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Abstract— This paper studies the dissipativity properties of
full order dynamic models of synchronous generators. It is
shown that, under widely accepted assumptions, these models
satisfy a balance between the internal storage of a generalized
energy and a suitably defined power supply associated to the
stator and excitation circuits. This property has particular
relevance since it allows to incorporate the detailed model
of synchronous machines to classical energy functions used
to analyze power system stability. The dissipation inequality
implies also that the linear model around the equilibrium point
meet a convex condition in the frequency domain, able to be
exploited in the stability analysis of interconnected systems.
The impact of excitation control and resistive losses on these
properties is studied through a numerical example.

I. INTRODUCTION

The dynamic behavior of the synchronous generators plays

a central role in power system stability. This machines have

been extensively studied for decades and accurate and well

established dynamic models are available, see [1], [10].

However, the complexity of power system dynamics has

stimulated the seek for analysis tools which take advantage

of structural dynamic properties of these systems and, con-

sequently, of the synchronous generators.

Notable antecedents of this search are the references [2],

[4], [16], [19]. This research line provide us with a set of

techniques– also named direct methods–based in the energy

function that have been used in the stability analysis of power

systems. Its applications ranges from estimation of stability

domains and critical clearing times to online techniques for

the detection of loss of synchronism [3], [14], [17]. However,

significant difficulties have been faced with the model of

the synchronous machine. Typically, generators have been

modeled with the classical constant voltage, second order

model [3], [17], and with the third order models [19],

[16], [12]. Some authors have included Automatic Voltage

Regulators (AVR) circuits, at the expense of the inclusion of

path-dependent terms to the energy function [14].

More recently, some progresses have been reported by ap-

plying a more fundamental concept: the theory of dissipative

dynamical systems. This concept was originally stated by

Willems in a seminal paper [20] and it was later extended

and explored [8]. Basically, a dissipative system satisfies a

balance between the storage of a generalized internal energy
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and a suitably defined supply rate function that describes

the interchanges of the system with its environment. This

fundamental ideas are strongly related with concepts like

passivity and finite gain, see [20], [21], and constitute a

fundamental basis of the development of the robustness

analysis [11]. References [6], [13], [15] report applications

of the dissipativity ideas on power systems.

This paper considers the conventional full order syn-

chronous machine model [1], [10] which includes saliency

and three damping circuits. It is shown that, under widely ac-

cepted simplifying assumptions–no resistive statorical losses,

no ”pψ” terms, constant mechanical torque– the conventional

synchronous machine model with constant excitation satisfies

a dissipation inequality involving a generalized power supply

rate function ws suitably defined from the active and reactive

power and the terminal voltage. The significance of this

property is the following. In reference [6] it was shown

that this dissipation is also met by classical models of

(lossless) transmission lines, classical synchronous machine,

constant active power loads and ZIP (constant impedance,

current and power) reactive power loads. As a consequence,

detailed models of synchronous generators can be exactly

incorporated to the well-known energy function of power

systems. The function ws have been implicitly employed in

the construction of energy functions, see [3], [17].

A Hamiltonian description for the machine model, useful

for control purposes, is also derived. Other contribution of

this paper is the obtaining, along the lines of previous work

[7], of a convex frequency domain condition that is satisfied

by the small signal model of the synchronous machine. This

frequency domain condition is a special case of Integral

Quadratic Constraint (IQC) which allows a very versatile

treatment of uncertainties [11].

The excitation control is specially included in the analysis;

its effect on the dissipation balance is explicitly treated.

However, conventional controllers like AVRs or stabilizers

would destroy the dissipativity properties. This is inves-

tigated through a numerical example which examines the

impact of statorical resistive losses and excitation control.

The structure of the paper is as follows. Section II presents

the mathematical model of the synchronous machine. In

Section III we analyze its dynamical properties, including

the obtaining of a generalized Hamiltonian model. Section

IV introduces the corresponding linear model around the

equilibrium point and shows how the dissipation inequality

can be posed as a convex condition in the frequency domain.

Section V presents the frequency domain analysis of the

machine model of a benchmark example. We wrap up the

paper with some concluding remarks.
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II. SYNCHRONOUS MACHINE MODELING

In this section we recall the well known model for the syn-

chronous machine. It includes three damping circuits at the

rotor, salient poles, and the complete stator dynamics. Some

notation is introduced to simplify the treatment and some

assumptions are established to advance in our development.

The d− q components of the terminal voltage satisfy
{

Ed = V sin(δ − θ)
Eq = V cos(δ − θ),

(1)

where V ejθ is the terminal voltage phasor referred to the

synchronous reference, and δ is the correspondent axis q

rotor position. The entering complex power SM results:

SM = PM + jQM = (Ed + jEq)[−(Id − jIq)],

where the negative signal comes from the convention used

to define the stator current as positive when salient. The

terminal voltage and the complex power can also be written

y :=
[

θ V
]T

;u=
[

PM QM
]T
. (2)

We consider here the standard eighth order model for the

synchronous machine, see equations 3.120 to 3.134 in [10]:

Ed = d
dt

Φd − Φqωr −RaId
Eq = d

dt
Φq + Φdωr −RaIq

Efd = d
dt

Φfd +RfdIfd

0 = d
dt

Φ1d +R1dI1d

0 = d
dt

Φ1q +R1qI1q

0 = d
dt

Φ2q +R2qI2q
d
dt
δ = Ω0(ωr − 1)

h d
dt
ωr = Tm − d(ωr − 1) − Te

Te = ΦdIq − ΦqId

(3)

Φd,Φq represent the d−q components of the stator flux link-

age. Φ1d,Φ1q,Φ2q,Φfd are the respective rotor flux linkages

associated to the damping and field circuits. The currents

Id.Iq, Ifd, I1d, I1q, I2q obey to the same notation. We will

assume that the damping coefficient and the resistances

d,Rk ≥ 0 and the inertia constant h > 0. ωr denotes the

variation of the rotorical angular speed in p.u.

We now introduce the sub-indices s and r to respectively

denote the stator and rotor variables:

Φs :=

[

Φd

Φq

]

; Is :=

[

Id
Iq

]

; Φr :=





Φ1d

Φ1q

Φ2q



; Ir :=





I1d

I1q

I2q



.

The relationship between fluxes and currents results

Φ :=





Φs

Φfd

Φr



 = L





−Is
Ifd

Ir



 = LI,

with

L =

















Lad + Ll 0 Lad Lad 0 0
0 Laq + Ll 0 0 Laq Laq

Lad 0 Lffd Lf1d 0 0
Lad 0 Lf1d L11d 0 0
0 Laq 0 0 Laq Laq

0 Laq 0 0 Laq Laq

















.

Let us introduce an auxiliary matrix

J2 :=

[

0 −1
1 0

]

,

that satisfies J−1
2 = J⊤

2 = −J2. Thus, the electrical torque

Te and the power SM can, respectively, be written as:

Te = ΦdIq − ΦqId =

[

Id
Iq

]T

J2

[

Φd

Φq

]

= I⊤s J2Φs, (4)

SM = −(Ed + jEq)(Id − jIq) = −ET
s Is + jIT

s J2Es. (5)

The stator equations in (3) can now be written:

Es =
d

dt
Φs + J2Φsωr −RaIs. (6)

We shall state the assumptions we need to proceed with our

development.

Assumption 1 The terms d
dt

Φ and RaIs in equation (6)

are neglected. The term J2Φsωr is approximated by J2Φs.

So, equation (6) will be substituted by

Es = J2Φs. (7)

Notice that the terms d
dt

Φ–commonly referred in the

literature as pΦ terms–are typically neglected all along the

power system since the electrical network is studied with

the help of phasors and a quasi-stationary hypothesis. If

we neglect the terms d
dt

Φ in the stator equations, we will

treat the machine’s stator as the remainder of the network.

Taking ωr = 1 in equation (6) is a typical approximation in

power system literature, see [10]. The assumption on Ra is

justified by its little significance. Nevertheless, its influence

is illustrated in Section V with the help of an example.

The following equation follows from Assumption 1:

Te = IT
s J2Φs = IT

s Es = −PM . (8)

With these simplifications, we get the sixth order model

for the synchronous machine

Σ(u, y; v, z) :























d
dt
δ = Ω0(ωr − 1)

h d
dt
ωr = Tm − d(ωr − 1) + PM

d
dt

Φfd = Efd −RfdIfd
d
dt

Φr = −RrIr
Es = J2Φs

(9)

We denote x := [δ ωr Φfd Φ⊤
r ]⊤ ∈ R6 the state vector.

At the stator circuit, we take y := [θ V ]T ∈ R2 and

u := [PM QM ]T ∈ R2 as the output and input variables,

respectively. At the excitation circuit we denote the output

z = Ifd and the input v = Efd.

III. DYNAMICAL PROPERTIES

In this section we will show that the model (9) can be

written as a generalized Hamiltonian model, see [18]. Once

established this fact, the dissipativity of the model will be

defined and proved. In this section and in the sequel, we

shall assume that the mechanical torque Tm is constant.
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A. Generalized Hamiltonian model

Notice that, in the model (9), the stator flux Φs is not a

state variable, but a function on δ and y:

Φs = −J2Es = −J2

[

V sin(δ − θ)
V cos(δ − θ)

]

.

Thus, the flux vector Φ is a function of the state vector x and

the link variables y. With the help of the auxiliary matrices

Ps =

[

Id2

04×2

]

, Pr =

[

02×4

Id4

]

we write

Φ = [ΦT
s Φfd ΦT

r ]T = PsΦs + Pr[Φfd ΦT
r ]T .

We can compute the partial derivatives

∂Φ

∂y
=

∂Φ

∂Φs

∂Φs

∂Es

∂Es

∂y
=

= Ps[−J2]

[

−V cos(δ − θ) sin(δ − θ)
V sin(δ − θ) cos(δ − θ)

]

=

= Ps[−J2][J2Es

1

V
Es] = Ps[Es −

1

V
J2Es], (10)

∂Φ

∂δ
=

∂Φ

∂Φs

∂Φs

∂Es

∂Es

∂δ
= Ps[−J2]

[

V cos(δ−θ)
−V sin(δ−θ)

]

=

= Ps[−J2][−J2Es] = −PsEs. (11)

Define the function S : R6 ×R2 → R:

S(x, y) :=
1

2
Ω0h(ωr − 1)2 +

1

2
Φ⊤L−1Φ − Tmδ. (12)

This function will be shown to meet the role of a storage

function, in a sense that will be explained in Section III-B.

Notice that function S comprises three terms which possess

clear physical interpretation: kinetic energy, magnetic energy

and a term of potential energy Tmδ.

The following computations are direct from eqs. (11),(12):

∂S

∂Φ
= (L−1Φ)T = IT , (13)

∂S

∂Φ

∂Φ

∂δ
= IT [−PsEs] = IT

s Es = −PM . (14)

The partial derivative ∂S
∂y

can be computed with the help

of equations (13), (10) and (5):

∂S

∂y
=
∂S

∂Φ

∂Φ

∂y
= IT ∂Φ

∂y
= ITPs[Es −

1

V
J2Es] =

[−Is]
T [Es −

1

V
J2Es]=[−IT

s Es

1

V
IT
s J2Es]=[PM

QM

V
].

Definition (12) and equation (14) imply:

∂S

∂x
=





−Tm + ∂S
∂Φ

∂Φ

∂δ

hΩ0(ωr − 1)
PT

r L
−1Φ





T

=





−Tm − PM

hΩ0(ωr − 1)
PT

r I





T

.

Thus, we get the gradients1 of function S:

∇xS(x, y)=





−Tm − PM

hΩ0(ωr − 1)
PT

r I



;∇yS(x, y)=

[

PM
QM

V

]

. (15)

We are now in position to state our PCH model
{

ẋ = (J −R)∇xS(x, y) +BvEfd

0 = −∇yS(x, y) +Bu(y)u
(16)

with

J = −JT =
1

h





0 1
−1 0

02×4

04×2 04×4



 , (17)

R =





0 0
0 d

h2Ω0

02×4

04×2 R4



 ≥ 0, (18)

R4 =









Rfd 0 0 0
0 R1d 0 0
0 0 R1q 0
0 0 0 R2q









,

Bv =
[

0 0 1 0 0 0
]T
, Bu(y) =

[

1 0
0 1

V

]

.

B. Dissipativity properties

As indicated in the Introduction we adopt the dissipativity

framework proposed in [20], see also [8], [18]. To establish

our results a slight variation of the classical formulation

is needed since the supply rate functions that we consider

depend, not only on the port variables (u, y), but also on ẏ.

Definition 1: Consider a dynamical system Σ given by
{

ẋ = F (x, u)
y = r(x, u)

(19)

where x ∈ R
n is the state and (u, y) ∈ R

p ×R
p are the port

variables. Let w : R
p × R

p × R
p → R be locally integrable

along trajectories of Σ, i.e.
∫ t2

t1

w(u(t), y(t), ẏ(t))dt <∞, ∀ t1, t2 ∈ R.

We say that Σ is cyclo–dissipative with respect to the supply

rate w(u, y, ẏ) if and only if there exists a differentiable

function S : R
n → R, called storage function, such that

S(x(t2))−S(x(t1)) ≤

∫ t2

t1

w(u(t), y(t), ẏ(t))dt ∀t2 ≥ t1.

If the storage function is non–negative we say that Σ is

dissipative with respect to the supply rate w(u, y, ẏ).
As seen from the definition above the distinction be-

tween cyclo–dissipative and dissipative systems is the non–

negativity of the storage function.2 It can be shown [8]

that a system is cyclo–dissipative when it cannot create

(abstract) energy over closed paths in the state–space. It

1The gradient of a scalar function S(x, y) with respect to variable x will
be denoted ∇xS and represented as a column vector.

2Actually, as one can always add a constant to the storage function, the
question is whether it is bounded from below or not.
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might, however, produce energy along some initial portion

of such a trajectory; if so, it would not be dissipative. On

the other hand, every dissipative system is cyclo–dissipative.

Consider the supply rate functionsWs : R
2×R

2×R
2 → R

and Wfd : R × R → R

Ws(u, y, ẏ) := u⊤B⊤

u (y)ẏ = P θ̇ +
Q

V
V̇ . (20)

Wfd(v, z) := vz = EfdIfd. (21)

The cyclo-dissipativity of the operator Σ is a straight-forward

consequence of model (16):

Proposition 1: The operator Σ(u, y; v, z) defined by the

model (9) is cyclo–dissipative with respect to the supply rate

W = Ws(u, y, ẏ) +Wfd(v, z). More precisely,

dS(x, y)

dt
≤Ws(u, y, ẏ) +Wfd(v, z).

Proof: Compute the derivative of the storage function S:

dS(x, y)

dt
=
∂S

∂x
ẋ+

∂S

∂y
ẏ =

= [∇xS(x, y)]
⊤

[(J−R)∇xS(x, y)+BvEfd]+u
TBu(y)T ẏ =

− [∇xS(x, y)]⊤R∇xS(x, y) + EfdIfd + w(u, y, ẏ) =

−dΩ0(ωr−1)2−RfdI
2
fd−I

T
r RrIr+Wfd(v, z)+Ws(u, y, ẏ) ≤

≤Wfd(v, z) +Ws(u, y, ẏ).

The inequality results from equations (17) and (18).

Remark 1: In reference [6] it was shown that Proposition

1 is also met by classical models of (lossless) transmission

lines, classical and third order generators models, constant

active power loads and ZIP reactive power loads. As a conse-

quence of Proposition 1 and results in [6], detailed models of

synchronous generators can be accurately incorporated to the

well-known energy function of power systems. The function

ws have been implicitly employed in the construction of

energy functions, see [17], [3].

Remark 2: The dissipation is composed by the physically

foreseeable terms: mechanical losses, electrical losses. The

supply rate function has two components. Ws is the already

known supply rate function which rules the energy inter-

change all along the network [5]. The term Wfd = EfdIfd

is, naturally, the electrical power supplied to the machine by

the excitation system.

Remark 3: Of course, we always can consider the phys-

ically natural supply rate function defined as the sum of

the supply rate ŵs = −ET
s Is = PM for the stator and

ŵfd = EfdIfd for the field. By doing so, we recover

the familiar energy balance at the machine, see [13] and

references therein. This study is very interesting, since it

establishes links with very well-known physical concepts.

However, that election of power supply rate functions faces

serious drawbacks when analyzing the stability of a non zero

equilibrium, since the dissipativity is not suitably satisfied by

the incremental model around a non-zero equilibrium point.

Significantly, the power supply rates ws and wfd defined

above have not these drawbacks since they have not first

order terms and they vanish at the equilibrium.

C. Incremental properties

When the property of interest is the stability of an equi-

librium point, it is necessary to examine the behavior of

the supply rate function around the equilibrium [20]. The

supply rate function Ws is zero at the equilibrium point

which is very important for the equilibrium stability analysis.

Although Ws has first order terms (P ⋆
M θ̇, etc), they can be

easily incorporated to the storage function as additive terms

which is also true for the constant and first order terms of

Wfd around the equilibrium, as it is shown next.

Variables at the equilibrium will be denoted with a supra-

index ∗: x∗, I∗fd, etc. Tildes or simply lowercase will denote

the incremental variables: ifd = Ifd − I∗fd, x̃ = x− x∗, etc.

Define the modified storage function s : R6 ×R2 → R:

s(x̃, ỹ) = S(x, y) − P ∗

Mθ −Q∗

M lnV − I∗fdΦfd, (22)

and the modified supply rate functions wfd : R × R → R

and ws : R
2 × R

2 × R
2 → R:

wfd(ṽ, z̃) = (Efd − E∗

fd)(Ifd − I∗fd) = efdifd,

ws(ũ, ỹ, ˙̃y) := (PM −P ∗

M )θ̇+
QM −Q∗

M

V
V̇ = pM θ̇+

qM

V
V̇ .

(23)

It is simple to verify the dissipativity for this formulation:

d

dt
s(x̃, ỹ) =

dS(x, y)

dt
− P ∗

M θ̇ −Q∗

M

V̇

V
− I∗fdΦ̇fd =

−dΩ0(ωr − 1)2 −RfdI
2
fd − IT

r RrIr + EfdIfd+

+Ws(u, y, ẏ) − P ∗

M θ̇ −Q∗

M

V̇

V
− I∗fdΦ̇fd =

= −dΩ0(ωr − 1)2 − IT
r RrIr + ws(ũ, ỹ, ˙̃y) − I∗fdΦ̇fd+

+Ifd(−RfdIfd + Efd) =

= −dΩ0(ωr−1)2−IT
r RrIr+ws(ũ, ỹ, ˙̃y)+ifdefd−Rfdi

2
fd ≤

≤ wfd(ṽ, z̃) + ws(ũ, ỹ, ˙̃y).

Notice that s(x̃, ỹ) has no first order terms:

∂s

∂x̃
|∗ =

∂S

∂x
|∗ − [0 0 I∗fd 0 0 0] = 0

∂s

∂ỹ
|∗ =

∂S

∂y
|∗ − [P ∗

M

Q∗

M

V ∗
] = 0.

IV. DISSIPATIVE PROPERTIES OF SMALL SIGNAL MODELS

The section III established the cyclo-dissipativity of model

(9) . Thus, a fundamental internal property– the balance be-

tween the storage of a generalized energy and the interaction

with the environment–has been established. We will study

how these properties particularize for small signal models.

Later, we will exploit the versatility of linear models to study

the dissipativity in the frequency domain.

With the help of the Hessian of function s at the equilib-

rium point:

H :=
∂2s(x̃, ỹ)

∂(x̃, ỹ)2
|⋆,
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we can define H : R
6 × R

2 → R :

H(x̃, ỹ) :=
1

2

[

x̃

ỹ

]⊤

H

[

x̃

ỹ

]

, (24)

and obtain the linear model
{

˙̃x = (J −R)∇x̃H(x̃, ỹ) +Bv ṽ

0 = −∇ỹH(x̃, ỹ) + [pM
qM

V ∗
]T .

(25)

We define the supply rate function w̃s : R
2 ×R

2 ×R
2 → R

w̃s(ũ, ỹ, ˙̃y) := [pM

qM

V ∗
] ˙̃y = pM θ̇ +

qM

V ∗
V̇ , (26)

the second order term of Ws around the equilibrium point.

If we define

W :=

[

1 0
0 1

V ∗

]

,

we can write

w̃s(ũ, ỹ, ˙̃y) = [pMqM ]W ˙̃y = ũTW ˙̃y.

If the excitation is held constant, i.e. ṽ ≡ 0, the dissipation

inequality is easily recovered with the help of definitions

(22), (24) and (26):

d

dt
H = ∇⊤

xH
˙̃x+ ∇⊤

yH
˙̃y ≤ [pM

qM

V ∗
] ˙̃y = w̃s(ũ, ỹ, ˙̃y). (27)

Equation (25) is the state space representation of the small

signal response of the power system. It also determines an

input-output relationship between input ũ and output ỹ for

ṽ ≡ 0. Denote Σ(s) the transfer matrix: ỹ(s) = Σ(s)ũ(s);
being s the Laplace variable3.

Under mild conditions, the dissipation inequality (27)

implies a frequency-dependent inequality.

Proposition 2: If Σ(jω) ∈ RL∞, then it satisfies
[

I

Σ(jω)

]∗

Πd(jω)

[

I

Σ(jω)

]

≥ 0 ∀w ∈ R, (28)

Πd(jω) := |h(jω)|2
[

0 −jωW⊤

jωW 0

]

, (29)

for all function h(s) real rational stable and strictly proper.

Proof: The proof rests on a classical argument4 that consists

in considering a perfect sinusoidal input ũ(t) with angular

frequency ω and arbitrary spatial direction:

ũ(t) = Re(u0e
jωt), u0 ∈ C2.

Obtain the sinusoidal functions x̃(t), ỹ(t) such that the triple

(ũ, x̃, ỹ) satisfies (25). Naturally, ỹ(t) = Re(Σ(jω)u0e
jωt)

and the supply rate function w̃s(t) is given by

w̃s(t) = Re(u0e
jωt)TW ˙̃y.

If the dissipation inequality (27) is integrated in one period

T = 2Π

ω
, ω 6= 0, we get:

∫ to+T

t0

w̃s(t)dt =
T

4
u∗0jω[Σ(jω)⋆W −WΣ(jω)]u0 ≥ 0.

3The context avoids any potential confusion with the incremental storage
function s defined in (22) and the abstract notation for the system Σ(u, y).

4Proposition 2 can be seen as a special case of the classical KYP lemma.

Thus, since u0 is arbitrary, it is necessary that
[

I

Σ(jω)

]⋆ [

0 −jωW
jωWT 0

] [

I

Σ(jω)

]

≥ 0 ∀ω.

The inclusion of the case ω = 0 is immediate since Πd

vanishes. The factor |h(jω)|2 is incorporated in order to

ensure the boundedness of Πd for all ω. ���

V. NUMERICAL EXAMPLE

In this section we consider a classical benchmark of power

system stability studies: the four machines example of [10],

page 813. The objective of this analysis is to verify the

fulfillment of the frequency domain condition in Proposition

2.

The system was modeled with the package DSAT [9],

including the computation of the linear model around the

equilibrium.

Let us compute the eigenvalues of the matricial function

σ(jω) :=

[

I

Σ(jω)

]∗

Πd(jω)

[

I

Σ(jω)

]

∀w ∈ R.

According to Proposition 2, both eigenvalues of function

σ(jω) must be positive for all ω ∈ R. The eigenvalues of

σ(jω) were computed for each generator in the example.

The model of generator G1 does not include the effect

of magnetic saturation nor statorical resistance Ra. The

excitation is kept constant. Figure 1 shows the eigenvalues

of σ(jω) for generator G1: both are positive, which provide

us a computational validation of Proposition 2.
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Fig. 1. Eigenvalues of function σ(jω) for G1. No magnetic saturation,
no Ra, constant excitation.

The remaining machines were modeled with magnetic

saturation. The model of generator G3 includes also the

statorical resistance Ra. Eigenvalues of σ for G3 are illus-

trated in Figure 2. As it can be seen, the influence of Ra is

negligible for all frequency up to 1000 rad/sec.

Generator G4 includes the following AVR:

Efd = 200
1 + s

1 + 10s
(Et − Vref ),
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Fig. 2. Eigenvalues of function σ(jω) for G2. Includes the effect of Ra.

which has a relatively high gain. The eigenvalues of σ(jω)
for this case are represented in Figure 3. The AVR naturally

affects the frequency response at low frequencies, just below

the natural frequencies of the system, around 1 rad/sec.
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Fig. 3. Eigenvalues of function σ(jω) for G4. Includes the effect of Ra

and excitation control.

Figures 1-3 allow us graphically appreciate the influence

of Ra and the AVR on the cyclo-dissipativity of the generator

model. Notice that this property remains valid in the presence

of active excitation control for medium frequencies compris-

ing the basic natural frequencies of electromechanical oscil-

lations. This fact encourages the employment of multiplier

Πd for robustness analysis of power systems.

VI. CONCLUDING REMARKS

The dissipativity of detailed model of synchronous ma-

chines has been precisely stated and demonstrated. Thus,

the complete model of the synchronous machine can be

incorporated to well-known energy function for stability

analysis of power systems. The incremental properties of the

supply rate functions around the equilibrium were studied in

detail. These properties result in a convex frequency domain

condition, which can be used for the stability analysis of

interconnected power systems. In this article the dissipativity

of the linear model was exploited to analyze the effect of

resistive losses and excitation control. Since the computation

of the multiplier Πd derived here is a convex problem, it can

be exploited in the synthesis of excitation control for non

idealized models, which is currently under research.
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