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Abstract— This paper considers a network flow control
problem where routing and input rates are controlled in a
decentralized way across a network, to optimize a global
welfare objective. We build on our recent work which
combines “dual” congestion control for the traffic sources,
with multipath routing at the router nodes, controlling the
traffic split among outgoing links based on downstream
congestion prices. The challenge is to obtain stabilization
of the optimum point; in fact, controlling the split fractions
following the price gradient has the correct equilibrium,
but can lead to oscillatory instabilities. This suggests the
use of derivative action to damp such oscillations. We study
two alternatives in this regard; either anticipatory control
of routing splits, which yields local stability in an arbitrary
network topology, or anticipatory price generation, which
yields a global result for the case of a network of parallel
links. Proofs are based on a Lyapunov argument. Results
are illustrated through simulations.

I. INTRODUCTION

Recent advances on Internet congestion control based

on microeconomic modeling [6], [10], [11], [15] have

led to the development of decentralized control laws

running at traffic sources and network links, which serve

the global objective of maximizing an overall utility.

A natural continuation of this success is to incorporate

the degree of freedom of routing inside the network

as well, to jointly carry out a “cross-layer” network

optimization. If single-path routing is used as in the IP

protocol, this combination is not easy: the underlying op-

timization problem is non-convex, and congestion-based

route control oscillates [2], [17]. In contrast, multipath

routing leads to a convex multicommodity optimization,

a better candidate to combine with congestion control.

Many proposals in this regard have sources controlling

the rate of multiple paths to destination [6], [5], [8],

[16]. A more scalable, node-centric alternative is to

have routers take charge of the multipath function, by

controlling the traffic split fractions to each destination

among their outgoing links. This idea goes back to [4],

[1] for inelastic source traffic; in that work the traffic

split is adapted to follow the gradient of an overall cost

function, interpreted as network delay. This approach

can also include “primal” flow control, as shown in [18],

which also includes power control for wireless nodes.

Other cross-layer work for wireless networks with the

node-centric view is [3], [9].
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In [12] we proposed the use of congestion prices,

generated by links and averaged recursively by nodes, as

the feedback signal on which to base the gradient control

of traffic split fractions. Primal and dual versions of

the congestion price correspond to different optimization

problems. Section II gives some background on this

setup. In terms of stability, [12] establishes it for primal

congestion control, but it does not hold in the dual case:

as we see in Section III, harmonic oscillations can appear

in these dynamics which are inherently of second order.

This recognition motivates us to include derivative action

in the control, aimed at damping these oscillations.

This paper contains stability studies of this kind of

control. One alternative is to add a price anticipatory

term in the control of traffic splits. This yields local

asymptotic stability of the equilibrium; Section IV in-

cludes the proof for a network of parallel links, the gen-

eral case is relayed to [13]. To obtain global results we

must deal with a switching nonlinearity: the projections

required to keep the vector of split fractions within the

unit simplex. For this study we obtain stronger results

with a second law, that includes the derivative term in

the price generation mechanism. We prove in Section IV

global asysmptotic stability of the welfare maximizing

equilibrium, in the network of parallel links, through

a Lyapunov argument. In Section V we supplement

the theory with Matlab simulations that illustrate the

dynamics, the above-mentioned projections, and the role

of the derivative action in stabilization. Conclusions are

given in Section VI, and some technical lemmas are

proved in the Appendix.

II. BACKGROUND

We describe here the combined framework for multi-

path routing and congestion control from [12].

A. Notation

Consider a network made up of a set of nodes N ,

denoted by indices i, j, and a set of links L between

them, denoted by l or by a directed pair of nodes (i, j).
The network supports various flows between source-

destination pairs of nodes. The index k ∈ K denotes

an individual flow or “commodity”, and s(k), d(k) are

the corresponding source and destination nodes. While

these are unique for each k, we allow the traffic to follow

multiple paths between source and destination.
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Let yk
l denote the rate (packets/sec) of flow k through

link l, and xk
i the total rate of this flow entering node i.

At the source node, we only have the external rate xk,

xk
s(k) = xk. (1)

The flow balance equations at nodes are

xk
j =

∑

(i,j)∈L

yk
(i,j), j 6= s(k), (2a)

xk
i =

∑

(i,j)∈L

yk
(i,j), i 6= d(k). (2b)

The total rate on link l is

yl =
∑

k

yk
l . (3)

B. Welfare optimization objective

We associate with each commodity k an increasing,

strictly concave utility function Uk(xk) that specifies

the flow’s demand for rate. We formulate the following

cross-layer optimization problem.

Problem 1 (WELFARE): Maximize
∑

k Uk(xk),
subject to link capacity constraints yl ≤ cl, and flow

balance constraints (1),(2),(3).

This convex program seeks the maximum achievable

utility over all flows, if traffic is allowed to follow multi-

ple, arbitrary routes between source and destination. We

study decentralized control laws at sources and routers

to solve this optimization.

C. Control variables

The source of flow k (the transport layer) controls the

total rate xk that it inputs to the network.

The router at node i controls the variable αd
(i,j), that

specifies the fraction of traffic with destination d, routed

through outgoing link (i, j). We thus impose

yk
(i,j) = α

d(k)
(i,j)x

k
i , (i, j) ∈ L. (4)

The vector αd
i := {αd

(i,j)}(i,j)∈L, of dimention Li

(number of outgoing links at i) is in the unit simplex

∆i = {αd
(i,j) ≥ 0 :

∑

(i,j)∈L

αd
(i,j) = 1}.

D. Feedback signals

The primary feedback signal is a congestion measure

or price pl for each link l ∈ L. Based on these link

prices, nodes construct a price-to-destination qd
i , i ∈ N ,

representing the average price of sending packets from

node i to destination d, under current routing patterns.

Node prices are thus defined to satisfy

qd
d = 0,

qd
i =

∑

(i,j)∈L

αd
(i,j)[p(i,j) + qd

j ], i 6= d. (5)

Given link prices p(i,j), under mild assumptions of

connectivity stated in [4], there exist unique solutions qd
i

to the above recursive equations; more details are given

in [13], which also contains a protocol that implements

this recursion. At the source node of flow k, the price

qk := q
d(k)
s(k) summarizes the congestion of the network.

E. Dual congestion control

The dual congestion control algorithm originating in

[10] is based on the link price generation mechanism

ṗl = γl[yl − cl]
+
pl

. (6)

The positive projection [wl]
+
pl

is defined to be zero if

wl < 0 and pl = 0: in this case the projection is said to

be active; otherwise, the result is wl. Also, for column

vectors w p, [w]+p is the element-wise projection.

In Section IV-C we will consider an anticipatory

variant of the dual price generation.

The source control in dual laws is static: based on the

received price qk, the source chooses the rate

xk = fk(qk) (7)

that instantaneously maximizes Uk(xk) − qkxk. Hence,

the demand curve fk is the inverse function of the

marginal utility U ′
k(xk). fk is strictly decreasing if Uk

is strictly concave.

III. ROUTING CONTROL BASED ON PRICE

GRADIENTS AND ITS INSTABILITY

To completely define the cross-layer decentralized

control law, we must specify how to control the routing

split vector αd
i := {αd

(i,j)}(i,j)∈L as a function of

πd
i := {p(i,j) + qd

j }(i,j)∈L,

the vector of prices to destination d seen from node i.
A first choice for the control of αd

i is to follow the

negative price gradient: to transfer traffic gradually from

more expensive to cheaper routes. One such law is

α̇d
i = βiEαd

i

[−πd
i ], (8)

where βi > 0 and Eαd

i

denotes a projection operation

required to keep the trajectory within the simplex ∆i. In

the special case when αd
i is interior to ∆i (αd

(i,j) > 0 ∀j)

the projection must simply enforce the balance of mass
∑

j:(i,j)∈L

α̇d
(i,j) = 0,

which means α̇d
i must be orthogonal to 1, the vector of

all ones of dimension Li. So in this case Eαd

i

is given

by the orthogonal projection matrix

E = I −
1

Li

1 · 1T , (9)

where I is the identity matrix of dimension Li.

Applying E to a vector subtracts the mean from each

component. So, for an interior αd
i , (8) is simply

α̇d
(i,j) = βi(πd

i − πd
(i,j));

this increases routing in links with lower-than-average

prices, decreases it in the rest.
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The definition of Eαd

i

for points αd
i on the simplex

boundary is postponed to Section IV-B.

Proposition 1: Consider the closed loop dynamics

defined by differential equations (6), (8), and by

relationships (4), (5), (7). At an equilibrium point, the

source rates are at an optimum of Problem 1.

The proof parallels the one in [12] for primal laws:

equilibrium prices are shown to be the Lagrange

multipliers of a dual to Problem 1. Details are given in

[13]. We now see that although the dynamics has the

correct equilibrium, it is not necessarily attractive.

Example 1: Consider a simple network with two

nodes (source and destination) and two parallel links,

of capacity c1, c2. Each link generates a price according

to (6). The traffic split can be described in this case by a

single parameter α := α1, with α2 = 1 − α. An update

that follows the negative price gradient has the form

α̇ = β(p2 − p1),

with saturation to the interval [0, 1]. The equilibrium

is x∗ = c1 + c2, α∗ = c1/x∗, with p∗1 = p∗2 = q∗

depending on the chosen utility function. To simplify

the analysis, let us temporarily replace the source by

an inelastic one with rate x ≡ x∗. Also, consider a

trajectory for which the saturation constraints on α, p1,

p2 remain inactive. Denoting δα = α−α∗, δpi = pi−p∗i ,

the dynamics becomes linear:





δα̇
δṗ1

δṗ2



 =





0 −β β
γ1x

∗ 0 0
−γ2x

∗ 0 0









δα
δp1

δp2



 . (10)

The eigenvalues of the preceding matrix are 0 and

±j
√

β(γ1 + γ2)x∗. The 0 eigenvalue is a consequence

of having introduced the inelastic source, which makes

the equilibrium price indeterminate. The purely imag-

inary mode is of more concern: it reveals a harmonic

oscillation of the price and split dynamics, that can have

as large an amplitude as the saturation constraints allow.

If the elastic source is introduced back in the problem,

the dynamics is no longer linear. Nevertheless, we

can say the following: for the important case where

γl = 1/cl (i.e., price represents queueing delay), the

linearization around equilibrium replaces the mode at

zero with a stable eigenvalue, but the imaginary modes

remain. Moreover, through a Lyapunov analysis similar

to Theorem 6 below (see Remark 1) we find that

asymptotically the source rate must converge to x∗ as

above, with dynamics of α and p approaching the one

in (10), and thus exhibiting possibly large oscillations.

Note that it does not help to make the route adaptation

“slow”: if we reduce the parameter β, the frequency of

oscillation is reduced, but the oscillations remain.

IV. ANTICIPATORY CONTROL AND ITS STABILITY

The preceding example reveals a limitation with

controlling multipath routing based on the gradient of

congestion price. The difficulty can be traced to the

second-order nature of the dynamics (10), which behaves

like a mass-spring system with no damping. How, then,

do we introduce damping in this loop? A classical idea

is to include a “derivative action” term1 in either the

price or the split equations.

A. Derivative action in routing splits and local stability

We consider first the alternative of adding the deriva-

tive term in the control of routing splits, essentially

making this control anticipate future prices (νi > 0):

α̇d
i = βiEαd

i

[−(πd
i + νiπ̇

d
i )]. (11)

Note that the equilibrium point is unchanged with re-

spect to the previous section, since the derivative terms

vanish there. Hence, an equilibrium will still solve Prob-

lem 1; the issue is the stability of this equilibrium. We

focus here on a simple case (deferring generalizations to

[13]): a network of L parallel links between a two nodes,

each connected to the single source and destination. Let

c =







c1

...

cL






, y =







y1

...

yL






, p =







p1

...

pL






, α =







α1

...

αL







be the vectors of link capacities, rates, prices and split

ratios, and q, x the scalar source variables. We have

y = xα, q = αT p, x = f(q), (12)

where f from (7) is strictly decreasing, and T denotes

transpose. The dynamics in this case are given by

α̇ = βEα[−(p + νṗ)], (13)

ṗ = Γ[y − c]+p , (14)

where Γ = diag{γl}l∈L, ν > 0. The equilibrium is

x∗ = c1 + . . . + cL = f(q∗), p∗ = q∗1,

y∗
l = cl, α∗

l =
cl

x∗
l = 1, . . . , L. (15)

We first rewrite the dynamics in incremental variables

around equilibrium, δx = x−x∗ and so on. Without loss

of generality take q∗ > 0 and small δp under which no

price saturation occurs. Then we have (exactly)

δṗ = Γ[δy] = Γ[(x − x∗)α + x∗(α − α∗)]

= Γ[δxα + x∗δα]. (16)

If α is interior to the unit simplex ∆ (which happens

locally since α∗ is interior), the projection in (13) is

simply given by the matrix E as in (9). Furthermore,

Ep∗ = 0, so we locally rewrite (13) as

δα̇ = −βE(δp + νδṗ). (17)

1We acknowledge discussions with Jeff Shamma who has recently
promoted the use of derivative action in dynamic games [14].
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Also, noting that δα ⊥ 1 and p∗ = q∗1, (12) yields

δq = αT δp + δαT p∗ = αT δp. (18)

Proposition 2: The equilibrium (15) is locally asymp-

totically stable under the dynamics (13-14), for ν > 0.

Proof: Define the Lyapunov function candidate

V ≥ 0, vanishing only at equilibrium:

V (δα, δp) =
x∗

2β
‖δα + βνEδp‖2 +

1

2
δpT Γ−1δp.

(19)

The derivative of δα +βνEδp is equal to −βEδp from

(17); therefore the first term in V has derivative

x∗(δα+βνEδp)T (−Eδp) = −x∗δαT δp−x∗βν‖Eδp‖2.

Note for the above that Eδα = δα. Now, using (16),

the derivative of the second term in V is

δpT [αδx + x∗δα] = (αT δp)δx + x∗δαT δp.

Combining both terms and using (18) yields

V̇ = −x∗βν‖Eδp‖2 + δqδx.

Now since f(q) is strictly decreasing we have

δqδx = (q − q∗)(f(q) − f(q∗)) ≤ 0,

so V decreases along trayectories.

The Lasalle principle (see [7]) implies convergence to

an invariant set where V̇ ≡ 0. This implies x ≡ x∗ and

q ≡ q∗. Also, due to the first term in V̇ we have Eδp ≡ 0
which means δp is parallel to 1, δp(t) = δq(t)1. But

since δq ≡ 0 we have δp ≡ 0. Finally, (16) implies

δα ≡ 0 so the invariant set is the equilibrium.

The previous argument extends to a local stability

result for a general network, with arbitrary topology and

multiple commodities, superimposing Lyapunov terms

similar to (19) for each node and each commodity. We

state the general result, for the proof see [13].

Theorem 3: Consider the closed loop dynamics de-

fined by the differential equations (6) and (11), together

with the static relationships (4), (5), (7), for each i, d, k
l in an arbitrary network. The equilibrium set (optimum

of Problem 1) is locally attractive, for ν > 0.

B. Projecting dynamics on the simplex

The remainder of the section focuses on global sta-

bility, for which it is essential to define the projection

Eα[v] of equations (8),(13), for points on the boundary

of ∆. Intuitively, Eα[v] must specify the direction that

follows v most closely with motion within the simplex.

Formally: for a ∈ R
L, let Ψ∆(a) := argminb∈∆|a − b|

denote the point in ∆ closest to a. Now define

Eα[v] := lim
ǫ→0+

Ψ∆(α + ǫv) − α

ǫ
. (20)

An illustration of the definition is given in Figure 1.

Since the boundary of ∆ is piecewise linear, the limit in

(20) is in fact achieved for small enough ǫ > 0, for

which α + ǫEα[v] becomes the point in the simplex

closest to α+ǫv. If α is interior to ∆, Ψ∆(α+ǫv) is for

small ǫ the orthogonal projection α+ ǫEv, hence Eα[v]
defaults to Ev. Considered globally, however, Eα[v] is

not linear in v, and discontinuous (switching) in α.

Fig. 1. Projection Eα.

This projection satisfies the following basic lemmas:

proof is given in the Appendix.

Lemma 4: For any b ∈ ∆, v ∈ R
L, the inner product

〈b − α, v − Eα[v]〉 ≤ 0. (21)

Furthermore, for b interior to ∆, equality can only hold

in (21) when Eα[v] = Ev.

Lemma 5:

‖Eα[v]‖2 ≤ 〈Eα[v], v〉 ∀α ∈ ∆, v ∈ R
L. (22)

C. Global stability with derivative action in the prices

A natural question is whether the dynamics (13-14) is

globally stabilizing. Simulation evidence indicates this is

the case. Furthermore, the Lyapunov argument based on

V in (19) is not completely local, in the sense that it can

handle exactly the nonlinearities in (12), and extended to

include the price projection in (14). So, for a trajectory

that avoids the boundary of the simplex, V is decreasing.

Unfortunately this need not occur for trajectories that

hit the boundary, and apply the projection (20). So the

global proof is still open.

We are able to give a positive result, nevertheless,

by introducing derivative action in a different way in

the problem. We will show that the following dynamics

globally stabilizes the optimum equilibrium: keep the

gradient control of routing splits,

α̇ = βEα[−p], (23)

but add an anticipative term in the price generation:

ṗ = Γ[y − c + να̇]+p . (24)

We express these in incremental variables:

δα̇ = βEα[−δp]. (25)

δṗ = Γ[δx α + x∗δα + νδα̇]+p . (26)

For (25) note that the projection Eα removes any com-

ponent in the direction of 1, in particular p∗ = q∗1.

The derivation of (26) is analogous to (16), although

here the price projection is maintained. Also note that

relationship (18) remains valid.
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Theorem 6: Under the dynamics (23-24), the equilib-

rium (15) is globally asymptotically stable, for ν > 0.

Proof: Define the Lyapunov function candidate

W ≥ 0, vanishing only at equilibrium:

W (δα, δp) =
x∗

2β
‖δα‖2 +

1

2
δpT Γ−1δp =: W1 + W2.

The first term above has derivative

Ẇ1 = x∗〈δα,Eα[−δp]〉. (27)

The derivative of the second term is bounded as follows:

Ẇ2 = δpT [δxα + x∗δα + νβEα[−δp]]+p

≤ δpT (δxα + x∗δα + νβEα[−δp])

= δpT (δxα + x∗δα) + νβ〈δp,Eα[−δp]〉

≤ δpT (δxα + x∗δα) − νβ‖Eα[−δp]‖2. (28)

The first step above uses (26). The second step follows

by noting that if a link l has an active price projection,

(δxα + x∗δα + νβEα[−δp])l ≤ 0 and pl = 0, hence

δpl ≤ 0. The last step invokes Lemma 5 with v = −δp.

Combining (27-28) and using (18) yields

Ẇ ≤ x∗〈δα, δp + Eα[−δp]〉 − νβ‖Eα[−δp]‖2 + δqδx.
(29)

Now invoke Lemma 4, with b = α∗, v = −δp, to get

〈δα, δp + Eα[−δp]〉 = 〈−(b − α),−v + Eα[v]〉

= 〈b − α, v − Eα[v]〉 ≤ 0. (30)

Also, δqδx ≤ 0 as before, so Ẇ ≤ 0 along trayectories.

Again we invoke Lasalle to claim convergence to an

invariant set where Ẇ ≡ 0. Under this condition, all

terms in (29) must be identically zero. In particular,

Eα[−δp] ≡ 0, and since f(·) is strictly decreasing,

x ≡ x∗ and q ≡ q∗. Also, since b = α∗ used in (30) is

interior to ∆, the second part of Lemma 4 implies that

Eα[−δp] ≡ E[−δp] ≡ 0.

Therefore, δp(t) is parallel to 1, δp(t) = δq(t)1, so

δp ≡ 0, since δq ≡ 0. Thus prices are identically at

equilibrium, p ≡ p∗ > 0. Finally, note from (25) that

α̇ ≡ 0, so (26) (note the projection is inactive) implies

δα ≡ 0. The invariant trajectory is at equilibrium.

Remark 1: If we set ν = 0, i.e. there is no antici-

patory term in the dynamics, the Lasalle argument still

gives global convergence to x ≡ x∗, as claimed in the

example of Section III for L = 2; however the final step

fails and we cannot claim asymptotic stability.

V. SIMULATIONS

We present some Matlab simulations to illustrate the

system dynamics, with and without the derivative action

terms. We use for this purpose a three parallel link

network, with one flow from source to destination.

We implemented an Euler discretization of (23-24)

(m is the discrete time index, [z]+ = max(z, 0)):

αm+1 = αm + βEαm
[−pm],

pm+1 = [pm + Γ(ym − c) + Γν(αm − αm−1)]
+.

Rates are controlled by x = 1
q

,which amounts to using

the utility function U(x) = log(x). We fix parameters

c = 1, Γ = 7.5.10−4I , β = 0.02. The equilibrium is

x∗ = 3, α∗ = 1
31, p∗ = q∗1 = 1

31. (31)

For the first simulation we set ν = 0. Figure 2

shows a trajectory of α in the 3-dimensional simplex

∆, and at each point we indicate the projected price

vector −Ep. At the beginning the trajectory hits the

α1 = 0 boundary of the simplex, and the projection

Eα acts to keep it within ∆. It spends some time on the

boundary, reaching the vertex (0, 0, 1), later returning,

and temporarily hitting the boundary α3 = 0. Eventually

the trajectory settles into a limit cycle in the interior of

∆, similar to the earlier example with two links. Despite

this oscillation in α, the source rate x and price q, shown

in Figure 3, converge as predicted by the theory.
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Fig. 2. α’s trajectory and negative price gradient, ν = 0.
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Fig. 3. Source rate x (top) and price q (bottom), case ν = 0.

We now include the derivative term in the price

dynamics by setting ν = 50. We observe in Figure 4

how this damps the α trajectory until it converges to

α∗. Notice how the projection −Ep is going to zero,

implying prices are aligning with 1⊥∆. Finally, source

rate x and source price q (not shown) still converge

as in the previous simulation. Thus, equilibrium (31)

is reached.

As a final remark, we note that qualitatively similar

results are found with the control laws of Section IV-A,

despite the lack of a global theorem for that case.
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Fig. 4. α’s trajectory and negative price gradient, ν = 50

VI. CONCLUSIONS AND FUTURE WORK

The global stability of both primal and dual conges-

tion control for fixed routing has been known for some

time. We have studied its combination with controlled

multipath routing. While adapting the traffic splits α
based on the price gradient is stabilizing when com-

bined with primal congestion control [12], in the dual

case the dynamics can be oscillatory. We have studied

stabilization based on derivative action in the control.

Two alternative places to add the anticipative term

are the control of routing splits, or the link price control.

Both give local asymptotic stability around the optimum,

but only for the latter have we obtained a global result,

in a simple topology. Global stability for the alternative

of Section IV-A, which has the most general local results

and is the most attractive for implementation in a large

network (see [13]), remains open for future research.

APPENDIX: PROOF OF LEMMAS

A. Proof of Lemma 4

We use the following property of the approximation

operation Ψ∆ (see [14] and references therein, and the

illustration in Figure 5):

〈b − Ψ∆(a), a − Ψ∆(a)〉 ≤ 0 ∀b ∈ ∆, a ∈ R
L. (32)

Fig. 5. Property of approximation Ψ∆.

Apply it to a = α + ǫv, and any b ∈ ∆, and divide

the second term by ǫ > 0 preserving inequality. Then,
〈

b − Ψ∆(α + ǫv),
α + ǫv − Ψ∆(α + ǫv)

ǫ

〉

≤ 0.

Taking limit with ǫ → 0+, the first term converges to

b − Ψ∆(α) = b − α, and the second to v − Eα[v] from

(20). So we have (21).

For the second part, note that for fixed v, α, the inner

product in (21) is affine in b. Assume it is zero at a point

interior to the simplex: for the inequality to hold in a

neighborhood of this point requires that it be identically

zero in b ∈ ∆ (otherwise, it would change sign in the

neighborhood). But then the vector v − Eα[v] must be

orthogonal to the plane of the simplex, so Ev = Eα[v].

B. Proof of Lemma 5

Apply (32) to a = α + ǫv, b = α, and divide both

terms by ǫ > 0 (preserving inequality) to get
〈

α − Ψ∆(α + ǫv)

ǫ
,
α + ǫv − Ψ∆(α + ǫv)

ǫ

〉

≤ 0.

Taking limit with ǫ → 0+ and using (20) yields

〈−Eα[v], v − Eα[v]〉 ≤ 0,

which implies (22).
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