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Abstract— Tomography is an imaging technique, commonly
used in medical applications, but also in geophysics and astro-
physics. This technique allows estimation of internal character-
istics of an object apart from measurements performed outside
the object. Its main interest lies in the fact that the estimation
process does not require any intrusive operations. From a
methodological point of view, tomography may be divided into
two main stages: first a forward model has to be provided (i.e.
a model of the observed physical phenomena generally based
on one or several partial differential equations); then an inverse
model based on the forward model is derived which consists in
reconstructing physical characteristics of the object. In general
such an inverse model is a large-scale ill-posed problem. This
paper is devoted to a new approach based on the derivation of
a low complexity forward model. The inverse problem is then
solved very efficiently with reduced computation time compared
to classical approaches based on the finite element method
(FEM). The here-proposed approach is applicable to problems
governed by elliptic partial differential equations. An example
of 2D bioluminescence tomography illustrates the effectiveness
of the approach.

Index Terms— Tomography, elliptic partial differential equa-
tions, model reduction, inverse problems, parameter estimation,
identification.

I. INTRODUCTION

Applications of tomography are various. Optical tomog-

raphy [1] is used for non-intrusive tumor detection in tis-

sues. In geophysical prospecting successful applications are

reported for non-intrusive rock elasticity analysis [12]. In

astrophysics, Zeeman-Doppler imaging technique is used for

magnetic field estimation on star surface [4].

This paper is devoted to a low complexity approach

allowing a good location of physical parameters inside an

object, with reduced computation time. The forward model

is solved by using a spectral Galerkin method, where we seek

for an approximate solution in an orthonormal basis. Then,

the parameters to be reconstructed are a linear combination

of the same basis functions. As a consequence of the use

of an orthonormal basis of approximation functions, the

complexity of both the forward and inverse problem are

reduced to a minimum.

In most of the existing approaches, computation of the for-
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ward model is performed by using either the finite-difference

method (FDM) or the finite-element method (FEM, [2]).

These two methods are based on a discretization of the

domain. A regular grid is used in the FDM, where a complex

irregular mesh made of triangles is used in the FEM. For both

methods, quality of the solution strongly depends on grid or

mesh density. As a consequence the complexity of the inverse

problem is governed by the number of nodes.

Computation of the inverse problem reduces in most of the

cases to solving a large-scale linear least-square problem,

corresponding to a so-called perturbation equation of the

form:

Wx = ym, (1)

where x denotes the L × 1 vector of differences between

the physical parameters of a reference medium and those

of the imaged medium, ym is the m × 1 vector of the

measured signals and W is the L × m sensitivity matrix

of measurements with respect to unknown parameters. In

general, the perturbation equation is both under determined

and ill-posed [13]. The so-called ART approach (Algebraic

Reconstruction Technique) is often used to compute inverse

problems. This approach is based on sensitivity analysis

which lead to the computation of some adjoint partial differ-

ential equations [10]. Many other iterative methods have been

introduced, such as the conjugated-gradient method [14] or

the regularized least-square method [15].

In this paper, we focus our attention on the reduction of the

forward model, as a way to reduce the overall complexity of

the inverse problem. A similar idea has been followed in [6],

[7], where a multi-resolution approach based on wavelets has

been proposed for the reduction of the FEM rigidity matrix.

However in the here-proposed approach, computation of the

forward model does not require any grid.

In what follows, attention is focused to tomography ap-

plications governed by elliptic partial differential equations,

such as equations governing light propagation in scattering

medium in optical tomography.

A. Bioluminescence Tomography

Bioluminescence imaging is based on the detection of the

light emitted during catalyze of luciferine by the enzyme

luciferase [3].
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This method gives the opportunity to measure efficiency

of a genic therapy or to observe the growth or migration of

cancer cells expressing luciferase.
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Fig. 1. Bioluminescence tomography principle

The problem consists in reconstructing light sources in a

domain Ω apart from measurements of the scattered light

coming from the sources on the periphery of the domain.

Light propagation through a scattering medium is governed

by an elliptic partial differential equation arising from an

approximation of the so-called radiative transport equation:

−∇.(D(r)∇u(r)) + k(r)u(r) = q(r), (2)

where u(r) is the fluence rate, D(r) and k(r) are the

diffusion and absorption coefficients. q(r) denotes the light

intensity of sources. Boundary conditions of Robin-type are

taken into account:

u(r) + 2D(r)n.∇u(r) = 0, ∀r ∈ ∂Ω, (3)

where n is the vector orthogonal to the domain boundary

and pointing outward. In order to simplify the computation

of the forward model, a common treatment consists in inter-

preting the Robin boundary conditions as Dirichlet boundary

conditions on extrapolated domain. : u(r) = 0, ∀r ∈ ∂Ω. An

output equation is also introduced:

y = Cu(r), ∀r ∈ ∂Ω, (4)

where C = (δ(r − r1), ..., δ(r − rm))T denotes the operator

defined by locations ri, i = 1, ...,m of m CCD sensors

located on the periphery of the domain and y, the measured

fluence rates. δ(.) is Dirac’s operator.

The inverse problem consists in solving the following

parametric optimization problem in the least-square sense:

min
q∈L2(Ω)

‖ym − Cum(r, q)‖2, (5)

where ym is the vector of measurements performed by the

CCD sensors.

Now we consider the general class of inverse problem

defined by:

min
q∈L2(Ω)

‖ym − y(r, q)‖2, (6)

where u(r, q) is solution of an elliptic PDE of the form (2):

−∇.(D∇u(r)) + ku(r) = Bq(r), ∀r ∈ Ω (7)

u(r) = 0, ∀r ∈ ∂Ω, (8)

y = Cu(r). (9)

Furthermore the coefficients D and k are supposed to be

known and constant over the domain.

II. A LOW COMPLEXITY SPECTRAL GALERKIN

METHOD

Here we consider the use of a Galerkin method [11]

defined on a basis of orthonormal functions, without any

explicit grid of the domain.

The Galerkin method seeks for an approximate solution

ua of problem defined by (7)-(9) as a linear combination of

basis functions φi(r) :

ua(r) =

N
∑

i=1

uiφi(r), (10)

where U = (u1, ..., uN )T denotes the vector of the unknown

coordinates of the solution in the basis.

Introducing the approximate solution ua in equation (7)

leads to a residual R(U, r) = −∇.(D∇ua(r)) + kua(r) −
Bq(r) that should be reduced to a minimum.

A way to get a minimal residual is to render it orthogonal

to each basis function:
∫

Ω

R(U, r)φi(r)dΩ = 0, ∀i = 1, ..., N. (11)

This is related to the following variational formulation:
∫

Ω

(−∇.(D∇u(r)) + ku(r))φ(r)dΩ =

∫

Ω

Bq(r)φ(r)dΩ.

(12)

By using Green’s formula, we get:
∫

Ω

(D∇u(r).∇φ(r) + ku(r)φ(r))dΩ

−
∫

∂Ω

D
∂u

∂n
φ(r)dσ =

∫

Ω

Bq(r)φ(r)dΩ. (13)

The Galerkin method consists in solving the variational

problem defined by (13) by using the test-functions φi, i =
1, ..., N .

This is equivalent to solving the linear system:

HU = L, (14)

where H denotes the (N, N) matrix whose elements Hij =
a(φi, φj), L is the N vector of coefficients l(φi), with
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a(u, v) =

∫

Ω

(D∇u.∇v + kuv)dΩ −
∫

∂Ω

D
∂u

∂n
vdσ and

l(v) =

∫

Ω

Bq(r)vdΩ.

We can notice that the finite-element method is a variant

of the Galerkin method in which the basis functions are some

polynomial defined on a mesh.

Rather than using such an approach, we propose to define

a function basis without any support of a mesh.

For that purpose, we consider a 1D eigenvalue problem

defined by:

−∇.∇u(x) = λu(x), (15)

u(0) = u(1) = 0. (16)

The eigenfunctions of this problem are:

ui(x) =
√

2 sin(2iπx). (17)

We can easily check that those eigenvalues define an

orthonormal basis, since

∫ 1

0

ui(x)uj(x)dx = δij , where δij

is equal to 1 when i = j, otherwise 0.

By using the ui(x)’s for solving the problem (12) where

both D and k are constant over the domain Ω = [0, 1], one

get a linear system of the form (14), in which the matrix H
is diagonal with Hii = Di2π2 + k.

This approach may be generalized in 2D (with Ω = [0, 1]×
[0, 1]) or in 3D (with Ω = [0, 1] × [0, 1] × [0, 1]). In what

follows, the direct model is denoted as:

HU = L. (18)

III. THE INVERSE PROBLEM

We have to solve the following infinite-dimensional least-

square problem:

min
q,u∈L2(Ω)

‖ym − y‖2, (19)

s.t. −∇.(D∇u(r)) + ku(r) = Bq(r), ∀r ∈ Ω (20)

u(r) = 0, ∀r ∈ ∂Ω, (21)

y = Cu(r), ∀r ∈ ∂Ω. (22)

A. A Low Complexity Parametrization

Parametrization of the inverse problem is the key feature

governing complexity. q(r) is also chosen here as a combi-

nation of the same orthonormal basis functions:

qa(r) =

N
∑

i=1

qiφi(r). (23)

It follows that l(v) =

∫

Ω

Bq(r)vdΩ, i.e.

l(v) =

N
∑

i=1

qi

∫

Ω

Bφi(r)vdΩ. (24)

Finally L(q) is approximated by LrQ, where Q =
(q1, ..., qN )T and Lr denotes the (N, N ) matrix with co-

efficients Lij =

∫

Ω

Bφi(r)φj(r)dΩ.

The Lij’s can be easily computed when the φi(r)’s are

orthonormal functions: Lij = Bδij .

If C = (δ(r − r1), ..., δ(r − rm))T , the output equation

y = Cu is approximated as y = CrU , where

Cr =







φ1(r1) ... φN (r1)
... ...

...

φ1(rm) ... φN (rm)






. (25)

Finally the forward problem takes the following form:

HU = LrQ, (26)

y = CrU. (27)

B. A Finite-Dimensional Formulation

From the two previous subsections, we get the following

approximate inverse problem:

min
U,Q∈RN

‖ym − CrU‖2, s.t. HU − LrQ = 0. (28)

In practice, due to the ill-posedness of such problems,

it is mandatory to introduce the largest possible number

of measurements. For that purpose, several data-sets are

collected. The inverse problem is thus formulated as follows:

min
Ul,Q∈RN

M
∑

l=1

‖yl
m − CrUl‖2,

s.t. HlUl − LrQ = 0, l = 1, ...,M, (29)

where M denotes the number of data-sets, Hl denotes the

rigidity matrix corresponding to data-set l, and yl
m and Ul are

the measured output vector and the approximation solution

corresponding to the lth data-set, respectively.
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C. Computation of the Inverse Problem

The inverse problem (29) may be equivalently expressed

as:

min
Q∈RN

‖ȳm − C̄rH̄
−1L̄rQ‖2. (30)

where H̄ is the block-diagonal matrix containing the Hl’s on

the diagonal, C̄r is a block-matrix of M matrices Cr, L̄r is

a block-matrix of M matrices Lr and ȳm denotes the vector

of the yl
m’s.

A standard computation technique consists in introducing

a regularization of the problem:

min
Q∈RN

‖ȳm − C̄rH̄
−1L̄rQ‖2 + λ‖Q‖2, (31)

where λ > 0 denotes the regularization coefficient.

The unique solution of the problem is then given by:

Q = (AT A + λId)
−1AT ȳm, (32)

with A = C̄rH̄
−1L̄r.

Different techniques may be used to compute the solution

of (29): the conjugated gradient method or other techniques

adapted to large-scale problems such as the GMRES methods

(Generalized Minimal RESidual, [8]).

IV. AN EXAMPLE OF 2D BIOLUMINESCENCE

TOMOGRAPHY

In order to demonstrate the effectiveness of the here-

proposed approach, we consider the following biolumines-

cence tomography problem:

min
q∈L2(Ω)

‖ym − y(x, y, q)‖2, (33)

where u(r, q) is solution of

−∇.(D∇u(x, y)) + ku(x, y) = q(x, y), ∀x, y ∈ [0, 10]2 (34)

u(x, y) = 0, ∀x, y ∈ ∂Ω, (35)

y = Cu(x, y). (36)

The coefficients D and k are supposed to be known and

constant. m sensors are located on the domain periphery in

order to form a square included in the domain [0, 10 cm]2

with a distance of 1.5 cm with respect to the domain

boundary.

An experiment is simulated where M data-set are built by

using a total of M near infra-red wavelengths, ranging from

600-650 nm. Over the 600-650 nm range of wavelengths

the absorption coefficient varied from 0.281 to 0.058 cm−1

and the diffusion coefficient from 0.0199 to 0.0216 cm−1

across the wavelengths used (see figure 4 for a FEM solution

example corresponding to one of the data-sets).

The reconstruction problem consists in determining two

distinct polyhedric sources P1 and P2 on the domain R1 =
[0, 10 cm]2, according to figure 2.
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Fig. 2. Sources to be reconstructed

The measurement vector ȳm is obtained in simulation

from M reference solutions defined by M couples (Dl, kl),
l = 1, ...M , provided by the FEM (with pdetool under

MATLAB) and the mesh corresponding to figure 3.
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Fig. 3. FEM mesh of the problem

A. The Forward Model

The Galerkin method is used with the orthonormal func-

tion basis inspired by the eigenfunctions of the operator

−∇.∇ with Dirichlet boundary conditions:

φi,j(x, y) = sin(i
πx

10
) × sin(j

πy

10
)/5, i, j = 1, ...N. (37)
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Fig. 4. A FEM solution example

We can easily check that:
∫ 1

0

∫ 1

0

[sin(i
πx

10
) × sin(j

πy

10
)/5]

×[sin(k
πx

10
) × sin(l

πy

10
)/5)]dxdy = δij,kl, (38)

where δij,kl is equal to 1 when both i = k and j = l,
otherwise 0.

The approximate solution ua(x, y) is defined as a linear

combination of the form:

ua(x, y) =
N

∑

i=1

N
∑

j=1

uijφij(x, y). (39)

It follows that the matrix H is diagonal with coefficients:

Hkk = D(i2 + j2)π2/100 + k. (40)

First of all, we will consider quality of the solution

according to the number of basis functions, compared to a

FEM reference solution of the test problem described by

figure 5.

Figures 6, 7 and 8 show that for N = 20 the Galerkin

method provides results closed to the reference solution.

Apart from N = 20, increasing N does not bring very

significant improvement of the solution.

We can emphasize the fact that:

1) the number of states required for a solution quality

similar to the one of the FEM is reduced with a factor

7, 24, when taking N = 20.

2) the rigidity matrix H is diagonal, when the coefficients

D and k are constant over the domain.

3) A grid is not needed.
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Fig. 5. Sources of the test problem
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Fig. 6. N = 10, at coordinate y = 3, 5
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Fig. 7. N = 15, at coordinate y = 3, 5
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Fig. 8. N = 20, at coordinate y = 3, 5
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B. Solution of the Inverse Problem

The sources are reconstructed by using the approximate

solution qa(r) =

N
∑

i=1

qiφi(r), leading to a very simple matrix

Lr = Id.

Figures 9 and 10 present reconstruction results obtained

with two values of the number of basis functions N . M = 49
data-sets have been generated.
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Fig. 9. Reconstruction with N = 7 and M = 49 data-sets
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Fig. 10. Reconstruction with N = 12 and M = 49 data-sets

A clear improvement of the reconstruction is obtained by

increasing the number of basis functions. Increasing either

N or M do not provide significant improvements to the

reconstruction process. The overall computation time is less

than one minute under MATLAB using an Intel Pentium

1600 Mhz, 512 Mo RAM, for the worst case N = 12 and

M = 49.

V. CONCLUSIONS

A tomography method with low complexity has been pro-

posed in this paper. This method is not based on a complex

grid as it is the case for the finite-element method. Thanks

to the use of an orthonormal basis, a very simple forward

model has been defined, allowing simple computation of the

associated inverse problem. A 2D bioluminescence tomog-

raphy problem demonstrates very encouraging results with

reduced computation time compared to classical approaches

based on the finite-element method. Generalization of the

approach for 3D inverse problems is straightforward.
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