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Abstract— A control configuration for the design of robust
controllers in the general context of LTI systems (SISO, MIMO,
stable, unstable) is presented. It consists of a two-degree-
of-freedom control architecture constituted by a particular
observed state feedback controller arising from a right coprime
factorization of the plant together with a prefilter block. Before
detailing the general design methodology involving the available
two degrees of freedom, the feedback part of the scheme is
first analyzed by its own in order to establish connections with
respect to a conventional state feedback controller with full
state observer. A prefilter block is added afterwards and an op-
timization based design procedure for the resulting two-degree-
of-freedom control scheme is suggested. The feedback part is
designed in regulator mode to guarantee robust stability and
some performance in terms of disturbance rejection whereas
the prefilter controller deals with the servo specifications given
in terms of a reference model.

I. INTRODUCTION

The objective of this communication is twofold. On
the one hand, it characterizes the somewhat uncommon
Observer-Controller configuration appearing in [16]. In what
follows this control configuration will be referred to as the
O2C for reasons that will become clear later on. Secondly,
once the O2C configuration has been presented an H∞ two-
degree-of-freedom (2DOF) design procedure making use of
it is outlined. We limit the treatment in this note to the SISO
case, but the design applies to the general LTI framework,
including the MIMO case.

The O2C is introduced making a parallel derivation of
observed state feedback controllers (OSFC),directly in the
transfer function domain, appearing in [9]. It will be seen
that the fact of thinking directly in terms of transfer functions
instead of in terms of polynomials yields an OSFC which
makes use of a full order observer for a non-minimal plant
realization of double order with respect to that of a minimal
plant realization. This fact gives its name to the presented
control configuration. Different approaches for designing the
three blocks appearing in the O2C are outlined in this note.
First it is shown how the O2C structure can be useful
for robustifying a fully observed state feedback controller
(FOSFC) following a two-step design in the line of the
well-known IMC [11]. On the basis of the pole placement
provided by a conventional FOSFC, an input-output relation
can be fixed in accordance to a desired closed-loop response.
Having done that, the extra degrees of freedom available in
the O2C configuration can be used to increase the resulting
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robustness margins without changing neither the control law
nor affecting the assymtotic observer properties. Adopting
the O2C configuration and extending it through the inclusion
of a prefilter block, the rest of the note is devoted to suggest
an H∞ optimization based robust design methodology for
the resulting 2DOF scheme. We refer the reader to [6] for
an introduction to the H∞ control theory. The use of a 2DOF
compensator presents the advantage of complete separation
between feedback and reference tracking properties [19].
While the approaches found in the literature are mainly
based on optimization problems representing different ways
of setting simultaneously the two Youla parameters [19]
characterizing the controller [16], [19], [7], [10], we present
instead a two-step design methodology:

1) The O2C configuration is designed first to guarantee
robust stability and some levels of performance in
terms of disturbance rejection.

2) The prefilter controller is designed then on the basis of
a reference model to improve the open-loop processing
of the controlled system.

The design of controllers on the basis of a reference
model has received great attention in the linear control
literature [4], being the adaptive case [5] possibly the most
widely analyzed. As the system response to a command is
an open-loop property [13], [17], no stability margins are
necessarily guaranteed when achieving the desired closed-
loop response behaviour. Previous approaches that include
robustness considerations when designing on the basis of a
reference model can be found in the literature [15], [18].
Another more recent approach aimed at overcoming the
shortcomings of the well-known IMC [11] can be consulted
in [3], where also an H∞ optimization problem is posed.
Our approach is somehow similar to this. Nevertheless,
in [3] the control architecture corresponds to the standard
1DOF feedback configuration for which competing design
specifications like the tracking and the disturbance rejection
properties have to be traded off. Besides, no specific structure
for the controller is assumed. As opposed to this, we employ
a 2DOF controller and deal with the tracking specifications
in a separate manner. Regarding the controller used in the
feedback part (the first DOF) of our scheme, the fixed
structure provided by the O2C configuration is adopted and
the solution to the corresponding optimization problem is
obtained through the use of direct search techniques in the
line of [8] and [1]. These are the most remarkable points of
the approach presented here. In [2] an extension of the work
in [3] using a 2D0F sheme can be found, but the feedback
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part design relies on loop shaping ideas and this makes the
design less automatic.

The organization of the paper is as follows. Section 2
presents a short overview and rederivation of the O2C
configuration. Section 3 presents possible methodologies for
the design of the presented configuration dealing with robust
stability. The paper finishes drawing some conclusions and
suggesting future research directions.

Throughout the paper, the set of proper and stable transfer
functions is denoted with S , which is a ring with the usual
addition and multiplication operations. The elements in S
whose multiplicative inverses are also in the set are its units
and US ∈ S denotes the set of all of them, i.e., the set of
biproper, stable and minimum-phase transfer functions. For
convenience, with the name of a polynomial we refer to both
the polynomial itself and the vector of its roots. Arguments
in transfer functions have been dropped.

II. THE O2C CONFIGURATION

The idea of changing the dynamics of a given plant is at
the core of many control approaches like pole placement.
Before presenting the O2C configuration, we first review
how a pole placement can be achieved direcly in the transfer
function domain and then point out an interpretation in terms
of FOSFC. This analysis follows [9] and serves as the basis
for understanding the O2C configuration afterwards. Let

Po =
b

a
(1)

be the transfer function description of a given continuous
SISO plant Po, where it is assumed that a and b are coprime
polynomials in the Laplace’s variable satisfying deg(a) =
n > deg(b). We now consider a fictitious signal, ξ, such that

ξ = 1
au , y = bξ (2)

where u and y are the input and the output of Po, respec-
tively. Disregarding physical realizability, consider that we
have direct access to ξ and that we feed it back through a
n − 1th degree polynomial m as in Figure 1. The input to
output relation is now given by

Tyr =
b

m + a
(3)

It is evident from (3) that by choosing m conveniently we
can fix the poles of the resulting input-ouput relation. It is a
well-known fact that ξ and its n−1 derivatives constitute the
state of Po described in controllable canonical form (CCF),
so the feedback through m is nothing but a state feedback
control law. Obviously, ξ, sometimes referred to as the partial
state of the system, is not directly available and has to be
estimated. This can be done very easily by finding a solution
to the following diophantine equation

za + wb = 1 (4)

in terms of the polynomials z and w. Once this has been
done, the scheme depicted in Figure 1 can be modified as
shown in Figure 2.

Fig. 1. Unfeasible CCF state feedback thought at the level of polynomials

x

Fig. 2. Unfeasible CCF observed state feedback thought at the level of
polynomials

The O2C configuration arises from following exactly the
same steps but thinking at the level of transfer functions. The
procedure now yields automatically phisical realizability. Let

Po = NrMr−1 (5)

be a right coprime factorization of the plant in (1) over S ,
that is Nr,Mr ∈ S , and consider the fictitious signal ζ such
that

ζ = M−1
r u , y = Nrζ (6)

We can now solve the analogous to (4) Bezout equation

XrMr + YrNr = 1 (7)

and build the analogous to Figure 2 scheme shown in
Figure 3

Fig. 3. O2C configuration

where K ∈ S . In Figure 3 a disturbance in the output has
also been drawn for convenient further reference. By defining

R
.= (Mr + K)−1 (8)

it can be shown (see [16]) that the scheme in Figure 3 is
internally stable if and only if R ∈ US .From now on, a
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coprime factorization of the plant in (1) of the form

Mr = pK

a Nr = b
pK

(9)

where pK is a Hurwitz polynomial of degree n, and the
following structure for the block K

K =
m

pK
(10)

(where m is the same n − 1th degree polynomial defining
the state feedback gain in Figures 1,2) are assumed when
making reference to the O2C configuration in Figure 3.
It is straighforward to see, consider that we have direct
acces to ζ in Figure 3 (i.e., the blocks Xr and Yr provide
perfect observation of ζ), that with the assignments in (9)
and (10) we reach the same input-ouput relation as in the
previous approach, indicated in (3). The link between the
two approaches is immediate by observing that

ζ = pKξ (11)

In terms of the observed state feedback (OSF) interpreation
we have that we first observe ζ, which is a known linear
combination of the partial state ξ, and then feed it back
through (10) in order to get the desired state feedback control
law: mξ. The O2C configuration in Figure 3 indeed assumes
a non-minimal stabilizable realization of the plant of order
2n: Po = NrM

−1
r = b

pK

pK

a , which is full-state observable
and has the uncontrollable stable modes given by pK . As a
matter of fact, the realization of the series connection of
M−1

r and Nr in (9) assuming that (A1, B1, C1, D1) and
(A2, B2, C2, D2) are, respectively, their CCF realizations, is
given by:

Po =
(

A B
C D

)
=




A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1


 (12)

In more detail, it can be seen that by applying the following
similarity state transformation

T =
(

In×n 0n×n

−In×n In×n

)
(13)

we get the equivalent realization of Po (A′, B′, C ′, D′),
where

A′ =
(

A1 0n×n

0n×n A2

)
B′ =




0(n−1)×1

1
0n×1




C ′ = (c1i)i=1..2n D′ = D

(14)

with c1i 6= 0 ∀i = 1..2n. From 14 it is evident that the new
realization is build up of two decoupled subsystems, being
the associated with the n first state variables observable and
controllable and the one associated with the n remaining
states observable but uncontrollable. The first subsystem
states remain invariant under the similarity transformation
(13) and are those of the CCF realization of pK

a , which
are obviously equal to those of b

a realized in CCF as well.

Thus, the O2C configuration amounts to observe the 2n states
of the presented non-minimal realization of Po but use for
state feedback just the first n of them corresponding to the
controllable, possibly unstable, modes of the real system.
Retaking the unfeasible scheme depicted in Figure (2) it is
possible to make it physically realizable by observing that if
(4) is satisfied then we have that

(zpLm)a + (wpLm)b = pLm (15)

where pL is a Hurwitz polynomial of order n. If we now
divide (15) by pL we arrive at

(
(zpLm)∗

pL

)
a +

(
(wpLm)∗

pL

)
b = m (16)

where (zpLm)∗ and (wpLm)∗ satisfy the following relations

(wpLm) = a(wpLm)∗ + r
(zpLm)∗ = (zpLm) + lb

(17)

for some r and l. The notation (zpLm)∗ and (wpLm)∗

is used to denote nth order polynomials satisfying (16).
This yields the feasible implementation shown in Figure 4,
which depicts a conventional FOSFC implementation. The
relation between the parameters involved in this conventional
implementation and that of the O2C is illustrated in Figure
5.

Fig. 4. Feasible implementation of the scheme in Figure 2

Fig. 5. O2C configuration in terms of the parameters of the scheme in
Figure 2

Fig. 6. O2C configuration in the form of a conventional FOSFC, see Figure
4
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In figure 6 a rearrangement is performed in order to
put the O2C in the form of a conventional FOSFC, see
Figure 4. It is readily noticed that the O2C configuration
is equivalent to use an observer polynomial of order 2n for
the original nth order plant, henceforth the name given to the
presented configuration. As it is indicated in the next section,
some benefits can be obtained from the implementation of a
conventional FOSFC via the uncommon O2C configuration.

III. DESIGN METHODOLOGY

In this section we present two controller design method-
ologies associated with the O2C scheme. Both constitute
two-step designs, the first one is conceived to improve the
robustness margins of a FOSFC. The second one is more
general and adds a prefilter to the basic O2C configuration.
In this latter design, the O2C configuration is employed
to robustify the closed-loop trying to get the best possible
disturbance rejection. The tracking specifications are dealt
with at a second stage of the design via the added prefilter,
designed making use of the generalized control framework
[20].

A. Design based on a standard FOSF controller

From Figure 4 the following loop transfer

LOC = Po
(wmpL)∗

pL

(
1 +

(zmpL)∗

pL

)−1

(18)

can be obtained. The loop transfer for the O2C configuration
in Figure 3 is

LO2C = PoY rK(1 + KXr)−1; (19)

We see from (18) and (19) that the loop gains are obviously
different. However, when using the O2C configuration we
are in fact using the same feedback control law (u =
r−mξ) with same assymtotic observer properties than with
the conventional FOSFC. As was pointed out in section
2 all the design parameters of the conventional FOSFC
implementation (pL,m) can be taken for an O2C based
implementation. Having done this, the pK polynomial can be
tuned for improving the robustness margins without altering
the effective state feedback control law. This leads to a more
robust implementation of a FOSFC. Thus, the following
design steps are suggested:

1) Design via conventional tecniques a FOSFC in CCF.
That is, find convenient state feedback and observer
gains satisfying the design requirements. From the
observer and the state feedback gains we get values
for m and pL in Figure 4.

2) With m and pL fixed in step 1), find a convenient pK

in order to improve the robustness margins.

B. A 2DOF O2C Design

Having seen that the O2C implementation can lead to
more robust implementations of FOSFC we adopt it as the
feedback part of a 2DOF control scheme depicted in Figure
7. The methodology to be presented is similar to that in [12],
but in this previous work the feedback configuration was

different and the design less automatic, involving a tedious
step that has been suppressed in this work. Given a nominal

Fig. 7. The general 2DOF proposed scheme

plant model Po we will consider that the real plant belongs
to the set

PA = {P : P = Po + W1∆} (20)

where W1 is a scalar frequency weight and ‖∆‖∞ 6 1.
The design procedure consists of applying the following two
steps:

Fig. 8. Scheme for designing the O2C configuration in regulator mode

1) Design of the O2C part in regulator mode: In this
proposed design the O2C configuration is employed to
satisfy the regulator specifications, which amount to provide
robust stability according to the uncertainty description in
(20) and acceptable output disturbance rejection. The design
is based upon the block diagram of Figure 8, where the
assumed uncertainty description is displayed. Apart from
this, the block Wp represents a frequency weight which is
used to indicate in which frequencies the output disturbance
suppression is more demanding. From inspection of Figure
8, the relations between the different inputs and outputs are
given by:

(
u
y

)
=

(
Mr(1−RMr)Yr MrR

Wp (1−Nr(1−RMr)Yr) NrR

)(
do

r′

)

(21)
It can be noted from (21) that the relations from r′ to u
and y are not affected by how we choose pK . By direct
application of the small-gain theorem [20] to Figure (8) the
robust stability condition is

‖Tu′do‖∞ = ‖W1 (Mr(1−RMr)Yr) ‖∞ 6 1 (22)
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According to (22), the following optimization problem is
posed

min
pK ,pL,m

‖Wp(1−Nr(1−RMr)Yr)‖∞
subject to ‖W1(Mr(1−RMr)Yr)‖∞ 6 1

(23)

The optimization problem (23) performs a constrained by
robust stability search in the pK , pL,m space for optimizing
the output disturbance rejection. For solving such a problem,
we suggest using direct search techniques. Basically they
consist of a method for solving optimization problems that
does not require any information about the gradient of
the objective function. Unlike more traditional optimization
methods that use information about the derivatives to search
for an optimal point, a direct search algorithm searches a set
of points around the current point, looking for one where the
value of the objective function is lower than the value at the
current point. At each step, the algorithm searches a set of
points, called a mesh, around the current point. The mesh is
formed by adding the current point to a scalar multiple of a
set of vectors called a pattern. If the pattern search algorithm
finds a point in the mesh that improves the objective function
at the current point, the new point becomes the current point
at the next step of the algorithm. In [8] a recent application
of direct search procedures for solving a specific control
problem can be consulted. It is to be noted that (23) could
be extended so as to also take into account the Tudi relation
via optimizing a stacked sensitivity function, see [14].

2) Design of the prefilter : The tracking specifications are
specified via a reference model (Tref ) capturing the desired
input-oupt response. A model matching problem is posed as
in Figure 9

Fig. 9. Model matching problem arrangement for the design of K2

The idea is to make use of the general control framework
[20], see Figure 10, so as to minimize the relation from
r to e in an H∞ sense. We also want to have certain
control over the amount of effort demanded to the controller.
Regarding this, the parameter α is introduced for providing
a convenient trade-off between good tracking and demanded
control action. This is particularly important in the case of
the plant Po = NrM

−1
r having stable lightly-damped zeros

within the closed-loop passband since these zeros would be
zeros of Nr and would force K2 to cancel them by placing
poles at exact locations to make Tyr = NrK2 close to the
reference model Tref , but this would be at the expense of

Tur = MrK2 being undesirably large near the frequencies
of those zeros. From Figures 8 and 9 we have

(
u′

e′

)
=

(
Tu′do

Tu′r
Te′do

Te′r

)(
do

r

)
(24)

with
Tu′do

= −W1 (Mr(1−RMr)Yr) (25)

Tu′r = αW1MrK2 (26)

Te′do
= α(1−Nr(1−RMr)Yr) (27)

Te′r = α2(NrRK2 − Tref ) (28)

The 2DOF design problem can be easily cast into the
general control configuration seen in Figure 10 by making
the following pairings: w1 = do, w2 = r, z1 = u′, z2 = e’,
v = β,u = r′ and K = K2. The augmented plant G and
the controller K2 are related by the following lower linear
fractional transformation (LFT):

Fl(G,K2)
.= G11 + G12K2(1−G22K2)−1G21 (29)

D
z

1

z
2

v

w
1

w
2

u

K

G

Fig. 10. Generalized control framework

The corresponding partitioned generalized plant G is:


u′

e′

β


 =

(
G11 G12

G21 G22

) 


do

r
r′


 (30)

where

G11 =
( −W1(1−Mr(Xr + RNrYr)) 0

α (1−Nr(1−RMr)Yr) −α2Tref

)

(31)

G12 =
(

W1MrR
αNrR

)
(32)

G21 =
(

0 α
)

(33)

G22 = 0 (34)

Once the problem has been put in the form of the generalized
control configuration shown in Figure 10 K2 can be readily
obtained by using standard software packages.

Remark. The reference signal r must be scaled by a
constant Wr to make the closed-loop transfer function from r
to y match the desired reference model Tref exactly at steady
state. This is not guaranteed by the optimization which is
aimed at minimizing the H∞-norm of the error. The required
scaling is given by

Wr
.= (K2(0)Nr(0)R(0))−1Tref (0) (35)

Therefore, the resulting reference controller is K2Wr.
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IV. CONCLUSIONS AND FUTURE WORK

A new 2DOF control methodology based on the here
called O2C configuration has been presented. The approach
applies to general framework of LTI systems and has been
introduced as an alternative to the commonly encountered
strategy of setting the two controllers arbitrarily, with internal
stability being the unique restriction, and parameterizing
the controller in terms of the two Youla parameters. First,
the O2C configuration has been presented together with its
interpretation as a FOSFC. Within the 2DOF design the O2C
configuration has been used first to guarantee robust stability
and some level of disturbance rejection by solving via direct
search techniques a constrained H∞ optimization problem
for the poles of Xr, Yr, Nr,Mr and the polynomial m. After
that, a prefilter controller to adapt the reference command
has been designed using the generalized control framework.
Future research is focused on the application of the method
presented here to several study cases and on the use of the
O2C configuration towards the obtention of two-step design
methodologies for a high performance robust tracking control
configuration arising from parameterizing the Xr, Yr blocks
which provide a solution to (7).
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