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Abstract— In this paper we examine the leader-to-follower
ratio needed to maintain connectivity in a leader-follower multi-
agent network with proximity based communication topology.
In the scenario we consider, only the leaders are aware of the
global mission, which is to converge to a known destination
point. Thus, the objective of the leaders is to drag the team to
the desired goal. In the paper we obtain bounds on the number
of leaders needed to complete the task while guaranteeing
that connectedness of the communication graph is maintained.
The results are first established for an initially complete
communication graph and then extended to the incomplete case.
The results are illustrated by computer simulations.

I. INTRODUCTION

Being able to effectively control networked systems is a

key capability in a number of applications, including multi-

agent robotics [7], [9], [2] networked sensor and health main-

tenance [11],[15],[10] and formation control [5],[12],[6],[8]

just to name a few. One way in which the user can interact

with such systems is through so-called leader agents, whose

dynamics need not conform to those of the non-leader agents.

In this paper we study such systems, i.e. systems where

a select subset of the agents are following a task-level

controller encoding the transport of the network from one

location to another. The rest of the agents have no notion of

these objectives, and are instead executing a local interaction-

based control strategy for keeping the team together.

The reasons for prescribing networked solutions to engi-

neering systems range from cost considerations (many cheap

systems for solving a problem rather than a single expensive

system) to strength-in-numbers arguments. However, as of

yet, few studies have addressed the question concerning how

many agents one actually needs. In this paper, we pursue

this question in the context of a leader-follower network.

In particular, we ask the question “How many leaders do

you really need?”, in order to quantify the strength-in-

numbers argument as it applies to leader-follower networks.

While issues regarding controllability and stability of leader

follower networks has been addressed recently in [14],[13],
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the issue of the number of leaders needed is a novel topic

introduced in the current paper.

The particular scenario under consideration in this paper is

one in which the leaders move towards a target location. At

the same time, the followers try to maintain appropriate inter-

agent cohesion using a standard, nearest neighbor control

law. Adjacency in this network is supposed to be defined

through inter-agent distances in a so-called disk proximity

graph [1]. (Two agents are adjacent if they are within a given

distance of each other.) If the leaders move too fast, or if

there are not enough leaders to provide sufficient attraction

to the followers, the network may become disconnected.

As such, there is a critical number of leaders required to

ensure that the sum of the attraction exerted on the followers

is sufficient to ensure that connectivity is maintained. The

establishment of this critical number is the main topic under

consideration in this paper.

The outline of this paper is as follows: Section II describes

the system and the problem treated in this paper. The

number of leaders that ensure connectivity maintenance of

the network topology is treated first for the case of complete

interaction graphs in Section III. The results are extended to

incomplete graphs in Section IV while Section V includes

illustrating simulation examples. The results of the paper

are summarized in Section VI, where we also include a

discussion about further research directions.

II. SYSTEM AND PROBLEM STATEMENT

Consider N agents evolving in R. Although this assump-

tion seems restrictive, we argue here that the results of

this paper can be extended to arbitrary dimensions in a

relatively straightforward fashion. This however, is left for

future publication endeavors. We use single integrator agents

whose motions obey the model:

ẋi = ui, i ∈ N = [1, . . . , N ] (1)

We assume that agents belong either to the subset of

leaders N l, or to the subset of followers, N f . We also have

N l ∪ N f = N and N l ∩ N f = ∅. Agents have limited

sensing capabilities, encoded by a limiting sensing zone of

radius ∆ around each agent within which it has knowledge of

the relative positions of neighboring agents. For each agent

i ∈ N , we define by

Ni = {j ∈ N : |xi − xj | ≤ ∆} (2)

the set of agents of which agent i has knowledge of the

relative positions at each time instant. The set Ni is called

agent i’s neighboring set and it is time-varying. In particular,

Ni is updated every time an agent enters/leaves the sensing
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zone of another. We denote |Ni| = Ni. The communication

graph G = {V,E} of the group topology is a graph that

consists of a set of vertices V = {1, ..., N} indexed by the

team members, and a set of edges, E = {(i, j) ∈ V ×V |i ∈
Nj} containing pairs of vertices that represent inter-agent

communication links. Since the set E is time varying, the

graph G = G(t) itself, is time-varying.

The dynamics of each follower obey the following agree-

ment equation:

ẋi = −
∑

j∈Ni

(xi − xj), ∀i ∈ N f (3)

The leaders have the additional goal of dragging the team

to a desired goal position, defined by d ∈ R. Their dynamics

are thus given by

ẋi = −
∑

j∈Ni

(xi − xj) + f(xi, d), ∀i ∈ N l (4)

where f(xi, d) is a term that pulls leader i towards d.

In this paper we specifically study the case where we

have a linear goal attraction function f(ξ, d) = −a(ξ − d),
where a > 0 is a constant. Most of the results, however, are

first derived and stated for a general function f(ξ, d). The

following Lemma guarantees the boundedness of solutions

of the closed-loop system with linear attractive term f(ξ, d):
Lemma 1: Let the closed-loop dynamics of (1) be given

by (3),(4). Let Ω be the convex hull of the agents in G(t)
and the goal position d, Ω(t) = Co(G(t) ∪ d). Then the

trajectories of all agents in G remain within Ω(0) for all

t ≥ 0.

Proof: We will show that for an arbitrary agent i ∈ G,

positioned on the boundary of Ω, the motion is either on

the boundary of Ω or pointing inside the polytope Ω. If

i ∈ N f the motion is given by ẋi = −
∑

k∈Ni
(xi − xk). If

Ni = 0 the agent will not move at all and the proof is trivial.

Now consider the case Ni > 0. By setting α = N−1
i and

rearranging the terms we can show: αẋi = −xi+
∑

k∈Ni

xk

Ni
.

Apparently the motion of follower i is directed towards

the barycenter of the subgraph Ni ⊆ G, which, thanks to

convexity, is known to lie either on the boundary or in the

interior of Ω. From the definition of convexity we can also

conclude that the motion of follower i must lie within Ω.

Now assume that i ∈ N l. Then ẋi = −
∑

k∈Ni
(xi −

xk) − a(xi − d). Define β = (Ni + a)−1. Then we get:

βẋi = −xi +β
(

Ni

∑

k∈Ni

xk

Ni
+ad

)

. The motion of agent i

is directed towards a convex combination of the barycenter

of the subgraph Ni ⊆ G and the goal d. By definition, this

convex combination lies within the convex hull of G∪d, and

therefore, by the convexity of Ω, the motion of agent i is

within Ω. Since the motion of any agent on the boundary of

Ω is either on the boundary of Ω or directed into the interior

of Ω, we can conclude that no agent will ever enter outside

the convex hull defined by the initial positions of the agents

and the goal d. Hence, Ω(0) is an invariant set. ♦

III. THE COMPLETE GRAPH CASE

In this section, we assume that all agents are initially

within the sensing zone of one another, i.e., at a distance

less than ∆ from one another. Hence, the initial graph G(t)
is complete and of course, connected. In the sequel, we derive

sufficient conditions for the graph to remain complete as the

leaders drag all followers towards the desired target point d.

Denote |N f | = Nf , |N l| = Nl. Since the graph is

complete, the dynamics of follower i ∈ N f , are given by:

ẋi = −
∑

j∈N f

(xi − xj) −
∑

j∈N l

(xi − xj)

= −Nfxi +
∑

j∈N f

xj − Nlxi +
∑

j∈N l

xj

= −(Nf + Nl)xi +
∑

j∈N f
⋃

N l

xj ,

so that

ẋi = −(Nf + Nl)xi +
∑

j∈N

xj , ∀i ∈ N f , (5)

since N = N f
⋃

N l. Similarly, the dynamics for leader i,

i ∈ N l, are given by:

ẋi = −(Nf +Nl)xi +
∑

j∈N

xj +f(xi, d), ∀i ∈ N l. (6)

Note that with f(ξ, d) = −a(ξ−d) the result of Lemma 1

holds and guarantees boundedness of trajectories.

We can now study how the distance between two arbitrary

robots changes with time. Denote δij = xi − xj . For two

arbitrary followers f1, f2 ∈ N f , we have δ̇f1f2
= −(Nf +

Nl)δf1f2
which yields δf1f2

→ 0 and, of course, |δf1f2
| → 0.

With f(ξ, d) = −a(ξ − d) the same holds for the inter-

leader distances with a rate equal to Nf + Nl + a. In the

general case the convergence rate depends on the properties

of f(ξ, d), but to guarantee |δl1l2 | → 0 for two arbitrary

leaders l1, l2 ∈ N l it is sufficient to require ḟ(ξ, d) < 0 for

all ξ. Note that the distance between two agents of the same

type is monotonically decreasing, which means that if the

distance is initially smaller than ∆, the agents will remain

within sensor range of each other at all times.

For i ∈ N l, j ∈ N f and f(ξ, d) = −a(ξ − d), we have

δ̇ij = −(Nf + Nl)δij − a(xi − d), (7)

Since the graph is complete we have −∆ ≤ δij(0) ≤ ∆.

For all i ∈ N and t ≥ 0, we have |xi(t) − d| ≤ dmax
∆
=

max
i∈N

|xi(0) − d|, by virtue of Lemma 1, since all agents

remain within the convex hull of their initial positions and the

goal. By virtue of the Comparison Lemma, δij satisfies δ̂ij ≤

δij ≤ δ̃ij where δ̂ij is the solution of
˙̂
δij = −(Nf +Nl)δ̂ij−

admax and δ̃ij is the solution of
˙̃
δij = −(Nf + Nl)δ̃ij +

admax, with initial conditions δ̂ij(0) = δ̃ij(0) = δij(0). We

have δ̂ij(t) ≥ e−(Nl+Nf )t(−∆ + admax

Nl+Nf
) − admax

Nl+Nf
for all

t ≥ 0 and δ̃ij(t) ≤ e−(Nl+Nf )t(∆ − admax

Nl+Nf
) + admax

Nl+Nf
for

all t ≥ 0. A sufficient condition for the two agents (leader

and follower) to remain connected, i.e., −∆ ≤ δij(t) ≤ ∆
for all t ≥ 0, is thus given by

Nl ≥
admax

∆
− Nf . (8)
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The previous derivations are summarized as follows:

Theorem 2: Let the closed loop dynamics of (1) be given

by (5),(6) with f(ξ, d) = −a(ξ − d). Let x(0) ∈ Ω
and assume that the communication graph G(t) is initially

complete and that (8) holds. Then, G(t) remains complete

for all t ≥ 0, and limt→∞ xi(t) = d for all i ∈ N .

Proof: Having shown that G(t) remains complete, it remains

to show that all agents actually converge to d. Equations

(3),(4) are written in stack vector form as ẋ = −Lx −
Γ(x − d), where x = [x1, . . . , xN ]T ,d = [d, ..., d]T , and

the elements of the diagonal matrix Γ = diag(Γ1, . . . ,ΓN )
are given by Γi = 0, if i ∈ N f and Γi = a, if i ∈ N l.

Defining z = x − d, we have ż = −Lx − Γz =
−L(z + d) − Γz = −Lz − Γz, so that ż = −(L + Γ)z,

where L is the Laplacian of G(t). The eigen-properties of

the Laplacian matrix are well established in the cooperative

control literature and are not recapped here. The reader is

referred to [3] for a review of the Laplacian matrix properties.

Note now that the graph corresponding to the matrix L + Γ
is strongly connected [4], since G(t) is connected. Moreover,

since L is positive semidefinite with zero row sums and Γ is

non-negative, L+Γ is diagonally dominant. Since there exists

at least one leader, there exists at least one row i of L + Γ

for which (L + Γ)ii >
∑

j 6=i

∣

∣

∣
(L + Γ)ij

∣

∣

∣
=

∑

j 6=i

|Lij |. Thus,

combining Theorem 6.2.14 and Corollary 6.2.9 in [4], we

conclude that L+Γ is positive definite. Thus ż = −(L+Γ)z
yields z = 0 at steady state, which implies that xi = d for

all agents i ∈ N at steady state. ♦
Remark: It should be pointed out that the fact that all

agents reach d also holds in the relaxed case where the

communication graph remains connected. This will be used

in the result of the next section.

IV. THE INCOMPLETE GRAPH CASE

In the previous section we considered a complete initial

graph. We next analyze a special case of incomplete graphs.

We assume that both the subset of leaders and the subset

of followers initially make up complete graphs. However,

we no longer assume that all followers are connected to all

leaders. To describe this scenario we need to introduce some

additional notation. Let N l
i ⊂ N l be the subset of leaders

that can be seen by follower i (i ∈ N f ), Nli = |N l
i |, and

let N f
j ⊂ N f be the subset of followers that can be seen by

leader j (j ∈ N l), Nfj = |N f
j |. Using these notations, the

dynamics for an arbitrary follower i ∈ N f can be written as

ẋi = −
∑

k∈N f

(xi − xk) −
∑

k∈N l
i

(xi − xk), (9)

while for an arbitrary leader j ∈ N l we have

ẋj = −
∑

k∈N l

(xj − xk) −
∑

k∈N f
j

(xj − xk) + f(xj , d). (10)

We will now derive general conditions for the two complete

subgraphs to remain connected. After that, we will determine

a conservative bound for the number of links needed between

a specific leader and the group of followers to guarantee that

connectivity is maintained for the full graph consisting of

both of leaders and followers.

To start with, we consider the connection between two

arbitrary followers i, j ∈ N f . Without loss of generality we

can assume Nli ≤ Nlj . As before, we define δij = xi − xj .

We also introduce N l
j1 and N l

j2, which are subsets of N l
j

such that |N l
j1| = |N l

i |, N
l
j1∪N

l
j2 = N l

j and N l
j1∩N

l
j2 = ∅.

From (9) it follows that

ẋi − ẋj = −
∑

k∈N f

(xi − xk) −
∑

k∈N l
i

(xi − xk)

+
∑

k∈N f

(xj − xk) +
∑

k∈N l
j1

∪N l
j2

(xj − xk)

= −Nfxi − Nlixi + Nfxj + Nlixj (11)

+
∑

k∈N l
i

xk −
∑

k∈N l
j1

xj +
∑

k∈N l
j2

(xj − xk).

= −(Nf + Nli)(xi − xj)

+
∑

k∈N l
i

xk −
∑

k∈N l
j1

xj +
∑

k∈N l
j2

(xj − xk).

All leaders are connected to each other so it is known that

|xk −xm| ≤ ∆ for any two leaders k ∈ N l
i , m ∈ N l

j1. Also,

the distance between follower j and any leader seen by that

follower is bounded by ∆. It follows that

δ̇ij ≥ −(Nf + Nli)(xi − xj) − Nlj2∆ − Nlj1∆(12)

= −(Nf + Nli)(xi − xj) − Nlj∆, (13)

and

δ̇ij ≤ −(Nf + Nli)(xi − xj) + Nlj∆. (14)

Our assumption is that initially |xi − xj | ≤ ∆. Sufficient

conditions for the connection to be kept at all times are

δij = ∆ → δ̇ij ≤ 0,

δij = −∆ → δ̇ij ≥ 0.

For our purposes it is sufficient to consider the worst case

scenarios at the two extremes. Insertion in (13) and (14) gives

two conditions which can be summarized as Nf ≥ Nlj−Nli.

This condition is satisfied regardless of the topology for every

graph that has

Nf ≥ Nl. (15)

Next, we find out what it takes to keep the leader subgraph

complete. Consider two leaders i, j ∈ N l. As in the follower-

follower case we define δij = xi − xj and we assume

(without loss of generality) that Nfi ≤ Nfj . Initially |xi −
xj | ≤ ∆, i.e. the leaders are connected, and we know from

before that sufficient conditions for the connection between

leader i and j to be kept at all times are δ̇ij ≤ 0 at δij = ∆
and δ̇ij ≥ 0 at δij = −∆. Following the computations

in the follower-follower case we obtain the following two

conditions for the leaders to stay connected:

δ̇ij ≤−(Nl + Nfi)∆ + Nfj∆ + max(f(xi, d) − f(xj , d))

≤−(Nl − Nf )∆ + max(f(xi, d) − f(xj , d)) ≤ 0,
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δ̇ij ≥ (Nf + Nfi)∆ − Nfj∆ + min(f(xi, d) − f(xj , d))

≥ (Nf − Nfj)∆ + min(f(xi, d) − f(xj , d)) ≥ 0.

Both conditions above lead to the same constraint on the

goal-attraction function f(ξ, d), namely

max
f(ξ + ∆, d) − f(ξ, d)

∆
≤ Nl − Nf , (16)

for any ξ that lies on the trajectory of any of the leaders.

Remember that the condition for the follower subgraph to

remain complete was Nf ≥ Nl. This means that f(ξ, d)
must be decreasing with increasing ξ over every interval ∆.

An interpretation of this result is that the overall effect of

f(ξ, d) must be an attractive force that brings two arbitrary

leaders closer to each other. Another interpretation is that if

two leaders are moving in the same direction, the magnitude

of the velocity of the leader lagging behind should be larger.

Remark: For the particular case f(ξ, d) = −a(ξ − d),
condition (16) is equivalent to

a ≥ Nf − Nl. (17)

To complete the analysis we now consider the connection

between the group of leaders and the group of followers.

The two subgroups are now assumed to be internally fully

connected and to satisfy the constraints (15) and (17). Using

the same strategy and the same notations as before, we start

the analysis by studying the link between an arbitrary leader

i, where initially Nfi ≥ 1, and one of the followers j that

is initially connected to leader i, i.e., j ∈ N f
i .

The dynamics of leader i are given by (10) and the

dynamics of follower j are given by (9). Thus,

ẋi − ẋj = −
∑

k∈N l

(xi − xk) −
∑

k∈N f
i

(xi − xk) + f(xi, d)

+
∑

k∈N f

(xj − xk) +
∑

k∈N l
j

(xj − xk)

= −
∑

k∈N l
j

(xi − xk) −
∑

k∈N l\N l
j

(xi − xk)

−
∑

k∈N f
i

(xi − xk) + f(xi, d) +
∑

k∈N f
i

(xj − xk)

+
∑

k∈N f\N f
i

(xj − xk) +
∑

k∈N l
j

(xj − xk)

= −Nfi(xi − xj) − Nlj(xi − xj) + f(xi, d)

−
∑

k∈N l\N l
j

(xi − xk) +
∑

k∈N f\N f
i

(xj − xk).

As before we analyze the two cases δij = xi − xj = ∆ and

δij = −∆. This leads to two conditions on δ̇ij :

δ̇ij ≤ f(xi, d) − (2(Nlj + Nfi) − N)∆ ≤ 0 (18)

δ̇ij ≥ f(xi, d) + (2(Nlj + Nfi) − N)∆ ≥ 0. (19)

Combined, the two conditions above give one condition on

the sum Nlj + Nfi and one condition on the goal attraction

function f(ξ, d). To guarantee that the link between leader i

and follower j hold we require that

Nlj + Nfi ≥
N

2
(20)

and

|f(xi, d)| ≤ (2(Nlj + Nfi) − N)∆ ∀t ≥ 0 (21)

for all t > 0. By Lemma 1, with f(ξ, d) = −a(ξ − d)
equations (20) and (21) are satisfied for

Nlj + Nfi ≥
N

2
+

ad

2∆
(22)

The derivations are summarized as follows:

Theorem 3: Assume that f(ξ, d) = −a(ξ − d) and that

the communication graph G(t) is initially constituted of

two complete subgraphs, the subgraph of leaders and the

subgraph of followers. Further assume that there initially

exists at least one connection between the two complete

subgraphs. Then, if the graph satisfies conditions (15), (17)

and if (22) holds for all initial links (i, j) such that i ∈ N l

j ∈ N f , all connections in the graph will be maintained and

all the agents will tend to d.

Note that all agents converge to d provided that the commu-

nication graph remains connected (as is the case in Theorem

3) by virtue of Theorem 2 and the remark after it.

Remark: In the worst scenario the number of leaders, Nl,

will be bounded by Nf − 2 ≤ Nl ≤ Nf , while in the best

scenario it will be enough with just one leader.

In fact, if we do not require that all connections between

leaders and followers are maintained, but simply want to

ensure that the two subgroups remain connected, then the

following result is useful.

Lemma 4: Assume that (15) and (17) are satisfied. Let E∗

be a subset of the initial links between the group of leaders

and the group of followers and let the neighbor sets of the

graph be defined such that i ∈ N l is considered a neighbor

of j ∈ N f , and vice versa, if and only if they are initially

connected and the link (i, j) ∈ E∗. Then, if it is possible

to find a subset E∗, |E∗| ≥ 1, such that all the links in E∗

satisfy condition (22), the group of leaders and the group of

followers will remain connected with each other.

Proof: The proof follows directly from Theorem (3) and

from the constraints (18) and (19). By definition, the links

included in E∗ are invariant, i.e. for each robot there exist

a well defined lower bound on the number of neighbors. If

the inequalities (18) and (19) are satisfied for all robots for

the lower bounds on their number of neighbors, then the

inequalities will hold even if additional non-invariant links

are added and removed. ♦

V. SIMULATIONS

In this section we illustrate the results of sections III and

IV in a series of simulations. The simulations are performed

in MATLAB and we used the built-in MATLAB function

ode45 to obtain the trajectories of the robots through numeri-

cal integration. In all simulations we use f(ξ, d) = −a(ξ−d).
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Before describing the simulations we need to point out

two things. First, due to rounding errors simple numerical

integration methods should not be used in stability analysis

other than as a complement to theoretical analysis. As such,

however, they present a powerful tool for examining the

behavior of a system. Second, the stability conditions derived

in sections III and IV guarantee maintained connectivity and

convergence to the goal, but they are not necessary for either

connectivity or convergence. As simulations will show, the

robots often converge even if all conditions are not satisfied.

A. Complete graph

To illustrate the behavior of a group of robots with an

initially complete graph we show three examples for a group

of 7 robots. Two of the robots are leaders with dynamics

given by (4) and the remaining five are followers with

dynamics given by (3). The robots have a sensor range of

∆ = 10 and the initial positions are given so that all robots

are within sensing range of each other at t = 0, i.e. the

communication graph is complete. The initial positions for

the robots, as well as the position for the goal d = 20,

are the same in all three simulations, but the value of the

goal attraction term a is changed and thereby the stability

condition (8) is affected. In the first example, a = 3 and (8)

is satisfied. In this case, all robots converge to the goal d

(see Fig. 1) and the graph remains complete for all t ≥ 0. In

the second example we have a = 8 and condition (8) is no

longer satisfied. As seen in Fig. 2, the increased attraction

towards the goal causes the leaders to converge faster to d,

but at the expense of temporarily broken connections to the

followers. In this case the followers catch up with the leaders

again and all agents converge to d, but if a is increased

further, the followers will eventually not be able to catch up

with the leaders once the links start to break. With a = 10,

all connections between leaders and followers are broken at

approximately t = 0.14 and as a consequence, the followers

do not reach the goal (Fig. 3).
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Fig. 1. Position coordinates as functions of time for the agents in a network
where the communication graph is initially complete and the stability
constraints are satisfied. As expected, the graph remains complete and all
robots converge to the goal.

B. Incomplete graph

Let us now consider the case of an initially incomplete

communication graph. We assume, as in previous sections,
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Fig. 2. Position coordinates as functions of time for agents in a network
with an initially complete communication graph. At time t = 0 the stability
constraints are not satisfied and some of the communication links are
temporarily broken. At t ≈ 0.46 (dotted line) all links have re-formed.
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Fig. 3. Position coordinates as functions of time for agents in a network
with an initially complete communication graph. The stability constraints
are not satisfied and the contact between leaders and followers is broken at
approximately t = 0.14 (dotted line).

that the subgraph of leaders and the subgraph of followers

are complete but that the combined graph is not, i.e. some of

the leaders and followers are not within sensing range of each

other. We start with an example where sufficient constraints

are satisfied to maintain the connection between leaders and

followers. For the simulations we use a setup with nine

robots, four leaders and five followers. The sensor range in

this case is assumed to be ∆ = 6 and the initial positions of

the robots are given by x(0) = [10 8 7.5 7 5.5 4 3 2 0.5],
where N l = {1, 2, 3, 4} and N f = {5, 6, 7, 8, 9}. As in

previous simulations, the goal is at d = 20. With Nl = 4 and

Nf = 5 it is obvious that (15) is satisfied and by choosing

a = 1.1 we make sure that (17) holds as well. With (15)

and (17) satisfied we know that the leader and follower

subgraphs will both remain complete, but we also need to

consider the connection between the two subgroups. A closer

analysis shows that (22) is not satisfied for all existing links

between leaders and followers at t = 0. With the given

values of ∆, d and a constraint (22) can be expressed as

Nlj + Nfi ≥ 6.33, and this is not satisfied by, for example,

link (1, 5). Since Theorem 3 does not apply we can not

guarantee that all links will hold, but we may still be able

to show that the connection between leaders and followers

is maintained. To do this we turn to Lemma 4. If we define

E∗ to be the subset of links connecting leaders i = 2, 3, 4
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to followers j = 5, 6, 7, 8 we can verify that (22) is satisfied

for all links in E∗ and by Lemma 4 we are able to guarantee

that the full graph will at least stay connected. The stability

result is confirmed by the simulation shown in Fig. 4. In fact,

it turns out that even though we could not apply Theorem 3,

all initial links hold for t ≥ 0.

In the final example we use the same setup as before, but

now we assume that the sensor range is decreased to ∆ = 4.

The change of ∆ do not affect conditions (15) and (17),

which are still satisfied, but now it is not possible to find

even a subset E∗ of the links between leaders and followers

that satisfy (22). As seen in Fig. 5, the existing links between

the two subgroups are not sufficiently strong. At t ≈ 0.24
the last connecting link breaks and the subgroups diverge.
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Fig. 4. Position coordinates as functions of time for the agents in a network
with an initially incomplete communication graph. The stability constraints
are satisfied and all robots converge to the goal. The dotted line indicates
the time when the communication graph becomes complete.
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Fig. 5. Position coordinates as functions of time for the agents in a network
with an initially incomplete communication graph. The stability constraints
are not satisfied and the contact between leaders and followers is broken at
approximately t = 0.24 (dotted line).

VI. CONCLUSIONS

In this paper we examined the leader-to-follower ratio

needed to maintain connectivity and guarantee convergence

of the whole group in leader-follower multi-agent networks

with proximity based communication topology. First we

studied the case where we had an initially complete commu-

nication graph. We obtained specific bounds on the number

of leaders that drag the team to the desired goal while the

connectedness of the interaction network is guaranteed. The

results were then extended to the incomplete graph case

where number and position of leader-follower communica-

tion links were also taken into account. The results were

supported by illustrating computer simulations.

Further research involves extending the proposed frame-

work to arbitrary dimensions, applying saturating leader goal

attraction forces, and extending the results to the general

incomplete graph case.
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