

α = Π(Ni +1)Π(M j +1) (22)

and

β = (n+n2 +nm)k (23)

The system (21) is:

• (i) Overdetermined if α < β ,

• (ii) Determined if α = β and L is invertible,

• (iii) Underdetermined if α > β .

Therefore, according to the above classification, there will

be a unique solution in case (ii), a solution in case (i) if W ∈
Range(L) and in case (iii) if Rank(L) = β .
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IV. GLOBAL CONTROL

In the previous section, a way to find a global model

from the local models around some operating conditions

has been presented. Now, a ′global′ controller which drives

the system from one operating condition to another is found.

Suppose the existence of two distinct operating points

(x(1),u(1)) and (x(2),u(2)), so that in the obtained global

model of the form:

ẋ = f (x,u) (24)

this will be,

f (x(i)
,u(i)) = 0, i = 1,2. (25)

Now the control objective is to drive the global nonlinear

system (24) from x(1) to x(2), this is, to seek a desired

trajectory xd(t) such that:

xd(0) = x(1)
, xd(t f ) = x(2)

Therefore, the question is: Does there exist a control ud(t)
so that:

ẋd(t) = f (xd(t),ud(t)) (26)

In order to answer this question, the notion of projection

field should be introduced: This is defined as a section of

the bundle of projection operators on ℜn of rank m. Thus,

a projection field on ℜn associates a projection operator

Px : ℜn → ℜm to each point x ∈ ℜn such that the function

x → Px is smooth. The main result can be summarized as:

Theorem: Given a desired trajectory xd : ℜ+ → ℜn,

there is a control ud : ℜ+ → ℜm satisfying (26), if there

exist a projection field x → Px such that the function

g(x,u) = Px f (x,u) satisfies:

∂g(xd(t),ud(t))

∂u
6= 0

for each t ∈ ℜ+ and ẋd(t) ∈ RPxd(t) for all t ∈ ℜ+, where

RP is the range of the projection P.

Proof:

Since ẋd ∈ RPxd
, then:

Pxd(t)ẋd = Pxd(t) f (xd(t),ud(t)) = g(xd(t),ud(t))

Hence,

ẋd −g(xd(t),ud(t)) = 0

and since
∂g(xd(t),ud(t))

∂u
6= 0

the results follow from the implicit function theorem.�

Suppose there exists a control ud(t) satisfying the above

theorem, then from (24) and (26), it can be written that:

ẋ− ẋd = f (x,u)− f (xd ,ud)

= f (x− xd + xd ,u−ud +ud)− f (xd ,ud)

= g(x− xd ,u−ud , t)

where g(0,0, t) = 0,∀t.

Hence, if y = x − xd and v = u − ud , then the system

(27) can be written as:

ẏ = g(y,v, t) (27)

therefore, the regulator problem for v can be solved, and then

write u = v+ud .

To solve this problem, a well established technique of linear,

time-varying approximations to the problem (see [4]) is

applied: It is assumed that the system (27) can be written

on the form:

ẏ(t) = A(y, t)y(t)+B(y, t)v(t), (28)

In the case the system is not affine in the control, nonlinear

control terms can be included in A(y, t) and B(y, t)). Now,

equation (28) is replaced by the following sequence of LTV

systems:

ẏ[i](t) = A(y[i−1](t))y[i](t)+B(y[i−1](t))v[i](t) (29)

and to each of the equations (29), the following quadratic

cost functional is applied:

J =
1

2
x[i]T (t f )Fx[i](t f )+

1

2

∫ t f

0

[
x[i]T (t)Qx[i](t)+u[i]T (t)Ru[i](t)

]
dt (30)

The problems (29) and (30) can then be solved by standard

methods (see [5] or [7]).

Example

Let (ξ10,ν10), (ξ20,ν20)∈ ℜ2 be two points which satisfy:

ν10 = ξ20 −2ξ10 +ξ 3
10

ν20 = −ξ10 +ξ 3
20,

and suppose the two local systems:
(

ẋ1

ẋ2

)
=

(
1−ξ 2

i0 −1

−1 0

)
·

(
x1

x2

)
+

(
0

1

)
·u, i = 1,2.

(31)

These systems are local versions of:
(

ẋ1

ẋ2

)
=

(
1−ξ 2

10 −1

−1 0

)
·

(
x1

x2

)
+

(
0

1

)
·u (32)

and if:

x1d(t) = ξ10(1− t)+ξ20(t)

x2d(t) = ẋ1d − x1d + x3
1d

Then the control:

ud = ẋ2d + x1d = −ẋ1d +3x2
1d · ẋ1d − x1d

will derive the system between the two points.
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The system (27) becomes:
(

ẏ1

ẏ2

)
=

(
1 ((y1 + x1d)

2 +2(y1 + x1d)x1d + x2
1d)

−1 0

)

·

(
y1

y2

)
+

(
0

1

)
· v

(33)

and this generates a closed-loop control so that the following

expression of u(t),

u = v+ud , (34)

will regulate the system between the two given operating

values.

V. GLOBAL SYSTEMS ON MANIFOLDS

In this section, a more general problem is considered; that

of going from local models to the topology of the ambient

manifold on which the system is defined.

Hence, consider a compact n-dimensional differentiable

manifold M and let X(u) be a parameterized vector field on

M, where u ∈R
m. Let (φi,Ui), 1 ≤ i ≤ K be a finite covering

of M by local parameters, where each φi : Ui −→ R
n is a

homeomorphism.

In each coordinate neighborhood, the local form of

the dynamical system corresponding to the vector field

X(u)‖ui
can be written as:

ẋi = f (i)(x(i)
,u(i)). (35)

It will be assumed that, in each neighborhood Ui there is an

operating point x
(i)
d ∈ φ(i)(Ui). This, as before, means that

there is a (constant) open loop control u
(i)
d such that

f (i)(x
(i)
d ,u

(i)
d ) = 0 (36)

Then the new local coordinates are defined,

y(i) = x(i) − x
(i)
d (37)

and the new control

v(i) = u(i) −u
(i)
d y (38)

so the ′local model′ is of the form:

y(i) = g(i)(y(i)
,v

(i)
d ) (39)

where

g(i)(y(i)
,v

(i)
d ) = f (i)(y(i) + x

(i)
d ,v(i) +u

(i)
d )

Note that g(0,0) = 0.

The question is now: Knowing the local models (39)

and the operating points (x
(i)
d ,u

(i)
d ), what can be said about

the topology of M?.

It is assumed that complete information is known, in the

sense that the coordinate patches on which the local systems

are defined cover the (unknown) ambient manifold. So the

problem is, how do they fit together?. Taking zero controls

from (39):

ẏ(i) = g(i)(y(i)
,0), 1 ≤ i ≤ K

each of these systems is defined on some region Vi, say of

ℜn.

Now, it is said that two local systems

ẏ(i) = g(i)(y(i)
,0), ẏ( j) = g( j)(y( j)

,0) (40)

are compatible if there exist a diffeomorphism φi j : V̂(i) −→

V̂( j) from some nonempty subset V̂(i) of Vi onto some subset

V̂( j) of Vj such that the system is a topologically conjugate

on V̂j, i.e. φi j maps trajectories of systems (i) on those of

system ( j). Note that, if these two systems are compatible,

then

y(i)(t) = φi j(y
(i)(t))

and so

ẏ( j) =
∂φi j

∂y(i)
ẏ(i)

i.e.,

g( j)(y(i)
,0) =

∂φi j

∂y(i)
g(i)(y(i)

,0).

Hence the matrices
∂φi j

∂y(i) g(i) from the transmition matrices for

this tangent bundle of a manifold. The transition matrices are

denoted by

γ(i j) =
∂φi j

∂y(i)
(y(i))

Note that they obey the standard cocycle conditions:

γi j − γ jk = γik on Ui ∩U j ∩Uk,

γii = I,

γi j · γ ji = I on Ui ∩U j.

For example, for a sphere S2, regarded as S2 = C∪{∞}:

g∞ : U0 ∩U∞ → GL(I,C)

where g∞0(z) = 1
zn for each integer n and U0, U∞ are

neighborhoods of 0 and ∞ respectively. This defines a

complex line bundle on S2, usually denoted by Hn.

A connection on the vector bundle defined by transition

functions γi j is a collection of differential operators d + wi

defined on Ui such that wi = γi jdγ−1
i j + γi jw jγ

−1
i j on Ui ∩U j

where d is the exterior derivative. These glue together to

give a global map:

dA : Ω0(E) → Ω1(E) (41)

for a bundle E.

The curvature of dA is (d2
A) and is represented locally

by a matrix Ki of two-forms for which

Ki = γi jK jγ
−1
i j (42)

The Kth characteristic class of the bundle is defined by

τk(E) = [τk(A)] ∈ H2k(M;ℜ) (43)
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where τ(A) =trace
[
( i

2π K j)
k
]
. The first Chern class

c1(E) = τ1(E).

Then, < c1(τM), [M] >= 1
2π

∫
M KdA = X(M) by the

Gauss-Bonnet theorem, so the Chern class states if the

system is trivial or not.

Example

The systems:
(

ẋ1

ẋ2

)
=

(
−1 0

−1 0

)
·

(
x1

x2

)
+

(
0

1

)
·u (44)

(
ẏ1

ẏ2

)
=

(
−1 0

−1 0

)
·

(
y1

y2

)
+

(
0

1

)
·u (45)

Generate a system in S2, since the transition functions look

like g∞0(z) = 1
z

in local coordinates. It can be seen that <

c,(τM), [M] >= 2 = X(M)

VI. CONCLUSIONS

In this paper the authors have considered the problem of

piecing together a set of given local systems to form a global

one on some manifold. If the information is incomplete

(as in most practical cases) interpolation methods can be

used and if it is complete, then topological manifold theory

will be used to describe the ambient manifold. Using an

approximation method for the obtained nonlinear system,

global controllers can be now designed in order to drive the

system from one local operating point to another.
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