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Abstract— In this paper, the well-known problem of finding
a suitable interpolation point in order reduction via moment
matching by Krylov subspaces is investigated. By using the
equivalence property of moment matching and Laguerre-based
order reduction, the problem is reformulated as finding the
best choice for the free parameter α in the Laguerre basis.
Minimizing appropriate cost functions with very few iterations
is the key point toward finding this best interpolation point.

I. INTRODUCTION

Due to the increasing complexity of physical systems in

engineering and rising demand on higher modeling accuracy,

the need for model order reduction is continuously growing.

In order reduction of large-scale systems, moment matching

by Krylov subspaces are among the best choices [1], [2].

Even though the reduced-order model is calculated, via a

projection, in a relatively short time with a good numerical

accuracy, the interpretation of these methods is restricted

to being a local approximation of the frequency response

of the original system. The frequency range of interest is

determined by the so-called interpolation point about which

the moments in the frequency-domain are matched. Conse-

quently, this family of methods can not directly guarantee a

good approximation of the impulse response, as it is quite

hard in most practical cases, to predict the accuracy of the

time-domain response of the reduced-order model from its

frequency-domain one. It is then more natural to do order

reduction directly in the time-domain, for instance, through

the approximation of the impulse response.

Furthermore, the appropriate choice of the interpolation

point in moment matching is not straightforward and is still

an active field of research. In the literature, different choices

for the single or multiple interpolation points have been

presented, targeting different aims. In [3], the problem of

passivity preserving order reduction has been addressed and

a rational Krylov algorithm with interpolation points selected

as spectral zeros of the original transfer function has been

presented. In [4], an iteratively corrected rational Krylov

algorithm for H2 model reduction has been suggested.

Lately, several successful methods for approximating the

impulse response using orthogonal polynomials have been

proposed [5], [6], [7], [8], [9]. Among these approaches, the

Laguerre-based reduction has shown to be very suitable for

the reduction of large-scale systems as it can be reformu-

lated (both in time and frequency domain) to benefit from
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the numerical and computational advantages of the Krylov

subspace-based methods.

In order to optimize the approximation using the Laguerre

basis functions, the choice of the Laguerre pole, also known

as time-scale factor, is crucial. Numerous works treated this

problem in system identification [10], approximation [11],

[12], [13], [14], [15], [16], and signal processing [17].

In [18], [8] the equivalence between the Laguerre-based

order reduction and moment matching, both in time- and

frequency-domain, has been shown. Based on these results,

the open problem of choosing an optimal expansion point

in the rational Krylov subspace reduction methods (moment

matching about s0 �= 0) can be reformulated to the problem

of finding the optimal parameter α in the Laguerre-based

reduction methods.

In this paper, it is first shown that the key parameter for

the impulse response approximation of the original system

can be calculated optimally in a closed-form by solving

appropriate Lyapunov equations. Then, two methods for the

choice of the optimal Laguerre parameter and consequently

the single expansion point in rational interpolation order

reduction are presented. Accordingly, different model re-

duction algorithms are suggested and their advantages and

disadvantages are pointed out. The importance of these

approaches lies in the fact that they try to minimize the

effect of the higher order terms in the infinite Laguerre series

expansions of the impulse response, and that they offer a

time-domain interpretation of moment matching which is

originally developed in frequency domain. In addition, the

methods have a simple structure and are numerically efficient

and thus suitable for the reduction of large-scale systems.

II. KRYLOV-BASED ORDER REDUCTION

Consider the stable Linear Time Invariant (LTI) system,

Σ :

{
ẋ = Ax + bu,

y = c
T
x,

(1)

having the transfer function

H(s) = c
T (sI − A)−1

b,

with its moments about zero calculated as follows [2]:

mi = c
T
A

−i−1
b, i = 0, 1, · · · . (2)

The aim of order reduction by Krylov-subspace methods

is to find a reduced order model of order q ≪ n, whose

moments match some of those of the original one [1]. This

family of methods is also known as moment matching.
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A numerically robust and efficient way to calculate this

reduced order model is based om applying a projection to

the original model,

Σr :

{
ẋr(t) = W

T
AVxr(t) + W

T
bu(t),

y(t) = c
T
Vxr(t),

(3)

by means of the so-called projection matrices, V and W

with W
T
V = I. For the choice of the projection matrices,

the Krylov subspace, defined in e.g., [2] is used,

Kq(A1,b1) = span{b1,A1b1, · · · ,A
q−1

1 b1}
where A1 ∈ R

n×n, and b1 ∈ R
n is called the starting vector.

Now, when the projection matrices are chosen such that,

colspan(V) ⊂ Kq

(
(A − s0I)

−1, (A − s0I)
−1

b
)
,

colspan(W) ⊂ Kq

(
(A − s0I)

−T , (A − s0I)
−T

c
T
)
,

2q moments around s0 match and the method is known

as rational interpolation. As it is not simple to find an

appropriate choice of s0, in many applications s0 = 0 is

chosen which leads to a good approximation of the low-

frequency behavior but does not necessarily lead to good

results if the high or middle frequency behavior is of interest.

Note that in the so-called one-sided method, only one

Krylov subspace is used with a common choice W = V

and only q moments match. For the numerical computation

of the matrices V and W, the known Lanczos or Arnoldi

or one of their modified versions are employed. For more

details, see e.g. [2], [19] and the references therein.

III. LAGUERRE-BASED ORDER REDUCTION AND

THE EQUIVALENCE PROPERTY

The ith Laguerre polynomial is defined as,

li(t) =
et

i!

di

dti
(e−tti), i = 0, 1, · · ·

and the scaled Laguerre functions are,

φα
i (t) =

√
2αe−αtli(2αt), i = 0, 1, · · ·

where α is a positive scaling parameter called time-scale

factor. As these functions form a uniformly bounded ortho-

normal basis for the Hilbert space L2(R+) [20], the impulse

response of (1) can be written as

h(t) =

∞∑

i=0

Fiφ
α
i (t).

The key idea of the time-domain Laguerre-based order

reduction consists of projecting the state vector x in (1)

onto the q-th order subspace spanned by the first q Laguerre

functions [8]. This results in a reduced system with impulse

response hr(t), whose Laguerre coefficients match some of

the first coefficients of the original impulse response h(t).
The reduced order system is obtained by applying the

projection as shown in (3), however with the matrices V and

W forming a basis for the subspace spanned by the columns

of the Laguerre coefficients of the expansion of the states x

of the system. In fact, it can be shown that the subspace in

question is equal to the Krylov subspace,

colspan(V) ⊂ Kq

(
(A − αI)−1

A, (A − αI)−1
b
)
, (4)

colspan(W) ⊂ Kq

(
(A − αI)−T

A
T , (A− αI)−T

c
T
)
. (5)

Hence, the projection matrices needed in the Laguerre-

based order reduction can be efficiently calculated using the

Krylov-subspace machinery used for moment matching. This

formulation shows the dependency of the reduction approach,

and consequently the reduced system on the parameter α.

Based on this fact, by changing this parameter, new basis

functions φα
i are generated and different approximations of

the impulse response of the original model are obtained.

Thus, there is a need of a method to calculate an α leading

to good impulse response’s approximations while satisfying

some optimality conditions.

A. The Equivalence

Based on the work in [18], the Laguerre-based order

reduction and the moment matching about a single interpo-

lation point can be shown equivalent. Using the fact that the

transfer function of the reduced-order model depends only

on the choice of the Krylov subspaces and not on the bases

of these subspaces, it is enough for the equivalence of both

approaches to show that the Krylov subspaces involved in

both methods are equal. This is in fact true as

Kq

(
(A − αI)−1,v

)
= Kq

(
(A − αI)−1

A,v
)
,

for a starting vector v; see [18] for a detailed discussion.

Theorem 1: Reducing a state space model in time-domain

by matching the Laguerre coefficients of the impulse re-

sponses of the original and reduced models is exactly equiv-

alent to matching the moments of their transfer functions

around s = α in the frequency-domain.

In other words, if order reduction is carried out com-

pletely in time-domain to match some of the first Laguerre

coefficients with a certain parameter α as proposed at the

beginning of this section, the same number of moments

around s0 = α in the frequency-domain automatically match.

Similarly, if order reduction is carried out completely in

frequency-domain to match some of the first moments around

s0, the same number of the first Laguerre coefficients of

the Laguerre series expansion of the impulse response with

α = s0 automatically match.

B. Property of the Laguerre Function

The key point to investigate the Laguerre parameter is the

differential equation that the Laguerre functions satisfy. It is

well-known that the Laguerre polynomial l i(t) satisfies the

following differential equation [20],

tl̈i(t) + (1 − t)l̇i(t) + ili(t) = 0.

Considering the Laguerre function and the variable t̃ = 2αt,

the following relations hold,

li(t̃) =
1√
2α

eαtφα
i (t)

d

dt̃
li(t̃) =

1

2α
√

2α
eαt

(

φ̇α
i (t) + αφα

i (t)
)
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d2

dt̃2
li(t̃) =

1

4α2
√

2α
eαt

(

φ̈α
i (t) + 2αφ̇α

i (t) + α2φα
i (t)

)

Combining these equations with the following equation,

2αtl̈i(2αt) + (1 − 2αt)l̇i(2αt) + ili(2αt) = 0,

leads to the differential equation that is satisfied by the

Laguerre function,

t
(

φ̈α
i (t) + 2αφ̇α

i (t) + α2φα
i (t)

)

+

(1 − 2αt)
(

φ̇α
i (t) + αφα

i (t)
)

+ 2αiφα
i (t) = 0 ⇒

tφ̈α
i (t) + φ̇α

i (t) − α2tφα
i (t) + αφα

i (t) + 2αiφα
i (t) = 0 ⇒

− tφ̈α
i (t) − φ̇α

i (t) + α2tφα
i (t) = 2α(i +

1

2
)φα

i (t). (6)

The differential equation (6) which is found by a direct

calculation in time-domain is the same as in [13] where it

was derived in the s-domain using the Laplace transform

of the Laguerre function. This property will be involved in

finding the optimal α in the following sections.

IV. RATIONAL KRYLOV WITH AN OPTIMAL

INTERPOLATION POINT

Following the results in [13] and assuming that h(t) is an

impulse response of a stable system, one can write

−
∫

∞

0

th(t)ḧ(t)dt −
∫

∞

0

h(t)ḣ(t)dt + α2

∫
∞

0

th2(t)dt

=

∫
∞

0

[
∞∑

i=0

Fi

(

−tφ̈α
i (t) − φ̇α

i (t) + α2tφα
i (t)

)
]

h(t)dt

=

∞∑

i=0

[

Fi2α(i +
1

2
)

∫
∞

0

φα
i (t)h(t)

]

dt=

∞∑

i=0

2F 2
i α(i +

1

2
).

Now define the cost function,

J(α) =

∞∑

i=0

iF 2
i (α). (7)

When the first coefficients of the system’s impulse response

are used in order reduction, minimizing J with the weighting

i for every coefficient Fi is very effective. In other words,

applying the optimal α found by minimizing the cost func-

tion J leads to a meaningful result as it puts more weight on

the coefficients with higher index. This property accelerates

the convergence of the infinite sum of Laguerre functions by

making the higher order terms less significant.

To calculate J , assume that lim
t→∞

h(t) = 0, lim
t→0

h(t) < ∞,

lim
t→∞

ḣ(t) < ∞ and
∑

∞

i=0
F 2

i = ‖h(t)‖2
2 =

∫
∞

0
h2(t)dt and,

∫
∞

0

ḣ2(t)tdt + α2

∫
∞

0

h2(t)tdt = 2αJ + α‖h(t)‖2
2.

Define,

M1 =

∫
∞

0
h2(t)tdt

∫
∞

0
h2(t)dt

, M2 =

∫
∞

0
ḣ2(t)tdt

∫
∞

0
h2(t)dt

⇒ (8)

J = ‖h(t)‖2
2

α2M1 + M2

2α
− 1

2
‖h(t)‖2

2. (9)

The optimal value of α can be found as follows,

dJ

dα
= ‖h(t)‖2

2

2α2M1 − 2M2

4α2
= 0 ⇒

α∗ =

√

M2

M1

, J∗ = ‖h(t)‖2
2

(
√

M2M1 −
1

2

)

. (10)

The main question arising in this context is the calculation of

the optimal parameter α in practice. Although the problem

looks complicated in the general case, it may be easily solved

for special classes of systems including LTI systems.

Let h(t) = c
T eAt

b be the impulse response (with zero

initial condition) of the system (1). The square of the two-

norm of this system is,

‖h(t)‖2
2 =

∫
∞

0

h2(t)dt = c
T
Xc.

where X is called the controllability gramian and satisfies

the following Lyapunov equation,

AX + XA
T + bb

T = 0, X =

∫
∞

0

eAt
bb

T eA
T tdt. (11)

Lemma 1: For system (1), the optimal parameter that

minimizes the cost function (9) can be calculated as follows,

α∗ =

√

cT AYA
T
c

cT Yc
, (12)

where Y is the solution of the Lyapunov equation,

AY + YA
T + X = 0, (13)

and X is the controllability gramian.

Proof: Let us calculate M1 for system (1),
∫

∞

0

h2(t)tdt = c
T

∫
∞

0

eAt
bb

T eA
T ttdt

︸ ︷︷ ︸

Y

c.

Assuming that the system is stable and considering the

Lyapunov equation (11), we have,

AY =

∫
∞

0

AeAt
bb

T eA
T ttdt

= eAt
bb

T eA
T tt

]
∞

0

−
∫

∞

0

eAt
bb

T eA
T tdt

−
∫

∞

0

eAt
bb

T eA
T ttdtAT = 0− X − YA

T .

Therefore,

AY + YA
T + X = 0, M1 =

c
T
Yc

cTXc
. (14)

To calculate M2, we have,
∫

∞

0

ḣ2(t)tdt = c
T
A

∫
∞

0

eAt
bb

T eA
T

ttdtAT
c

= c
T
AYA

T
c ⇒ M2 =

c
T
AYA

T
c

cT Xc
. (15)

Applying equation (10) completes the proof.

Remark 1: If the original system is stable then X and Y

are positive definite. Therefore, M1, M2 > 0 and α∗ is real.
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According to Lemma 1, the cost function J can be easily

minimized and the optimal parameter α is found by (12).

Such a calculation is straightforward as J depends only on

the original system and the parameter α.

Algorithm 1: Rational Krylov with an Optimal Point (RK-

OP)

1) Solve the Lyapunov equations (11), (13) to calculate

X and Y.

2) Calculate α∗ using (12) to minimize the function (7).

3) Find the reduced system (3) using α∗ and (4), (5) with

a given order q.

However, the calculation for α is costly as two Lyapunov

equations in the size of the original system are to be

solved. By finding an approximate solution of the Lyapunov

equations involved in the RK-OP algorithm, the cost of

calculation can be reduced dramatically. In the following,

X and Y are calculated using a reduced system by means

of the so-called Galerkin conditions [21], [22].

Consider the Lyapunov equation associated with the re-

duced system Σr in (3),

W
T
AVXr + XrV

T
A

T
W + W

T
bb

T
W = 0. (16)

If we approximate the original controllability gramian as,

X ≈ X̂ = VXrV
T , (17)

the following Galerkin condition is satisfied,

W
T

(

AX̂ + X̂A
T

+ bb
T
)

W = 0. (18)

Using the approximate gramian to calculate Y results in

W
T
AVYr + YrV

T
A

T
W + Xr = 0, (19)

Y ≈ Ŷ = VYrV
T , (20)

W
T

(

AŶ + ŶA
T

+ Xr

)

W = 0. (21)

Accordingly, the optimal parameter is approximated as,

α∗ ≈
√

cT AVYrV
TAT c

cT VYrV
T c

. (22)

Such an approximation depends on the reduced system

itself and the optimization is hence not so simple. To

converge to an optimal solution as in the RK-OP algorithm,

it is proposed to iterate between the optimal parameter and

the reduced system starting from an initial parameter.

Algorithm 2: Rational Krylov with an Iteratively Calcu-

lated Optimal Point (RK-ICOP)

1) Reduce the original system using the initial value of

α0 and set i = 1.

2) Solve the corresponding Lyapunov equations for the

reduced system to calculate Xr and Yr.

3) Calculate the approximation of the optimal parameter

αi using (22).

4) Reduce the system using αi with a given order q.

5) Increase i and go back to step 2.

The algorithm may be terminated if αi − αi−1 ≤ ǫ for a

given tolerance ǫ. The convergence of this algorithm will be

discussed in the following section.

Remark 2: A common method to approximate or identify

complex systems is based on truncating the Laguerre series

expansion. Assume that the system h is approximated by the

sum of the first N terms as ĥ =
∑N−1

i=0
Fi. Then,

‖h(t) − ĥ(t)‖2
2 =

∞∑

i=N

F 2
i ≤ 1

N

∞∑

i=0

iF 2
i =

1

N
J ⇒

‖h(t) − ĥ(t)‖2
2

‖h(t)‖2
2

≤ 1

N

α2M1 + M2

2α
− 1

2N
. (23)

This suggests to minimize J to find an optimal α that

minimizes the upper bound of the relative error norm of

the approximation. Such a reduced system usually does not

lead to satisfactory result mainly because all its poles are

located in a single point −α. Furthermore, although the cost

function J appears as the upper bound of the error, it does

not really reflect the magnitude of the error system. In most

applications, the bound given above is far from the real two-

norm of the error as the weighting i increases to infinity.

V. RATIONAL KRYLOV WITH AN OPTIMAL

ERROR MINIMIZING INTERPOLATION POINT

Consider the order reduction problem by matching the first

N Laguerre coefficients. A natural cost function would be to

minimize the difference between the rest of the coefficients.

This suggests a new cost function,

Jd =

∞∑

i=N

i(Fi−Fri)
2=

∞∑

i=0

iF 2
i +

∞∑

i=0

iF 2
ri− 2

∞∑

i=0

iFiFri. (24)

The value of α suggested by minimizing the cost function

Jd should lead to good reduced systems when the first

coefficients match. In the following, the optimal parameter

for this cost function is calculated.

The first two terms in (24) are calculated using equation

(9) and the result of section IV. For the last term, the method

in section III-B is followed and the differential equation (6)

is used,

−
∫

∞

0

thr(t)ḧ(t)dt −
∫

∞

0

hr(t)ḣ(t)dt + α2

∫
∞

0

th(t)hr(t)dt

=

∫
∞

0

[
∞∑

i=0

Fi2α

(

i +
1

2

)

φα
i (t)

]

hr(t)dt

=2α

∞∑

i=0

iFiFri +α

∞∑

i=0

FiFri=2α

∞∑

i=0

iFiFri +α

∫
∞

0

h(t)hr(t)dt.

Finally by simplifying the integral terms we have,

∞∑

i=0

iFiFri =
1

2α

(∫
∞

0

ḣr(t)ḣ(t)tdt

+α2

∫
∞

0

h(t)hr(t)tdt

)

− 1

2

∫
∞

0

h(t)hr(t)dt.

(25)

Consider the original and its projected reduced system,
∫

∞

0

h(t)hr(t)dt = c
T

∫
∞

0

eAt
bb

T
WeV

T
A

T
WtdtVT

c

= c
T
X̃V

T
c. (26)
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where X̃ is the solution of the following Sylvester equation,

AX̃ + X̃V
T
A

T
W + bb

T
W = 0. (27)

Assuming that the original and reduced systems are stable

and considering the solution of the Sylvester equation (27),

a new variable Ỹ satisfies the following,

AỸ + ỸV
T
A

T
W + X̃ = 0,

Ỹ =

∫
∞

0

AeAt
bb

T
WeV

T
A

T
Wttdt

∫
∞

0

hr(t)h(t)tdt = c
T
ỸV

T
c. (28)

Finally, it is simple to show that,
∫

∞

0

ḣr(t)ḣ(t)tdt = c
T
AỸV

T
A

T
WV

T
c. (29)

Lemma 2: Consider an LTI system that has been reduced

by projection. The cost function Jd in equation (24) satisfies,

Jd =
1

N

(

α2M̃1+ M̃2

2α
−‖h(t)‖2

2
−‖hr(t)‖2

2
+ c

T
X̃V

T
c

)

,

where,

M̃1 = c
T

(

Y + VYrV
T − 2ỸV

T
)

c

M̃2 = c
T

(

AYA
T + VW

T
AVYrV

T
A

T
WV

T

−2AỸV
T
A

T
WV

T
)

c.

What restricts the application of the cost function given

in lemma 2 is the dependency of the right hand side on the

reduced system. However, if the reduced system is assumed

to be given, the upper bound can be minimized leading to

the optimal parameter α∗ =
√

M̃2

M̃1

.

Algorithm 3: Rational Krylov with an Optimal Error Min-

imizing Point (RK-OEMP)

1) Solve the corresponding Lyapunov equations for the

original system to calculate X, Y.

2) Reduce the original system using the initial value of

α0 and set i = 1.

3) Solve the corresponding Lyapunov and Sylvester equa-

tions for the reduced system to calculate Xr, Yr, X̃

and Ỹ.

4) Calculate the parameter αi =
√

M̃2

M̃1

where M̃2 and

M̃1 are defined in theorem 2.

5) Reduce the system using αi with a given order q.

6) Increase i and go back to step 3.

It should be noted that the value of X and Y should

be calculated only once and the best choice for the starting

parameter is α0 =
√

M2

M1

. To reduce the computational cost

and avoid solving Lyapunov equations in the size of original

system, similar to algorithm 2, the method of Galerkin is

employed leading to the next algorithm. Note that calculating

X̃ and Ỹ is not numerically very expensive as they are n×q

matrices with q << n.

Algorithm 4: Rational Krylov with a Near Optimal Error

Minimizing Point (RK-NOEMP)

1) Reduce the original system using the initial value of

α0 and set i = 1.

2) Solve the corresponding Lyapunov and Sylvester equa-

tions for the reduced system to calculate Xr, Yr, X̃

and Ỹ and set Y = VYrV
T .

3) Calculate the parameter αi =
√

M̃2

M̃1

where M̃2 and

M̃1 are defined in theorem 2.

4) Reduce the system using αi with a given order q.

5) Increase i and go back to step 2.

In order to analyze the convergence of the algorithms 2 and

4, consider the original system Σ that has been reduced to Σ0

by matching the first N Laguerre coefficients associated with

α0. This system approximates some of the major dynamics

of Σ from a Laguerre approximation point of view. In the

next step, the parameter α1 calculated from Σ0 is employed

to calculate the reduced system Σ1. This is the first reduced

system found based on the results of this section. Since α2 is

extracted from Σ1, it is expected that the difference α2 −α∗

tends to zero. Applying the proposed algorithms to several

technical systems confirms this theoretical interpretation and

shows that no significant changes occurs in the αi after the

third iteration.

VI. TECHNICAL EXAMPLE

In order to demonstrate the effectiveness of the presented

algorithms, the model of a CD player is considered [23]. The

most important part of this system is the optical unit (lenses,

laser diode, and photo detectors) and its actuators. The main

task in this system is to control the arm holding the optical

unit to read the required track on the disk and to adjust the

position of the focusing lens to adjust the depth of the laser

beam penetrating the disc. In order to achieve this task, the

system has been modeled by finite element method (FEM)

leading to a differential equation of order 120.

The system has been reduced to order 8 by applying all

four algorithms presented here. Minimizing the cost function

(9) in RK-OP leads to α∗ = 292.8794. By running the

algorithm 2, RK-ICOP, the parameter converges in three

steps to α∗ = 291.8036 which has less than 0.4% error.

The two algorithms RK-OEMP and the approximated

version RK-NOEMP lead to the optimized parameter α∗ =
207.0667 and 206.8629, respectively. The difference is less

than 0.1% and the reduced systems are almost equal.

Figure 1 illustrates the parameter α in terms of iterations

for all algorithms that show a fast convergence to the desired

value of parameter. The impulse response of the reduced

systems shows very good approximations, as in figure 2.

It is remarked that the optimal parameter for RK-ICOP

and RK-NOEMP are different as they minimize different

cost functions. Finally, it is clear from the presented results

that, for this technical example, all algorithms lead to very

similar results. However, the simulations with many other

examples have shown that this fact is generally not true. All

examples investigated so far have confirmed that algorithms

2 and 4 converge quickly (typically, within 3 steps) towards

the results of algorithms 1 and 3, and that the approximation

of the system response in time-domain is excellent.
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Fig. 2. Impulse response of the original and reduced systems.

VII. CONCLUSIONS

A new method, with various algorithms, for the choice

of the interpolation point in Krylov-subspace method based

on a Laguerre series representation of the system has been

presented. To this end, the fact that the reduced order

model, obtained by matching the Laguerre coefficients of the

impulse response, is equal to the one obtained by moment

matching about s0 = α, has been used. The optimal choice

of α in the Laguerre domain has been then adjusted in several

different ways to serve as an optimal expansion point for the

rational Krylov order reduction while minimizing a certain

objective function. Applying the proposed algorithms to

several technical systems confirms the very fast convergence

of all their variants and showed that negligible improvements

in the accuracy of the reduced order model occur after

the third iteration step. In addition, it is observed that the

approximation using the Galerkin conditions showed to be

particularly useful if the order of the reduced system is

not very low, depending on complexity of the system. The

extension of the results to the MIMO case and multi-point

interpolation is being investigated within the authors’ group.
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[15] N. Tanguy, R. Morvan, P. Vilbé, and L. C. Calvez, “Online optimiza-
tion of the time scale in adaptive laguerre-based filters,” IEEE Trans.

Aut. Control, vol. 48, no. 4, pp. 1184–1187, April 2000.
[16] L. Knockaert and D. De Zutter, “Stable laguerre-svd reduced-order

modeling,” IEEE Tran. on Circuits and Systems I: Fundamental

Theory and Applications, vol. 50, no. 4, pp. 576 – 579, 2003.
[17] C. Boukis, D. Mandic, A. Constantinides, and L. Polymenakos, “A

novel algorithm for the adaptation of the pole of laguerre filters,” IEEE
Signal Processing Letters, vol. 13, no. 7, pp. 429–432, July 2006.

[18] R. Eid, B. Salimbahrami, and B. Lohmann, “Equivalence of laguerre-
based model order reduction and moment matching,” IEEE Trans. on
Automatic Control, vol. 52, no. 6, pp. 1104–1108, 2007.

[19] Salimbahrami, B., “Structure Preserving Order Reduction of Large
Scale Second Order Models,” PhD thesis, Institute of Automatic
Control, Technical University of Munich, 2005.
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