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Abstract— This paper presents a flatness–based approach
for the feedforward control design of the wave equation with
nonlinear boundary conditions modelling a torsional rod with
a tip load. It uses a subdivision of the relevant time–space
region based on the characteristic curves of the system as well
as the property of formal power series parameterizability of
the underlying partial differential equation on the subregions
to derive an expression for the nominal input to achieve
perfect tracking performance of a prescribed desired output
trajectory. Therefore, this contribution proves the applicability
of the formal power series approach to second order hyperbolic

partial differential equations.

Index Terms— Wave equation, nonlinear boundary con-
ditions, feedforward control, trajectory planning, infinite–
dimensional systems

I. INTRODUCTION

The wave equation modelling a torsional elastic rod can

be used as a benchmark problem for evaluating the applica-

bility of feedforward control design methods to hyperbolic

distributed–parameter systems (see [10], [14]). While the

exact solution is known for the linear case by d’Alembert’s

solution (see, e.g., [3]), there is no general control design

method, if nonlinear variants of the wave equation are

considered. Nonlinearities, however, are of great practical

relevance, since there are many applications like propellers

or driveshafts for which the tip load experiences a nonlinear

characteristics. This results in nonlinear boundary conditions

which have to be taken into account.

For the feedforward control design, flatness–based meth-

ods are particularly appealing due to their simplicity in use

and their broad applicability. They are based on a parameter-

ization of the system state and input in terms of a flat output

as first described in [1] for nonlinear finite–dimensional

systems. For infinite–dimensional systems, two major ap-

proaches have been proposed: For linear hyperbolic systems,

the partial differential equation (PDE) is transformed into an

ordinary differential equation using Mikusiński’s operational

calculus (see [10]). This equation is explicitly solved and the

solution is transformed back into the original coordinates.

This leads to solutions in terms of concentrated and/or

distributed shift operators acting on the flat output, i.e., pre–

and post–actuations. Using this approach, the feedforward

control design has already been applied to the linear wave

equation in [2], the linear torsional rod in [10], [14], the

linear heat exchanger in [9], the linear heavy chain in [7], [8],
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and a linear gantry crane in [11]. This approach, however,

essentially relies on the linearity of the system and hence

cannot be extended to the nonlinear case.

For parabolic systems, the state is represented as a formal

power series in the spatial variable whose coefficients are

functions of time, which produces a differential recurrence

for the solution of the coefficients and does not require the

considered system to be linear. Thus, the approach has so far

been applied to the heat equation and diffusion–convection–

reaction systems as given in [4], [5], [6], [13].

In [12] the formal power series approach has recently been

modified and extended to quasi–linear first order hyperbolic

systems. Motivated by these results, in the following a

trajectory planning problem for the wave equation modelling

a torsional rod is considered with the objective to determine

the trajectory for the angular position at one end of the rod,

which is required to ensure that an attached tip load on the

opposite end of the rod follows a prescribed trajectory.

The paper is organized as follows. In Section II the

problem under consideration is formulated. Section III states

the solution approach and explains the modifications being

made compared to previous flatness–based approaches. In

Section IV, a feedforward tracking control is determined for

the wave equation with nonlinear boundary conditions by

using the formal power series approach. Section V provides

some simulation results and Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider the angular position x = x(z, t) of the cross–

section of a torsional elastic rod of scaled length L = 1
with a tip load at the one end z = 0, where z describes the

position along the rod and t the time. The angular position

of the cross–section is given by the PDE

ρxtt(z, t) = Gxzz(z, t), (1)

where ρ is the mass density and G is the shear modulus of

the elastic rod. Let the rod be initially at rest and assume

that the angular position of the rod at z = 1 can be imposed

by an actuator. The initial and boundary conditions are then

given by

x(z, t−) = 0, (2)

xt(z, t−) = 0, (3)

x(1, t) = u(t), (4)

θxtt(0, t) = GIxz(0, t) − αxt(0, t)|xt(0, t)|, (5)

where θ is the mass moment of inertia of the tip load, I
is the geometrical moment of inertia of the rod, α is the
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coefficient of a nonlinear resistance torque, and t− is the

time at which a change in the input is necessary to produce

a change in the output at t = 0. Hence, t− constitutes the

delay in the system, which depends on the values of ρ and

G. Furthermore, u(t) is the system input, and the angular

position of the tip load

y(t) = x(0, t) (6)

serves as the system output, which can be shown to be a

flat or basic output as demonstrated in [10], [14]. The non-

linear term represents a frictional torque whose magnitude

is proportional to the rotational speed of the tip load. For

α = 0, (1) is a linear, space– and time–invariant, second

order hyperbolic PDE for all

(z, t) ∈ R := {(z, t)|z ∈ [0, 1], t ∈ R}. (7)

For α 6= 0, the system is nonlinear. The control objective

considered in this contribution is to steer the output y(t),
i.e., the angular position of the tip load, along a prescribed

trajectory yd(t). For this, we focus on trajectories that

produce a set–point change from an initial to a final steady

state. Since the only nonlinearity is with respect to xt(0, t),
the set of initial and final states can be chosen as x(z, t) = 0
and x(z, t) = 1, respectively, without any loss of generality.

III. SOLUTION APPROACH

The solution approach considered in the following consists

of subdividing the transition region R into suitable subre-

gions R[j] and representing the solution as a formal power

series

x̂[j](z[j], t[j]) =

∞
∑

n,i=0

x̂
[j]
n,i

ti[j]

i!

zn
[j]

n!
(8)

on each subregion in the space and time coordinates z[j] and

t[j]. Here, the double index in the sum is used as a short form

notation for a double sum. The bracketed index j defines

the subregion of the transition region on which the power

series is used. The series is called formal since a–priori no

restriction on its convergence or summability is imposed.

A. Trajectory Planning

For hyperbolic systems, the formal power series approach

requires the solution to be piecewise analytical in both z
and t as explained in [12]. Therefore, both the PDE and

the desired output trajectory are required to be piecewise

analytical. In addition, the desired output trajectory needs

to be continuously differentiable with respect to t to fulfill

the initial conditions. Hence, the easiest choice for a desired

trajectory that produces a set–point change from the steady

state solution x(z, t) = 0 to the final steady state x(z, t) = 1
in the scaled transition time T = 1 is given by

yd(t) =











0, t < 0

3t2 − 2t3, 0 ≤ t ≤ 1

1, 1 < t

(9)

i.e., a piecewise polynomial function of the lowest possible

degree while still assuring continuous differentiability of the

solution. Note that equivalently to (8), the series

x̃[j](z[j], t[j]) =

∞
∑

n=0

x̃[j]
n (t[j])

zn
[j]

n!
(10)

can be used. However, the choice (8) is motivated by the fact

that the desired trajectory (9) allows the explicite computa-

tion of the coefficients x̂
[j]
n,i as shown in the following.

B. Modification of the PDE

Power series can only provide the solution, if the solution

is an analytical function on the region where the approach

is used. Therefore, |xt(0, t)| in (5) is replaced by xt(0, t)
to eliminate the non–analytical character of the PDE. The

modified boundary condition then reads

θxtt(0, t) = GIxz(0, t) − α [xt(0, t)]
2
. (11)

This modification is admissible if xt(0, t) ≥ 0 for all t ∈ R,

which can be guaranteed by adequately choosing the desired

trajectory as done in (9). Obviously, the case xt(0, t) ≤ 0 can

be treated in an analogous way. In case of a change of sign

in xt(0, t), however, a further subdivision of the transition

region is needed in addition to the structural subdivision

that is presented in the following section. Due to the rising

complexity of the presentation, this case is not considered in

this contribution.

C. Subdivision of the Transition Region

For parabolic and certain first order hyperbolic PDEs the

solution is analytical in z on the entire transition region or

can at least be continued to an analytical function in z if

the desired trajectory is adequately chosen. For second order

hyperbolic systems this is not the case. The only analyticity

property that can be achieved by an adequately chosen

trajectory is piecewise analyticity in both z and t. Since a

power series approach can only provide the solution if the

solution is analytical, R must be subdivided into regions R[j]

on which the solution is analytical. The suitable subdivision

is given by the characteristic curves passing through the

non–analyticity points t = 0 and t = 1 of the desired

trajectory. The ordinary differential equation describing the

characteristic curves reads as

det





ρ 0 −G
dt dz 0
0 dt dz



 = 0, (12)

and, using the abbreviation ν =
√

G/ρ, yields two families

of characteristic curves given by

γ1,t0 : t = −
1

ν
z + t0, (13)

γ2,t0 : t = +
1

ν
z + t0, (14)

where (0, t0) is the point in the (z, t)–plane at which the

characteristic curves intersect the t-axis. The characteristic

curves passing through the non–analyticity points (0, 0) and
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Fig. 1. Illustration of the characteristic curves of the wave equation mod-
elling a torsional rod and subdivision of R. (a) Subdivision for the case that
γ2,0(z) and γ1,1(z) do not intersect on R. (b) Subdivision for the case
that γ2,0(z) and γ1,1(z) intersect on R.

(0, 1) in the (z, t)–plane define the regions R[j] as depicted

in Fig. 1. Which of the depicted schemes applies depends on

whether the two characteristic curves γ2,0(z) and γ1,1(z) do

or do not intersect on R. The regions R[j] are defined by

R[0]:={(z, t)∈R | t<γ1,0(z)},

R[1]:={(z, t)∈R | γ1,0(z)<t<min(γ2,0(z), γ1,1(z))},

R[2]:={(z, t)∈R | γ2,0(z) < t < γ1,1(z)},

R[3]:={(z, t)∈R | γ1,1(z) < t < γ2,0(z)},

R[4]:={(z, t)∈R | max(γ1,1(z), γ2,0(z))<t<γ2,1(z)},

R[5]:={(z, t)∈R | γ2,1(z) < t}.

(15)

To find the solution by applying a formal power se-

ries approach, the formulation of individual power series

x̂[j](z[j], t[j]) as defined in (8) is required on each of the

regions R[j], j = 0, . . . , 5.

IV. FORMAL POWER SERIES SOLUTION

The solution process requires the individual subregions

R[j] to be considered in a certain order: First, the steady

state solutions on R[0] and R[5], respectively, are determined.

Then, the solution is calculated on R[2], which includes the

region on which the desired trajectory is defined, followed by

the regions R[1] and R[4], which are adjacent to R[2]. Finally,

if the characteristic curves γ2,0(z) and γ1,1(z) intersect on

R, the solution is determined on R[3].

A. Solution on R[0] and R[5]

On R[0] and R[5], the solution is the trivial steady state so-

lution x[0](z[0], t[0]) = 0 and x[5](z[5], t[5]) = 1, respectively,

with z[0] := z, t[0] := t, z[5] := z, and t[5] := t. This can be

verified by inserting x[j](z[j], t[j]), j = 0, 5 with u[0](t) = 0
and u[5](t) = 1, respectively, into (1)–(6).

B. Solution on R[2]

On R[2], the adequate coordinates are given by z[2] := z,

t[2] := t. Inserting (8) with j = 2 into the PDE (1) and using

formal differentiation results in

ρ

∞
∑

n,i=0

x̂
[2]
n,i+2

ti[2]

i!

zn
[2]

n!
= G

∞
∑

n,i=0

x̂
[2]
n+2,i

ti[2]

i!

zn
[2]

n!
. (16)

Using the output relation (6) and setting y(t) = yd(t) as well

as the modified boundary condition (11) and equating terms

of equal power in z[2] and t[2] yields the recurrence

x̂
[2]
0,i =

di

dti[2]
yd (t)

∣

∣

∣

∣

∣

t[2]=0

=
di

dti
yd (t)

∣

∣

∣

∣

t=0

, (17)

x̂
[2]
1,i =

θ

GI
x̂

[2]
0,i+2 +

α

GI

i
∑

k=0

(

i

k

)

x̂
[2]
0,k+1x̂

[2]
0,i−k+1, (18)

x̂
[2]
n+2,i =

ρ

G
x̂

[2]
n,i+2, (19)

for n, i ≥ 0. Since R[2] and R[0] coincide in (z, t) = (0, 0),
the desired trajectory yd(t) must fulfill the initial conditions

(2) and (3). The solution to the feedforward control problem

is then given by

u[2](t) = x̂[2](1, t[2]) =
∞
∑

n,i

x̂
[2]
n,i

ti

i!n!
. (20)

For piecewise polynomial trajectories, the series is finite in n
and i. The solution is therefore exact and no approximation

is needed. The coefficients for the trajectory defined in (9)

are given in Table I.

C. Solution on R[1]

Having determined the solution on R[0] and R[2], the

next step consists of finding the solution on the region

in between, i.e., on R[1]. This region is bounded by the

curves γ1,0(z), γ2,0(z), and the line z = 1, along which

the input must be calculated. A diffeomorphic transformation

into characteristic coordinates is given by

z[1] =
1

ν
z[2] − t[2], z[2] =

ν

2

(

z[1] + t[1]
)

, (21)

t[1] =
1

ν
z[2] + t[2], t[2] =

1

2

(

−z[1] + t[1]
)

. (22)

Since the solution is know on R[0] and R[2], it is known

along γ1,0(z) and γ2,0(z), respectively. In order to apply

the formal power series approach on R[1], (1) needs to be

transformed into the characteristic coordinates z[1] and t[1].
By setting x[1](z[1], t[1]) := x(z, t), the PDE (1) can be

transformed into

x
[1]
z[1]t[1]

= 0. (23)

TABLE I

COEFFICIENTS x̂
[2]
n,i ON R[2] FOR THE TRAJECTORY DEFINED IN (9).

ALL REMAINING COEFFICIENTS ARE 0.

x̂n,i n=0 n=1 n=2 n=3 n=4 n=5

i = 0 0 6 θ
GI

6 ρ
G

72 αρ

G2I
0 864 αρ2

G3I

i = 1 0 −12 θ
GI

−12 ρ
G

−432 αρ

G2I
0 0

i = 2 6 72 α
GI

0 864 αρ

G2I
0 0

i = 3 −12 −432 α
GI

0 0 0 0
i = 4 0 864 α

GI
0 0 0 0
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Initial and boundary conditions follow from the known

solutions along γ1,0(z), which determines x[1](z[1], 0), and

γ2,0(z), which defines x[1](0, t[1]). Finally, (4) also needs

to be transformed into the characteristic coordinates, thus

yielding the complete set of conditions

x[1](z[1], 0) = x̂[0](z[0](z[1], 0), t[0](z[1], 0)), (24)

x[1](0, t[1]) = x̂[2](z[2](0, t[1]), t[2](0, t[1])), (25)

u[1](t) = x[1](z[1](1, t), t[1](1, t)). (26)

The solution on R[1] is represented as a formal power series

as given in (8) with j = 1 in the transformed coordinates

z[1] and t[1]. The initial and boundary conditions (24) and

(25) can be used to determine the coefficients x̂
[1]
n,i for n =

0 and i = 0, respectively. In order to do so, consider the

solution along the characteristic curve γ1,0(z) expressed as

a formal power series on R[0] and R[1] as well as along

γ2,0(z) expressed as a formal power series on R[2] and R[1].

Since the solution must be continuous, the expressions need

to be equal, which yields

∞
∑

n,i=0

x̂
[1]
n,i

ti[1]

i!

zn
[1]

n!

∣

∣

∣

∣

∣

∣ t[1]=0

z[1]=−2t[0]

=

∞
∑

n=0

x̂
[1]
n,0

(−2t[0])
n

n!
= 0 (27)

for γ1,0(z) and

∞
∑

n,i=0

x̂
[1]
n,i

ti[1]
i!

zn
[1]

n!

∣

∣

∣

∣

∣

∣

z[1]=0

t[1]=2t[2]

=
∞
∑

i=0

x̂
[1]
0,i

(2t[2])
i

i!

=

∞
∑

n,i=0

x̂
[2]
n,i

ti[2]

i!

zn
[2]

n!

∣

∣

∣

∣

∣

∣

z[2]=νt[2]

=

∞
∑

n,i=0

x̂
[2]
n,i

νnti+n
[2]

i!n!

(28)

for γ2,0(z). Equating coefficients of equal power in t[0] and

t[2] in (27) and (28), respectively, determines the coefficients

x̂
[1]
n,0 = 0, n ≥ 0, (29)

x̂
[1]
0,i =

1

2i

i
∑

k=0

(

i

k

)

x̂
[2]
k,i−kνk, i ≥ 0, (30)

in terms of the coefficients x̂
[0]
n,i and x̂

[2]
n,i, and therefore

constitutes the transition conditions. Formally differentiating

(8) with j = 1 with respect to z[1] and t[1], inserting the

derivatives into (23) and equating coefficients of equal power

in z[1] and t[1] provides the remaining coefficients via the

recurrence

x̂
[1]
n+1,i+1 = 0. (31)

Since by the choice of the trajectory defined in (9),

x̂[2](z[2], t[2]) is a finite series, it directly results from (29)–

(31) that x̂[1](z[1], t[1]) is also finite. Evaluating (26) yields

the solution

û[1](t) =

∞
∑

n,i=0

x̂
[1]
n,i

(

1
ν

+ t
)i

i!

(

1
ν
− t

)n

n!
(32)

for the system input. The coefficients x̂
[1]
n,i for the trajectory

defined in (9) are given in Table II.

TABLE II

COEFFICIENTS x̂
[1]
n,i ON R[1] FOR THE TRAJECTORY DEFINED IN (9).

ALL REMAINING COEFFICIENTS ARE 0.

x̂
[1]
n,i n = 0

i = 0 0

i = 1 3 θν
GI

i = 2 3 − 6 θν
GI

i = 3 −6 + 36 αν
GI

i = 4 −216 αν
GI

i = 5 432 αν
GI

D. Solution on R[4]

The solution on R[4] is calculated in an analogous way

as the solution on R[1]. Since the transformed coordinate

axes must coincide with the characteristic curves γ1,1(z) and

γ2,1(z), the coordinates are defined as

z[4] =
1

ν
z[2]−(t[2]−1), z[2] =

ν

2

(

z[4]+t[4]
)

, (33)

t[4] =
1

ν
z[2]+(t[2]−1), t[2] =

1

2

(

−z[4]+t[4]
)

+1. (34)

Applying the formal power series approach (8) with j = 4
along γ2,1(z) and equating the series to the corresponding

solution on R[5] yields

∞
∑

n,i=0

x̂
[4]
n,i

ti[4]
i!

zn
[4]

n!

∣

∣

∣

∣

∣

∣z[4]=0

t[4]=2(t[5]−1)

=
∞
∑

i=0

x̂
[4]
0,i

(2(t[5]−1))i

i!
=1 (35)

and therefore determines the coefficients

x̂
[4]
0,0 = 1, x̂

[4]
0,i = 0, i ≥ 1. (36)

Following the same approach along γ1,1(z), where t[4] = 0
produces the relation z[2] = ν(1− t[2]) and z[4] = 2(1− t[2]),
we find

∞
∑

n,i=0

x̂
[4]
n,i

ti[4]
i!

zn
[4]

n!

∣

∣

∣

∣

∣

∣

z[4]=2(1−t[2])

t[4]=0

=
∞
∑

n=0

x̂
[4]
n,0

(2(1−t[2]))
n

n!

=

∞
∑

n,i=0

x̂
[2]
n,i

ti[2]

i!

zn
[2]

n!

∣

∣

∣

∣

∣

∣z[2]=

ν(1−t[2])

=

∞
∑

n,i=0

x̂
[2]
n,i

ti[2]

i!

(ν(1−t[2])
n

n!
.

(37)

Here, a straightforward comparison of powers in t[2] is not

possible, but requires the application of a binomial formula

on (1 − t[2])
n. Instead of following this option, the solution

on R[2b] := R[2] can also be recalculated using a series

expansion in t[2b] := (t[2] − 1) and z[2b] := z[2], thus permit-

ting a direct comparison of powers in t[2b]. Although both

approaches are basically equivalent, the latter is preferred

due to the fact that it offers advantages with respect to

convergence in the case when the series involved is infinite.

The formal power series is defined by (8) with j = 2b
and z[2b] := z. Using the output relation (6) as well as the
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boundary condition (11) yields the recurrence

x̂
[2b]
0,i =

di

dti[2b]

y (t)

∣

∣

∣

∣

∣

t[2b]=0

=
di

dti
y (t)

∣

∣

∣

∣

t=1

, (38)

x̂
[2b]
1,i =

θ

GI
x̂

[2b]
0,i+2 +

α

GI

i
∑

j=0

(

i

j

)

x̂
[2b]
0,j+1x̂

[2b]
0,i−j+1, (39)

x̂
[2b]
n+2,i =

ρ

G
x̂

[2b]
n,i+2, (40)

for n, i ≥ 0. The coefficients for the trajectory defined in (9)

are given in Table III. The required coordinate transformation

for R[4] based on the coordinates z[2b] and t[2b] are given by

z[4] =
1

ν
z[2b] − t[2b], z[2b] =

ν

2

(

z[4] + t[4]
)

, (41)

t[4] =
1

ν
z[2b] + t[2b], t[2b] =

1

2

(

−z[4] + t[4]
)

. (42)

The transformed PDE reads as

x
[4]
z[4]t[4]

= 0 (43)

with initial and boundary conditions analogous to (24)–(26)

With this approach, a direct comparison of powers in t[2b] is

possible. Writing

∞
∑

n,i=0

x̂
[4]
n,i

ti[4]
i!

zn
[4]

n!

∣

∣

∣

∣

∣

∣

z[4]=−2t[2b]
t[4]=0

=
∞
∑

n=0

x̂
[4]
n,0

(−2t[2b])
n

n!

=

∞
∑

n,i=0

x̂
[2b]
n,i

ti[2b]

i!

zn
[2b]

n!

∣

∣

∣

∣

∣

∣

z[2b]=

−νt[2b]

=

∞
∑

n,i=0

x̂
[2b]
n,i

(−ν)nti+n
[2b]

i!n!
,

(44)

we obtain

x̂
[4]
n,0 =

1

(−2)n

n
∑

k=0

(n

k

)

x̂
[2b]
n−k,k(−ν)n−k, (45)

x̂
[4]
n+1,i+1 = 0 (46)

for n ≥ 0 and i ≥ 0. Since x̂[2b](z[2b], t[2b]) is by the choice

of a trajectory as defined in (9) a finite series, it directly

results from (36), (45)–(46) that x̂[4](z[4], t[4]) is also finite.

The solution for the input is given by

û[4](t) =

∞
∑

n,i=0

x̂
[4]
n,i

(

1
ν

+ t − 1
)i

i!

(

1
ν
− t + 1

)n

n!
. (47)

The coefficients x̂
[4]
n,i for the trajectory defined in (9) are

given in Table IV.

TABLE III

COEFFICIENTS x̂
[2b]
n,i ON R[2b] FOR THE TRAJECTORY DEFINED IN (9).

ALL REMAINING COEFFICIENTS ARE 0.

x̂n,i n=0 n=1 n=2 n=3 n=4 n=5

i = 0 1 −6 θ
GI

−6 ρ
G

72 αρ

G2I
0 864 αρ2

G3I

i = 1 0 −12 θ
GI

−12 ρ
G

432 αρ

G2I
0 0

i = 2 −6 72 α
GI

0 864 αρ

G2I
0 0

i = 3 −12 432 α
GI

0 0 0 0
i = 4 0 864 α

GI
0 0 0 0

TABLE IV

COEFFICIENTS x̂
[4]
n,i ON R[4] FOR THE TRAJECTORY DEFINED IN (9).

ALL REMAINING COEFFICIENTS ARE 0.

x̂
[4]
n,i n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

i = 0 1 −3 θν
GI

6 θν
GI

− 3 6 + 36 αν
GI

−216 αν
GI

432 αν
GI

E. Solution on R[3]

The solution on R[3], if the region R[3] exists, is par-

ticularly simple. The adequate coordinates are z[3] := z[1]

and t[3] := t[1] − 1. Since the solution on R[1] depends

only on t[1], and since t[1] is constant along the part of

γ1,1(z) that belongs to R[1] and R[3], the solution on R[3] is

constant along γ1,1(z). Evaluating the formal power series

x̂[1](z[1], t[1]) along γ1,1(z) yields

x̂[1](z[1], t[1])
∣

∣

∣

t[1]=1
= x̂[3](z[3], t[3])

∣

∣

∣

t[3]=0
=

1

2
+

3

5

αν

GI
. (48)

An analogous statement holds true on R[4]. Here, the solution

along γ2,0(z) only depends on z[4], and z[4] is constant along

the part of γ2,0(z) that belongs to R[3] and R[4]. Therefore,

the solution is also constant on the part of γ2,0(z) that

belongs to R[3]. It evaluates to

x̂[4](z[4], t[4])
∣

∣

∣

z[4]=1
= x̂[3](z[3], t[3])

∣

∣

∣

z[3]=0
=

1

2
+

3

5

αν

GI
, (49)

and is therefore equal to the solution along the part of γ1,1(z)
that belongs to R[3]. Since, in addition to (48) and (49), the

PDE reads

x
[3]
z[3]t[3]

= 0 (50)

the solution neither depends on z[3] nor on t[3] and is

therefore constant on all of R[3], i.e.,

x̂[3](z[3], t[3]) =
1

2
+

3

5

αν

GI
. (51)

The input on R[3] follows directly as

û[3](t) =
1

2
+

3

5

αν

GI
. (52)

F. Solution for the input u(t)

Summarizing, the complete formal power series solution

to the feedforward control problem is given by

û(t) =























û[0](t) , t ≤ − 1
ν

û[1](t) , − 1
ν

< t ≤ 1
ν

û[2](t) , 1
ν

< t ≤ 1 − 1
ν

û[4](t) , 1 − 1
ν

< t ≤ 1 + 1
ν

û[5](t) , 1 + 1
ν

< t

(53)

for the case of non–intersecting characteristic curves γ2,0(z)
and γ1,1(z), and

û(t) =























û[0](t) , t ≤ − 1
ν

û[1](t) , − 1
ν

< t ≤ 1 − 1
ν

û[3](t) , 1 − 1
ν

< t ≤ 1
ν

û[4](t) , 1
ν

< t ≤ 1 + 1
ν

û[5](t) , 1 + 1
ν

< t

(54)

for the case of intersecting characteristic curves.
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V. SIMULATION RESULTS

For the simulation, a finite difference scheme with spatial

and time discretization ∆z = 0.005 and ∆t = 0.001 is

used for the case of non–intersecting trajectories γ2,0(z) and

γ1,1(z), whereas ∆z = 0.002 and ∆t = 0.002 are used for

the case of intersecting ones. The results in Fig. 2 and Fig. 3

confirm the perfect tracking by plotting the desired trajectory

yd(t), the calculated input û(t) using the formal power series

approach as well as the output y(t) determined by numerical

simulation of the system (1)–(5) with the input û(t).
Fig. 3 illustrates the case when the delay in the system is

equal to the chosen transition time. In this case, all the energy

necessary to move the tip load along the desired trajectory

must be put into the system before the tip load starts moving.

During the motion of the tip load, the input remains constant.

When the tip load reaches its final position, the excess energy

needs to be taken out of the system by an appropriate action

on the input to prevent the tip load from swinging.

VI. SUMMARY

This paper demonstrates the applicability of the formal

power series approach to the trajectory planning and feedfor-

ward control design task for a second order hyperbolic PDE

illustrated for the wave equation with nonlinear boundary

conditions modelling a torsional rod with a tip load. We

proved that the solution to a piecewise polynomial desired

trajectory is analytical on each of the subregions of the tran-

sition region separated by the characteristic curves passing

through the non–analyticity points of the desired trajectory.

Future research will be directed towards the feedforward

control of a nonlinear wave equation that results in infinite

series, as well as various other second order hyperbolic

systems like the telegraph equation, the heavy chain, and

heat exchangers, both in their linear and nonlinear variants.
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Fig. 2. Simulation results for the case that γ2,0(z) and γ1,1(z) do not
intersect on R with the fixed parameters L = 1, ρ = 1, G = 16, and
I = 1

16
. (a) Solution for the linear case α = 0 and a tip load with θ = 0.02.

(b) Solution for the nonlinear case α = 0.2 and a tip load with θ = 0.02.
(c) Solution for the linear case α = 0 and a heavy tip load with θ = 0.2. (d)
Solution for the nonlinear case α = 0.2 and a heavy tip load with θ = 0.2.
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Fig. 3. Simulation results for the case that γ2,0(z) and γ1,1(z) intersect on
R with the fixed parameters L = 1, ρ = 1, G = 1, and I = 1. (a) Solution
for the linear case α = 0 and a tip load with θ = 0.02. (b) Solution for
the nonlinear case α = 0.2 and a tip load with θ = 0.02. (c) Solution for
the linear case α = 0 and a heavy tip load with θ = 0.2. (d) Solution for
the nonlinear case α = 0.2 and a heavy tip load with θ = 0.2.
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