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Abstract— This paper presents a generalization of a recur-
rent neural-networks (RNNs) approach which was proposed
previously in [1], together with stability and identifiability
proofs based on the contraction mapping theorem and the
concept of sign-permutation equivalence, respectively. A slight
simplification of the generalized RNN approach is also proposed
that facilitates practical application. To use the RNN for linear
parameter-varying (LPV) controller synthesis, a method is
presented of transforming it into a discrete-time quasi LPV
model in polytopic and linear fractional transformation (LFT)
representations. A novel indirect technique for closed-loop
identification with RNNs is proposed here to identify a black
box model for an arm-driven inverted pendulum (ADIP). The
identified RNN model is then transformed into a quasi-LPV
model. Based on such LPV models, two discrete-time LPV
controllers are synthesized to control the ADIP. The first one is
a full-order standard polytopic LPV controller and the second
one is a fixed-structure LPV controller in LFT form based on
the quadratic separator concept. Experimental results illustrate
the practicality of the proposed methods.

I. INTRODUCTION

Linear parameter-varying (LPV) gain-scheduled control

of nonlinear systems has received considerable attention

recently as a way of extending linear control techniques

to nonlinear systems. However, constructing an LPV model

of a nonlinear plant is not trivial. Such a model can often

be generated from a nonlinear physical plant model; how-

ever, several problems may occur, see [2]. An alternative

approach that avoids these problems is to identify an LPV

model directly from experimental input/output data. Recur-

rent Neural-networks (RNNs), as a way to represent a class

of nonlinear dynamic systems, are utilized here to identify a

nonlinear model from input/output measurements, which is

then transformed into an LPV model.

Different structures of dynamic neural-networks have been

presented in the literature, see [1], [3], [4] and references

therein. They basically contain both feedforward and feed-

back synaptic connections. We aim in this paper at finding

a suitable structure of RNNs that can be easily transformed

into discrete-time quasi-LPV models which are suitable for

LPV synthesis. The RNNs presented in [1] seem promising

in this respect, but somewhat restrictive. For this reason

we generalize this class of RNN such that it can represent

more general LPV systems. Some fundamental properties

of the presented RNNs such as stability and identifiability
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are investigated, which are essential for practical design of

neural-networks models and controllers based on them [4].

Methods for extracting a quasi-LPV model from a feed-

forward neural-network were proposed e.g. in [5], [2]. On

the other hand, only very few references present methods

for transforming RNNs into models which can be used for

LPV controller synthesis. In [3] RNNs are interpreted as

uncertain linear models in LFT representation that can be

used for robust controller synthesis, however not for LPV

synthesis.

The arm-driven inverted pendulum (ADIP) is a benchmark

problem that provides many challenges concerning modeling

and control design. Modelling and control of such a plant

was considered in [6], where robust and LPV controllers

were designed based on a physical model. One of our goals

in this work is to obtain from input/output measurements a

RNN model of the ADIP and transform it into LPV form.

The main difficulty in the identification stage is the fact

that the system is unstable and underactuated. The former

means that the system must be identified in closed loop to

stabilize it during data collection. Direct and indirect identi-

fication are common approaches for system identification in

closed loop, see [7]; the latter one is used here. Attractive

properties of this identification scheme are that the method

does not suffer from bias due to noise correlated with the

input signal, as the input signal for identification is taken

to be an external reference signal. Several ideas concerning

indirect identification have been proposed, see e.g. [7] [8];

some difficulties with this approach are that they typically

require stable linear time invariant (LTI) controllers, and

that it is based on several impractical assumptions. Here we

propose a practical method for extracting a plant model from

the closed-loop model, which avoids these difficulties.

Based on the derived quasi-LPV models, two discrete-time

LPV controllers have been designed and successfully applied

in real-time to the ADIP plant.

This paper is organized as follows. Section II presents

the structure of the generalized RNN and considers stability

and identifiability issues related to it. In Section III a

simplified version of the generalized RNN is transformed

into a discrete-time quasi-LPV model in polytopic and LFT

representation. The proposed indirect identification approach

is illustrated in Section VI. A complete cycle of identification

of the ADIP and controller design is presented in Sections

V, controller implementation and experimental results are

shown in section VI . Finally, conclusions are drawn in

Section VII.
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Fig. 1. Proposed general RNN (without the dotted lines: RNN in [1])

II. RECURRENT NEURAL-NETWORK MODELS

Our purpose here is to present a neural state-space model

that can represent a general class of nonlinear state-space

models and that can be easily transformed into a LPV model.

A. Recurrent Neural-Network Topology

In [1] a RNN was presented. The structure of this RNN

can be transformed into an LPV model in a systematic way,

see Section III, using ideas from [2]. However, it leads to

a restricted LPV representation. To see this, write a strictly

proper discrete-time LPV model as

xk+1 = A(θk)xk + B(θk)uk, yk = C(θk)xk (1)

where A(θk), B(θk), C(θk) are continuous mappings (see

e.g. [9]), and θk is a time-varying parameter. The dependence

of the matrices A, B, C in (1) on θk represents a general

LPV model; imposing that any of these matrices is parameter

independent, i.e. fixed, will restrict the generality of the

LPV model. The latter is indeed the case when the RNN in

[1] is transformed into the LPV model (1): A is parameter

dependent but B and C are fixed.

A more general form of an RNN than that presented in [1]

is proposed here, see Fig. 1. The main difference between the

RNN presented here and that in [1] is that two more hidden

layers with sigmoidal activation functions are included in the

input and the output paths of the RNN. The discrete-time

nonlinear model represented by it is expressed as

xk+1 = Axk + Buk + A1σ(E1xk) + B1σ(E2uk)

yk = Cxk + C1σ(E3xk)
(2)

where x ∈ R
n denotes the state vector, y ∈ R

p the

output and u ∈ R
m the input vectors. A, A1, B, B1, C,

C1, E1, E2and E3, are real valued matrices of appropriate

dimensions; they represent the weights which will be ad-

justed during the training stage of the RNN. The nonlinear

activation function σ(.), which is applied elementwise in (2),

is taken as a continuous, differentiable and bounded function.

This RNN leads to a general form of the neural state-space

model in the sense that if it is transformed into an LPV model

in the form (1), the matrices A, B and C will be parameter

dependent.

B. Stability and Identifiability of the Proposed RNN

In this subsection stability and identifiability of the pro-

posed RNN (2) as a dynamic system are investigated.
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Fig. 2. Modified state-space recurrent neural-network

Based on the contraction mapping theorem [10] and ideas

presented in [1], the following sufficient condition for global

asymptotic stability of the proposed RNN can be shown:

Theorem II.1: Let W (A,A1, B, B1, C, C1, E1, E2, E3)
be a given parameterization (weights) for the state-space

neural network (2) and define L = ‖E1‖. The neural

network is contractive [10] and has one equilibrium point if

‖A‖ + L‖A1‖ < 1
Proof: See Appendix A.

Identifiability [11] is concerned with the problem of

uniqueness of the weights of the neural network and is related

to the question whether two networks with different parame-

ter vectors can produce identical input/output behavior. Work

on this topic was done in [11] and [12] for feedforward

and recurrent networks, respectively. Based on the concept

of sign-permutation equivalence the identifiability of the

proposed RNN in (2) is shown in Appendix B.

C. Simplifications and Assumptions

The RNN in (2) can be simplified by removing any of

the sigmoidal layers; this can be done according to a priori

information about the identified system; this is used here in

the identification of the ADIP plant.

The LPV model (1) of the ADIP plant, which was derived

from a physical model in [6], has the matrices A and B
parameter dependent. A specific transformation is used in [6]

to have only A parameter dependent. Similarly the general

RNN can be simplified: removing the sigmoidal layers from

the input and the output paths means that the resulting LPV

model has parameter dependence in matrix A only. More-

over, for a practical implementation this simplified RNN is

modified as shown in Fig. 2: the outputs instead of the states

are taken as input to the sigmoidal layer. This modification

facilitates the implementation of LPV controllers designed

based on this model.The modified RNN is represented as

xk+1 = Axk + Buk + A1σ(E1Cxk), yk = Cxk (3)

It can be shown that the stability condition of the modified

RNN in (3) is the same as that one given in Theorem

II.1 with Lipschitz constant L = ‖E1C‖. Moreover, it is

straightforward to check that it is identifiable, Appendix B.

III. A QUASI-LPV MODEL FROM AN RNN

A discrete-time LPV system is defined by the parameter

dependent state-space model (1) and the compact set P ⊂
R

l : θk ∈ P ∀k > 0. The time-dependent parameter vector

θk ∈ Rl depends on a vector of measurable signals ρk ∈
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R
h, referred to as the scheduling signals, according to θk =

fθ(ρk) where fθ : Rh → R
l is a continuous mapping. The

vector of scheduling signals combines external and internal

signals. If the parameters depend on external signals only,

the system is referred to as LPV system, otherwise as quasi-

LPV system. Moreover, the proposed methods here can be

extended systematically to the general RNN (2).

A. Derivation of a discrete-time polytopic quasi-LPV model

An LPV system is called polytopic when it can be rep-

resented by state-space matrices A(θk), B(θk), C(θk) and

D(θk), where the time varying parameter vector θk ∈ R
l

ranges over a fixed polytope and the dependence of A(.),
B(.), C(.) and D(.) on θk is affine, where θk = fθ(ρk)
as above. The time-varying parameter θk varies in a poly-

tope Q of vertices v1, v2, . . . , vr ; that is, θk ∈ Q :=
Co{v1, v2, . . . , vr}, where Co denotes convex hull.

It is required here to transform the RNN model in (3) into

a discrete-time polytopic quasi-LPV model with yk = Cxk,

xk+1 =
r

∑

i=1

αk,iAixk + Buk = A(θk)xk + Buk (4)

where A(θk) ∈ P := Co{Ai; i = 1, . . . , r} (5)

Now, define the time-varying parameters

θj
k = σ(Ej

1yk)/(Ej
1yk), if yk = 0 → θj

k = 1 (6)

for 1 ≤ j ≤ l, where Ej
1 denotes the jth row in the hidden

layer weight matrix which contains the sigmoid activation

functions, l the total number of the neurons in this layer and

yk = Cxk. Then (3) can be rewritten as

xk+1 = Axk + Buk + A1ΘkE1Cxk, yk = Cxk (7)

where Θk ∈ R
l×l is a diagonal matrix that contains the

variable parameters of the LPV model. By this way the

neural-network model is transformed into a quasi-LPV model

in the form of (4), where

A(θk) = A + A1ΘkE1C (8)

The time-varying parameters can be collected into a vector

θ ∈ Rl whose elements are contained in [θj θ̄j ] where

θj = min
0≤k≤T

θj , θ̄j = max
0≤k≤T

θj (9)

for 1 ≤ j ≤ l where k ∈ [0 T ] is the time interval in which

the training data have been acquired. Note that 0 ≤ θj , θ̄j ≤
1, so no further scaling is required. Thus the neural state-

space model (3) is transformed into a quasi-LPV model in a

polytope representation (4) that satisfies (5), where A(θ) is

given by (8) and the time varying parameter vector is defined

by (6) and its bounds are given by (9).

B. Derivation of a discrete-time LFT quasi-LPV model

The problem considered in this subsection is to represent

the nonlinear model (3) in the form of an affine discrete-time

quasi-LPV model in LFT form

xk+1 = A0xk + Bδw
δ
k + B0uk (10)

wδ
k = ∆kzδ

k, ∆k = diag(δ1
k, . . . , δl

k) ∈ Rl×l, ‖∆k‖ < 1

zδ
k = Cδxx + Dδ,1uk, yk = C0xk + D1,δw

δ
k + D0uk

The parameter matrix ∆k has a diagonal structure, where

the parameters δk serve as the scheduling signals in the LPV

model. An affine LPV model in an upper LFT representation

for system (10) results in the block-matrix representation
[

A(δ) B(δ)
C(δ) D(δ)

]

=

[

A0 B0

C0 D0

]

+

[

Bδ

D1,δ

]

∆k

[

Cδ Dδ,1

]

(11)

With the time-varying parameters defined in (6), (3) can be

rewritten as (7). By comparing (7) and (11) we find that A0 =
A, B0 = B, C0 = C, Bδ = A1, Cδ = E1C D0 = 0, Dδ,1 =
0, D1,δ = 0 and Θk = ∆k. Thus (7) is equivalent to (10)

with ‖Θk‖ < 1. This is the case because each element of Θk

is contained in [0 1], i.e. θj
k ∈ [0 1], see (6). But this bound

on Θk leads to a conservative LFT representation in (7). To

remove that conservativeness, Θk can be rescaled such that

its elements are contained in [−1 1], and this rescaling can be

done as follows. Let us define a new parameter δj
k ∈ [−1 1],

then δj
k in terms of θj

k and its bounds θj and θ̄j and θj
k in

terms of δj
k, respectively, for neuron j, can be expressed as

δj
k =

2θj
k

θ̄j − θj
−

θ̄j + θj

θ̄j − θj
, θj

k = δj
k

θ̄j − θj

2
+

θ̄j + θj

2
(12)

By constructing a new diagonal matrix ∆k ∈ R
l×l that

contains the new time-varying parameters δ1
k, . . . , δl

k and

substituting in (7) we get

xk+1 = Axk + Buk + A1Θ(∆kΘ + Θ̄)Θ−1E1Cxk (13)

and yk = Cxk, where Θ and Θ̄ are fixed diagonal ma-

trices that contain (θ̄1 − θ1)/2, . . . , (θ̄l − θl)/2 and (θ̄1 +
θ1)/2, . . . , (θ̄l + θl)/2, respectively. Now letting A0 = A +
A1ΘΘ̄Θ−1E1C, B0 = B, Bδ = A1Θ, C0 = C, Cδ = E1C,

yk = Cxk, model (10) becomes an LFT representation of the

nonlinear RNN with D0 = 0, Dδ,1 = 0 and D1,δ = 0.

IV. CLOSED-LOOP IDENTIFICATION USING A

STRUCTURED RECURRENT NEURAL-NETWORK

Closed-loop system identification is required when the

system to be identified is unstable. In indirect identification

the closed-loop system from the reference input to the output

is first identified, then the open-loop system is retrieved,

using the knowledge of the regulator that stabilizes the

closed-loop system. Its basic advantage is that the dynamics

of the model can be correctly estimated without estimating

any noise model. Here we propose a novel and simple

approach for indirect identification that allows selection of

the model order and can be used when the stabilizing

controller for the closed-loop identification has a complex
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Fig. 3. Structured RNN for indirect identification, the dotted line indicates
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structure and it is possibly unstable. The idea here is based

on identifying the closed-loop system using a structured

RNN, see Fig. 3, which basically consists of two RNN:

the left one is linear with fixed and known weights and

represents the controller, whereas the right one is the plant

RNN discussed in Section II that has unknown weights. The

stability condition for this structured RNN is the same as

that in Theorem II.1, namely ‖Ã‖ + L‖Ã1‖ < 1. Here the

Lipschitz constant L = ‖Ẽ1‖, Ã, Ã1 and Ẽ1 are given by

Ã = [A − BDcC BCc;−BcC Ac], Ã1 = [A1 0]T , Ẽ1 =
E1[C 0] where Ac, Bc, Cc, Dc are the controller matrices,

and A, B, C, A1 and E1 are given in (3). Now, assume first

that the system to be identified is linear and strictly proper

and that it is stabilized by a linear discrete-time controller.

Then the closed-loop system, Fig. 3, can be compactly

written as

xcl
k+1 = Aclx

cl
k + Bclrk, zk = Cclx

cl
k + Dclrk (14)

where Acl = Ã, Bcl = [BDc Bc]T , Ccl = C, Dcl = 0. Ac,

Bc, Cc, Dc are the controller matrices, and A, B, C are the

matrices of the linear plant model which will be identified.

Then the structured RNN that represents the closed-loop

system in (14) can be constructed as shown in Fig. 3 without

the dotted line, where the controller matrices are represented

by known fixed weights and the matrices of the linear model

by unknown weights. By using the representation in Fig. 3

we can extract directly the system matrices A, B and C
once the training is completed. A nonlinear model can be

identified in the same way by including the dotted lines and

the sigmoidal layer in Fig. 3. Furthermore, it is possible to

use an LPV controller to stabilize the plant during gathering

the data. The method proposed here can be easily extended

such that the structured RNN contains the general RNN in

(2) instead of the modified one.

V. IDENTIFICATION OF AN ADIP MODEL

The ADIP used here is the planar rotary inverted pendulum

manufactured by Quanser Inc. It is an underactuated system

that has one input (the current controlling the drive of the

arm) and two outputs (the angular-positions of the arm and

the pendulum, φ1, φ2 respectively). The control loop shown

in Fig. 4 is used to stabilize the ADIP during all stages of

the indirect identification procedure. A differentiator (FD in

Fig 4) is used to determine the angular velocity φ̇1. A PI

controller shown in Fig 4 is used here as discussed in [6].

The PI controller and the filter FD are considered as part of

the plant; the system to be identified is the dashed box in

Fig. 4. The physical ADIP model is 4th-order, whereas the

plant to be identified is 7th-order.

Generating an input signal to excite all different dynamics

of the plant is the initial step of the system identification

- a proper choice of this signal is crucial for the quality

of the model. The required operating ranges, the sampling

frequency and the bandwidth of the system need to be

considered to design a sufficiently rich training signal. Two

uncorrelated multilevel random signals r and d in Fig. 4,

are designed to excite the system. These signals enter the

closed-loop system, one as a reference for the first output and

the other as a disturbance to the second output, see Fig. 4.

In each stage of the successive identification procedure, the

input-output data are collected and divided into training and

validation sets. The resulting models are validated through

simulation of the RNN in closed loop. To stabilize the plant

φ̇1

K

ADIP

−
r

PI

FD
−

d
−

Enc

Enc
DA φ2

φ1

Overall ADIP system

Fig. 4. Overall ADIP system in closed-loop identification

in the required range, the following successive identification

procedure was used. Initially a continuous-time LTI H∞

optimal controller based on a continuous-time model of the

plant - linearized around the zero position - is designed.

The following parameters were used to increase the stability

range of the ADIP during data gathering: the closed-loop

bandwidth, which is tuned by tuning the controller, the

frequency and the levels of the signals d and r, Fig. 4. By

using these tuning knobs, closed-loop input-output data in

a range of (±45o) could be acquired. Then, applying the

indirect approach proposed in Section IV, a discrete-time

linear model from the linear RNN with the same order as

the overall ADIP system, can be easily found to represent

the plant in this range. A new LTI H∞ optimal controller is

designed - this time in discrete time - for the new discrete-

time LTI model that represents the behavior of the plant

in a wider range. The same tuning knobs are used here to

stabilize the ADIP in a range of (±51o) during a new data

gathering. Again the proposed indirect approach is applied to

find a new discrete-time linear model from the latest acquired

data, based on which a new LTI discrete-time controller is

designed. At this point it turns out that the plant cannot be

stabilized for a range wider than (±51o) with a controller

whose design is based on a linear model. A nonlinear

model is now required to capture the plant behavior. Such

a model can be obtained from a RNN by adding a sigmoid

tanh activation function and using the indirect identification

procedure described in the previous section, Fig. 3. Part of

the validation plot is shown in Fig. 5.
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Fig. 5. Part of the validation test of the nonlinear RNN model

VI. LPV SYNTHESIS AND IMPLEMENTATION

After the RNN model of the ADIP is identified, it is

transformed into quasi-LPV models in two forms - polytopic

and LFT - using the methods proposed in Section III. Both

models have one varying parameter, θk for the polytopic

model and the scaled δk for the LFT model, since the RNN

contains only one sigmoid activation function.

A. Full-order polytopic discrete-time LPV controller

The resulting polytopic model has two vertices, one at

the zero position and the other one at φt (target angular-

position). Two weighting filters were chosen at each vertex,

one to shape the sensitivity at the zero and the target

position, the other one to shape the control sensitivity. A

polytopic discrete-time LPV controller is then designed using

the approach in [13]. Note that this approach is based on

a fixed Lyapunov function for the whole operating range.

The 9th order controller achieves an induced L2-norm of

γ = 0.35. The varying parameter θ is calculated from (6);

the bounds are θ̄ = 1 and θ = 0.748 at the zero and the target

position, respectively. The LPV discrete-time controller was

experimentally implemented on the ADIP plant; the results

are shown in Fig. 6a. One can see that a good performance

is achieved over the operating range (±60o). The scheduling

parameter θ in Fig. 6 shows that the controller is scheduled

according to the operating position.
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Fig. 6. Experimental results, LPV (a) Full-order, (b) Fixed-structure

B. Fixed-structure LFT discrete-time LPV controller

Next a fixed-structure controller is designed. The design is

now based on the idea of quadratic separators, as discussed in

[14] - the existence of which is equivalent to the existence of

a parameter-dependent Lyapunov function [15]. This allows

to take bounds on the rate of parameter variation into

account. The method in [14] uses a hybrid evolutionary-

algebraic approach for solving the non-convex problems of

low-order and fixed structure controller design.

The generalized plant, which includes the model of the

plant and the weighting filters for performance, depends as

well as the controller on the parameter matrix ∆k in an

LFT manner as given in (10). The closed-loop system can

be described by the following LFT structure

xk+1 = Axk + B∆w∆
k + Bpw

p
k, zp

k = Cpxk + Dpw
p
k

z∆
k = C∆xk + D∆w∆

k , w∆
k = ∆kz∆

k (15)

where w∆
k , z∆

k ∈ R
l, wp

k ∈ R
d, zp

k ∈ R
v , and ∆k =

diag(∆k, ∆k), [9], where each ∆k ∈ Rl×l. The dimension

of ∆k is equal to the number of neurons in the sigmoidal

layer of the RNN. In [14] a condition on the induced L2-

norm was derived as well as a synthesis approach to design

fixed structure LPV controller, which has been used here.

The structure of the controller is selected based on the

frequency response of the full-order controller which was

designed in the previous subsection. It turns out that the

controller shows essentially PD behaviour. Hence, a discrete-

time LPV-PD structure is used. The same weighting filters

were used here an in the full-order case. The synthesis pro-

cedure in [14] is then applied to find and tune the coefficients

of the parameter dependent controller. The smallest induced

L2-norm that could be achieved was 0.636, which indicates

that stability as well as the required performances can be

guaranteed for the whole parameter set. Then the designed

discrete-time LPV-PD controller (3rd order) is experimentally

tested on the real ADIP plant; the results are shown in

Fig. 6b. The LPV-PD controller is able to stabilize the plant

in a range of up to (±66o) as shown in Fig. 6b. This

range is wider than the one achieved one with the full-order

controller (compare Fig. 6a and b), which was based on

a fixed Lyapunov function. This indicates the benefit of a

design with a parameter dependent Lyapunov function.

VII. CONCLUSION

A general RNN model is presented here along with

stability and identifiability proofs. For practical application

to the ADIP plant the RNN has been simplified. An indirect

identification approach for closed-loop identification based

on a structured RNN is presented. The structured RNN in

this approach is trained to identify the closed-loop system

from the reference to the output signals, where the controller

parameters are represented as fixed weights and the parame-

ters of the plant model as unknown weights. The open-loop

model can then be easily extracted from the identified closed-

loop model. Methods for transforming an RNN into discrete-

time polytopic and LFT quasi-LPV models are presented and

illustrated with experimental results from application to an

arm-driven inverted pendulum (ADIP). Based on the trans-

formed LPV models, full-order and fixed-structure discrete-
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time LPV controllers have been designed and implemented

in real-time successfully on the ADIP plant.

APPENDIX

A. Proof of theorem II.1

Based on the concepts of Lipschitz continuity, the mean

value theorem, the contraction mapping theorem, (see e.g.

[10]) and ideas presented in [1], Theorem II.2 can be shown

as follows. Let us start by transforming the neural network

(2) into a new coordinate system where the origin is moved

to an equilibrium point. The new state vector is thus rewritten

as zk = xk − xe. Let uk = ū correspond to the equilibrium

point xe. Taking into account zk, the RNN (2) becomes

zk+1 = Azk + B(uk − ū) + A1{σ
(

E1(zk + xe)
)

− σ(E1x
e)} + B1{σ(E2uk) − σ(E2ū)} (16)

Without loss of generality, let us assume a constant input

uk = ū. Then (16) can be written as

zk+1 = Azk + A1{σ
(

E1(zk + xe)
)

− σ(E1x
e)} (17)

Now defining a continuous nonlinear function Φ : Rn → R
n,

Φ(z) = σ
(

E1(zk + xe)
)

− σ(E1x
e) such that Φ(0) = 0,

(17) can be rewritten as zk+1 = Azk + A1Φ(z). This

expression describes an autonomous system for which z =
0 represents the equilibrium point. Now by applying the

mean value theorem to the nonlinear part of (2) we have

‖σ(E1x) − σ(E1x̄)‖ ≤ L‖x − x̄‖. The Lipschitz constant

L = maxy ‖σ
′(E1y)‖ where y is a point on the straight

line between x and x̄. With σ(.) = tanh(.) as defined

above, one can conclude that L ≡ ‖E1‖. (This is the main

difference between the proof here and the one given in [1],

where L ≡ max |eij |, eij is an entry of the matrix E1). For

two arbitrary vectors z and z̄ the following inequality holds:

‖Φ(z) − Φ(z̄)‖ = ‖σ
(

E1(z + xe)
)

− σ
(

E1(z̄ + xe)
)

‖ ≤
L‖z − z̄‖ Defining Ψ(z) ≡ zk+1 = Azk + A1Φ(zk) yields

‖Ψ(z) − Ψ(z̄)‖ = ‖A(z − z̄) + A1

(

Φ(z) − Φ(z̄)
)

‖
≤

(

‖A‖ + L‖A1‖
)

‖z − z̄‖. From the contraction mapping

theorem the RNN has one asymptotic equilibrium point if

‖A‖ + L‖A1‖ < 1 ¤

B. Proof of identifiability of the proposed RNN

Based on the concepts of sign-permutation, permutation

equivalent, irreducible neural networks and theorems given

in [11] and [12] we have the following

Corollary 1 [16]: The two feedforward networks: y =
tanh(x) and y = T tanh(T−1x), where T = PJ with P
a permutation matrix and J = diag{±1}, are input/output

equivalent.

Starting from this equivalence it is straightforward to apply

the results in [12] to the proposed RNN here to check the

identifiability.

Corollary 2: Following the same principle as in corollary 1

we have the following input/output equivalent form of the

presented RNN in (2)

zk+1 = Azk + Buk + A1 tanh(E1zk) + B1 tanh(E2uk)

yk = Cxk + C1 tanh(E3zk) (18)

Using the equivalence in Corollary 1, one obtains

zk+1 = Azk + Buk + A1T1 tanh(T−1
1 E1zk)

+ B1T2 tanh(T−1
2 E2uk),

yk = Cxk + C1T3 tanh(T−1
3 E3zk)

(19)

with Ti = PiJi (i = 1, 2, 3), Pi a permutation matrix and

Ji = diag{±1} and T1 ∈ Rlx×lx , T3 ∈ Rlu×lu and T3 ∈
R

ly×ly (lu, ly, lx are the number of the sigmoidal activation

functions in the sigmoidal layers in the input, output paths

and the state of the proposed RNN, respectively, see Fig. 1).

Then putting zk = Sxk with S ∈ Rn×n full rank, one has

xk+1 = Âxk + B̂uk + Â1 tanh(Ê1xk) + B̂1 tanh(Ê2uk)

yk = Ĉxk + Ĉ1 tanh(Ê3xk) (20)

with Â = S−1AS, B̂ = S−1B, Â1 = S−1A1T1, Ê1 =
T−1

1 E1S, B̂1 = S−1BT2, Ê2 = T−1
2 E2, Ĉ = SC,

Ĉ1 = C1T3 and Ê3 = T−1
3 E3S. This is the sign-equivalence

in [12] and shows that the RNN model is unique up to a

similarity transformation and sign reversal. This shows that

it is identifiable.
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