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Abstract— The Kullback-Leibler pseudo-distance, or diver-
gence, can be used as a criterion for spectral approximation.
Unfortunately this criterion is not convex over the most general
classes of rational spectra. In this work it will be shown
that divergence minimization is equivalent to a costrained
entropy minimization problem, whose concave structure can
be exploited in order to guarantee global convergence in the
most general case.

I. INTRODUCTION

Divergence-based spectral approximation has deep con-
nections with some of the most important estimators of
ARMA spectral parameters. In fact it can be shown under
mild conditions, that minima with respect to divergence tend
to maximum-likelihood solutions as the data length grows
to infinity. Furthermore prediction error and divergence are
indeed equivalent criterions up to a normalization factor [1].
Althought divergence and prediction error can be shown to
be convex criterions over some restricted classes of spectra,
in general they are not. Therefore convergence to a global
minimum can not, in general, be guaranteed.

The purpose of this work is to address the global con-
vergence problem when the minimization is performed over
the most general classes of ARMA spectra. In order to do
so it will be shown that divergence minimization is equiva-
lent to a costrained, minimum entropy problem of special
structure, namely concave minimization [5]. Concavity is
not a property as desiderable as convexity, in fact it can
be shown that even simple concave problems are NP-hard,
but it provides nonetheless useful properties. Many different
algorithms exists in the literature that are tailored to solve
concave problems. Ultimately it has been shown that these
methods indeed converge to a global minimum [6].

The paper is outlined as follows. In section II the Spectral
Approximation through Divergence is presented with particu-
lar focus on the parameterization of the chosen class of spec-
tra to be considered. In section III an equivalent optimization
problem with a concave structure will be introduced.

II. SPECTRAL APPROXIMATION

Given a spectral density Φ, spectral approximation
amounts to finding a simpler spectral density Ψ that is close
enough to the original one. Here the concepts of closeness
and simplicity have to be given a precise meaning.
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Department of Mathematics, Royal Institute of Technology, SE-100 44
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A. Parameterization of Rational Spectra of Limited Degree
One very important class of spectral densities to be

considered is the one of rational spectra that corresponds to
purely non deterministic processes (p.n.d). Within this class
a common notion of complexity is the MacMillan degree.
Therefore one may want to search for the approximation in
the class of spectra of degree no greater than a selected n,
a class that will be denoted by Fn.

A way to better handle the set Fn is to parameterize it
– i.e find a surjective map h : X → Fn, such that X is a
convex set. In the following discussion two different such
parameterizations will be introduced that have additional
properties.

Let Ψ ∈ Fn, and W be any of its minimum-phase spectral
factors. Since Ψ is a spectrum of a p.n.d process, W is
analytic outside the open unit disc and can be expressed as

W (z) =
M(z)

a(z)
=

M0z
n + M1z

n−1 + . . . Mn

a0zn + a1zn−1 + . . . an

where ak ∈ R, Mk ∈ Rm×m and a(z) has no zeros in the
unit circle D.

Therefore, for any Ψ ∈ Fn, there exist Mk and qk such
that

Ψ(z) =
M(z)M(z−1)T

q(z)
, Ψ̌z(M,q), (1)

where

q(z) = a(z)a(z−1) =

n
∑

k=0

qk
zk + z−k

2
(2)

is strictly positive on the unit circle, q = [q0, q1 . . . qn]T

and M is a compact notation for the collection of Mk, k =
1 . . . n.

Equation (1) defines a map Ψ̌ : Sn → Fn, where

Sn , {M,q : q(z) > 0, ∀z ∈ D} ,

sending (M,q) to the corresponding spectral density. Here
Sn is a convex set while Ψ̌ is clearly surjective.

PROPOSITION 2.1: For every fixed z ∈ D the map Ψ̌z

defined in (1) is a function Sn → Sm, where Sm is the set of
symmetric matrices of size m, and is matrix convex on Sn.

Proof: The first statement follows directly from the fact
(1) maps onto Fn and every spectrum therein will have no
poles on the unit circle.

As can be seen in the appendix, Ψ̌z is matrix convex if
and only if, for any v ∈ Rm, vT Ψ̌zv is convex. We have
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vT Ψ̌zv =

[

M(z)†v
]† [

M(z)†v
]

q(z)
=

m
∑

j=0

∣

∣

∣

[

M(z)†v
]

j

∣

∣

∣

2

q(z)

=

m
∑

j=0











{

Re
[

M(z)†v
]

j

}2

q(z)
+

{

Im
[

M(z)†v
]

j

}2

q(z)











where A† indicates the Hermitian of A. But
[

M(z)†v
]

j
=

n
∑

k=0

[

MT
k v

]

j
z−(n−k)

so
Re

[

M(z)†v
]

j
=

n
∑

k=0

[

MT
k v

]

j
Re[z−(n−k)]

and

Im
[

M(z)†v
]

j
=

n
∑

k=0

[

MT
k v

]

j
Im[z−(n−k)],

in addition to q(z), are linear function of the parameters.
It suffice now to note that f(x, y) = x2

y is convex in
R × R++ as

∇2f(x, y) =
2

y3

[

y

−x

] [

y

−x

]T

≥ 0

and, for every j
{

Re
[

M(z)†v
]

j

}2

q(z)
= f ◦ I

j
Re(M,q),

{

Im
[

M(z)†v
]

j

}2

q(z)
= f ◦ I

j
Im(M,q)

where I
j
Re and I

j
Im are maps of obvious definition and, as

noted above, also linear. Furthermore q(z) > 0 on the unit
circle so both I

j
Re and I

j
Im map Sn onto R × R++. This

assures each composite function is convex on Sn for every
z ∈ D, as long as their sum: vT Ψ̌zv.

�

The importance of matrix convexity of a parameterization
is that it may be used along with composition rules to
eventually prove the convexity of an approximating criterion.

On the other hand it may happen that matrix concavity is
a much more desiderable property for the parameterization
of Fn.

Similarly to Ψ̌, let us introduce the map

Ψ̂z(c,B,q) , cI −
B(z)B(z−1)T

q(z)
, (3)

where q(z) can be written as (2) and

B(z) = B0z
n + B1z

n−1 + . . . Bn. (4)

Similarly as above, B is a compact notation for the collection
of Bk ∈ Rm×m. Consider its restriction to the set

Hn , {c,B,q : q(z) > 0, Ψz > 0, ∀z ∈ D} (5)

that is therefore mapped by (3) onto Fn.
PROPOSITION 2.2: The set Hn defined in (5) is convex.

Furthermore, for every fixed z ∈ D, the map Ψ̂z defined in
(3) is a function Hn → Sn and it is matrix concave on Hn.

Proof: Consider

Ψ̂z(c,B,q) = cI − Ψ̌z(B,q)

as a function on the convex domain R×Sn. From Proposition
2.1 follows that Ψ̂z takes values on Sm for every z ∈ D and
is matrix concave on R × Sn.

As Hn ⊂ R × Sn the proposition follows.
�

For (3) to be a parameterization it remains to show the
following

PROPOSITION 2.3: The map Ψ̂ : Hn → Fn defined in
(3) is surjective.

Proof: Any Ψ ∈ Fn can be factorized as

Ψ =
M(z)M(z−1)T

a(z)a(z−1)

where M(z) and a(z) are polynomials of order not greater
than n. Furthermore a(z)a(z−1) is positive on D for every
spectrum in Fn so q can be chosen such that q(z) =
a(z)a(z−1). Additionally it is also a pseudopolynomial of
order not greater than n. Furthermore, as q(z) > 0 on the
unit circle, one can always choose a c big enough such that

cq(z)I − M(z)M(z−1)T ≥ 0 (6)

on D and, as (6) is a pseudopolynomial matrix of order not
greater than n, it can be factorized by a polynomial matrix
B(z) of the form (4) of the same order. So

cq(z)I − M(z)M(z−1)T = B(z)B(z−1)T

and it follows directly that with such (c,B,q) ∈ Hn we
have

Ψ =
M(z)M(z−1)T

a(z)a(z−1)
= cI−

B(z)B(z−1)T

q(z)
= Ψ̂z(c,B,q).

�

B. Spectral Approximation With Divergence
The concept of closeness usually is defined by the choice

of a suitable (pseudo) distance between spectra as it will be
done in the following discussion.

DEFINITION 2.1: Let x1 and x2 random variables on
Rm with probability densities p1 and p2 respectively. The
Kullback-Leibler divergence of x2 from x1 is

D(x1||x2) =

∫

Rn

p1(v) log
p1(v)

p2(v)
dv (7)

�

The Kullback-Leibler divergence can be seen as a pseudo-
distance between random variables as D(x1||x2) ≥ 0 where
the equality holds if and only if p1 = p2 almost everywhere.
It is worth noting it is not a distance as it does not satisfy
the triangle inequality, hence the use of the term divergence.
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One can generalize the divergence of random variables to
infer a corresponding concept for random processes as in the
following.

DEFINITION 2.2: Let x and y be discrete-time, jointly
stationary processes on R

m. The Kullback-Leibler diver-
gence rate of y from x is

D(x||y) = lim sup
N→∞

1

N
D(xN ||yN) (8)

where xN and yN are any windows of lenght N of x and y

respectively.
�

The divergence rate is a widely used and accepted tool to
infer how ’close’ a random process is from another.

Furthermore, in the case of Gaussian processes, Stoorvogel
and van Shuppen in [3] proved the following

THEOREM 2.1: Let x and y be discrete-time, jointly
stationary Gaussian processes with zero mean. Assume they
admit spectral densities Φ and Ψ respectively, then

D(x||y) =
1

2

∫ π

−π

{tr[(Φ − Ψ)Ψ−1] − log det(ΦΨ−1)}
dθ

2π
(9)

where, in the integral, Φ and Ψ are evaluated at z = eiθ.
�

Therefore the divergence rate can be used as a criterion
for approximating a given spectrum Φ, that is assumed to be
strictly positive, by a minimization with respect to Ψ over a
suitable set of ’simple’ spectra such as Fn.

For compactness of notation it is better to consider the
functional

JΦ(Ψ) =

∫ π

−π

{tr(ΦΨ−1) + log det Ψ}
dθ

2π
(10)

and, as

D(x||y) =
1

2
JΦ(Ψ) −

1

2
m −

1

2

∫ π

−π

log det(Φ)
dθ

2π
(11)

minimizing (10) is equivalent to minimizing (9).
It is worth noting that (10) can be reformulated as a convex

functional. It suffice to consider it as a functional with respect
to Q = Ψ−1

J̃(Q) = JΦ(Q−1) =

∫ π

−π

{tr(ΦQ) − log det Q}
dθ

2π

and it is easy to see that it is the sum of two convex
functionals. The two problems are equivalent as we are
considering only spectra of p.n.d processes so that they are
always invertible. This approach was followed in [2] and
was combined with a linear parameterization that would
lead to a convex problem. Unfortunately the model class
Fn presented above can not be mapped completely by such
linear parameterization, since the zeros are fixed by the
choice of a finite number of basis functions.

To sum it up, convexity, the most desiderable property,
can not be achieved without sacrifying the generality of the
model class.

III. CONCAVE SPECTRAL APPROXIMATION
The next step is to introduce an equivalent optimization

problem that, while keeping the desired generality on the
model class, will manifest an exploitable structure in com-
bination with the parameterization (3).
A. An Equivalent Optimization Problem

Let X be a class of spectral functions C → Sm that are
strictly positive definite on the unit circle. Suppose also that
X is closed with respect to the outer product with a positive
real number – i.e if Ψ ∈ X then αΨ ∈ X for all α > 0. The
following holds

PROPOSITION 3.4: Let Ψ∗ ∈ X be any optimum of the
problem

min
Ψ∈X

∫ π

−π

tr
[

Φ(eiθ)Ψ−1(eiθ)
]

+ log det Ψ(eiθ)
dθ

2π
(12)

then
∫ π

−π

tr
{

Φ(eiθ)
[

Ψ∗(eiθ)
]−1

} dθ

2π
= m. (13)

Proof: Suppose the optimum Ψ∗ does not satisfy the
condition (13)

∫ π

−π

tr[Φ(Ψ∗)−1]
dθ

2π
6= m.

Consider the objective function of (12) evaluated at α−1Ψ∗

for α > 0

J(α) = JΦ(α−1Ψ∗) (14)

=

∫ π

−π

{tr[Φ(α−1Ψ∗)−1] + log det(α−1Ψ∗)}
dθ

2π

= α

∫ π

−π

tr[Φ(Ψ∗)−1]
dθ

2π
− m log α + const

The function (14) is strictly convex in R++ and as such,
if it admits a stationary point α∗, α∗ is its unique global
minimum. In this case one obtains

0 =
dJ

dα

∣

∣

∣

∣

α=α∗
=

∫ π

−π

tr[Φ(Ψ∗)−1]
dθ

2π
− m(α∗)−1

so α∗ such that

α∗

∫ π

−π

tr[Φ(Ψ∗)−1]
dθ

2π
= m

is the unique global minimum of (14).
It follows that α∗ 6= 1 and as such, by the strict convexity

of (14), J(α∗) < J(1) i.e

JΦ((α∗)−1Ψ∗) < JΦ(Ψ∗).

Finally, by assumtion on X , (α∗)−1Ψ∗ ∈ X hence Ψ∗ can’t
be an optimum of (12).

�

A direct consequence of Proposition 3.4 is that the prob-
lem (12) is equivalent to

min
Ψ∈X

∫ π

−π

log det Ψ(eiθ)
dθ

2π

s.t

∫ π

−π

tr
[

Φ(eiθ)Ψ−1(eiθ)
] dθ

2π
= m

(15)
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With similar arguments of proposition (3.4) one can prove
the following

PROPOSITION 3.5: Let Ψ∗ ∈ X be any optimum of the
problem

min
Ψ∈X

∫ π

−π

log det Ψ(eiθ)
dθ

2π

s.t

∫ π

−π

tr
[

Φ(eiθ)Ψ−1(eiθ)
] dθ

2π
≤ m

(16)

then
∫ π

−π

tr
{

Φ(eiθ)
[

Ψ∗(eiθ)
]−1

} dθ

2π
= m. (17)

Proof: Let us proceed analogously to the proof of (3.4)
and suppose the optimum Ψ∗ does not satisfy (17),in this
case we have

∫ π

−π

tr
[

Φ(Ψ∗)−1
] dθ

2π
< m

Furthermore, let us consider the scalar optimization prob-
lem derived from (16) by the composition with Ψ(α) =
α−1Ψ∗ for α ∈ R++:

min
R++

∫ π

−π

log det α−1Ψ∗ dθ

2π

s.t

∫ π

−π

tr
[

Φ(α−1Ψ∗)−1
] dθ

2π
≤ m

that becomes
min
R++

−m log α + const = J(α)

s.t α

∫ π

−π

tr
[

Φ(Ψ∗)−1
] dθ

2π
≤ m

(18)

As the objective function of (18) is strictly decreasing in
α and

∫ π

−π

tr
[

Φ(Ψ∗)−1
] dθ

2π
> 0,

the optimum α∗ will be such that

α∗

∫ π

−π

[

Φ(Ψ∗)−1
] dθ

2π
= m.

Thus α∗ > 1, J(α∗) < J(1) and, as (α∗)−1Ψ∗ ∈ X , Ψ∗

can’t be an optimum of (16).
�

Proposition 3.4 and 3.5 combined show that the problems
(12) and (16) are equivalent i.e they have the same optima
if any. In other words, divergence minimization is equivalent
to entropy minimization under a normalization constraint.

Moreover one can find a lower bound for both problems.
By the non-negativeness of the Divergence rate and from
(11) follows

JΦ(Ψ) ≥ m +

∫ π

−π

log det Φ
dθ

2π
(19)

for every Ψ ∈ X . The bound holds also for any optimum
Ψ∗ of (12) and using Proposition 3.4 we obtain

∫ π

−π

log det Ψ∗ dθ

2π
≥

∫ π

−π

log det Φ
dθ

2π

but, by the equivalence of the two problems, Ψ∗ is a global
minimum for both. Therefore for every feasible Ψ of (16)
the following lower bound also holds

∫ π

−π

log det Ψ
dθ

2π
≥

∫ π

−π

log det Φ
dθ

2π
.

Thus the normalization costraint bounds the entropy of the
solution being greater than the one of the target spectrum.

B. A Concave Formulation
Finallly the parameterization (3) can be applied with the

equivalent formulation (16) in order to show the concave
nature of the problem at hand.

PROPOSITION 3.6: The following problem, where Ψ̂ and
Hn are defined in (3) and (5) respectively

min
Hn

∫ π

−π

log det Ψ̂eiθ (c,B,q)
dθ

2π

s.t

∫ π

−π

tr
[

Φ(eiθ)Ψ̂eiθ (c,B,q)−1
] dθ

2π
≤ m

(20)

is a concave optimization problem, i.e the problem of mini-
mizing a concave function over a convex set.

Proof: The extended-value extensions of g1(X) =
− log det(X) is matrix non-increasing (see Appendix) also,
for any X ∈ Sm

++ and Y ∈ Sm,

∂2

∂t2
{− log det(X + tY )}

∣

∣

∣

∣

t=0

= tr
[

Y X−1Y X−1
]

= tr
[

Z2
]

≥ 0

where Z = Y X−1 so g1 is also convex on S
m
++. By the

composition rules in the Appendix and the Proposition 2.2
the function − log det Ψ̂z is convex for any z ∈ D. The
integration preserves convexity.

Similarly, the extended-value extensions of g2(A, X) =
tr[AX−1] for any A � 0 is matrix non-increasing with
respect to X and, for any X ∈ Sm

++ and Y ∈ Sm,

∂2

∂t2
tr[A(X + tY )−1]

∣

∣

∣

∣

t=0

= tr
[

AX−1Y X−1Y X−1
]

= tr
[

AX−1Z2
]

≥ 0

where Z is as above so g2 is convex with respect to X on
Sm

++. Finally, by the composition rules in the Appendix and
the Proposition 2.2, the function tr[Φ(z)Ψ̂−1

z ] is convex for
any z ∈ D and the integral is still convex.

�

The concave structure of the problem can be exploited in
branch-and-bound techniques in defining efficient bounding
procedures. An outline of such an algorithm is given in
the Appendix. It must be stressed that such an algorithm
is guaranteed to converge to a global optimum.

IV. CLOSING REMARKS
In this paper a possible method for solving divergence-

based spectral approximation problems in the most general
model class was introduced. It is based on the solution of an
equivalent, concave, minimum entropy problem. Furthermore
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several algorithms exists in the literature that are guaranteed
to converge to a global optimum.

At this point the main contribution of this work is the-
oretical insight, namely understanding the structure of the
problem. Unfortunately, to the author knowledge, there does
not exist any concave minimization software available in
the public domain. Thus the proposed method’s performance
remains to be verified in practice.

APPENDIX

A. Matrix Monotonicity
Let us consider the set of symmetric matrices Sm ⊂

Rm×m and let Sm
+ , Sm

++ ⊂ Sm be the sets of positive
semidefinite and positive definite matrices respectively.

The set Sm
+ is a proper cone and let � be its associated

generalized inequality - i.e for X, Y ∈ S
m, X � Y iff Y −

X ∈ Sm
+ .

A function g : dom(g) → R where dom(g) ⊆ Sm is
called matrix non-decreasing if for any X, Y ∈ dom(g)

X � Y =⇒ g(X) ≤ g(Y )

and matrix increasing if

X � Y, X 6= Y =⇒ g(X) < g(Y ).

Similarly one can define matrix non-increasing and matrix
decreasing functions.

Two examples will now be presented that are instrumental
to the proof of Proposition 3.6

EXAMPLE 1: The function tr(X−1) is matrix non-
increasing on Sm

++. In fact for any X, Y ∈ Sm
++ such that

X � Y , they admit inverse and Y −1 � X−1 i.e there exists
a Z ∈ Sm

+ such that X−1 = Y −1 − Z so

tr(X−1) = tr(Y −1 − Z) = tr(Y −1) − tr(Z) ≤ tr(Y −1).

The same can be shown for the function tr(AX−1) for any
A � 0.

�

EXAMPLE 2: The function log det X is matrix non-
decreasing on Sm

++. In fact for any X, Y ∈ Sm
++ such that

X � Y , there exists a Z ∈ Sm
+ such that X = Y + Z, and

hence

log det X = log det(Y + Z)

= log det
[

Y 1/2
(

I + Y −1/2ZY −1/2
)

Y 1/2
]

= log det Y + log det
(

I + Y −1/2ZY −1/2
)

= log det Y +
∑

log(1 + λi),

where λi are the eigenvalues of Y −1/2ZY −1/2, and as this
matrix is positive semidefinite, λi ≥ 0 and

log det X ≥ log det Y.

Of course the function − log det X is matrix non-
increasing on Sm

++.
�

B. Matrix Convexity
Let us consider the function h : X → Sm where X ⊆ Rp

is a convex set. h is said to be matrix convex if

h(θx + (1 − θ)y) � θh(x) + (1 − θ)h(y)

for any x, y ∈ X and θ ∈ [0, 1]. Furthermore it is said to be
strictly matrix convex if

h(θx + (1 − θ)y) ≺ θh(x) + (1 − θ)h(y)

for any x, y ∈ X , x 6= y and θ ∈ (0, 1). Similarly the
function h is said to be (strictly) matrix concave if −h is
(strictly) matrix convex.

It can be shown that the function h as above is (strictly)
matrix convex/concave iff for any non-zero v ∈ Rm the
scalar function vT h(x)v is (strictly) convex/concave.

C. Composition Rules
Let’s define the extended-value extension g̃ of the real-

valued function g as:

g̃(x) =

{

g(x) if x ∈ dom(g)
+∞ otherwise

that is defined in the whole Rp.
It can be shown that g̃ is matrix non-increasing if g is and

dom(g) = dom(g) + Sm
+ . In fact for any X, Y ∈ Sm such

that X � Y if X, Y ∈ dom(g)

g̃(X) = g(X) ≤ g(Y ) = g̃(Y ).

On the other hand, either Y 6∈ dom(g) and g̃(X) ≤ +∞ =
g̃(Y ), or X 6∈ dom(g). In the latter case X = Y + Z with
Z � 0 so Y 6∈ dom(g) otherwise X ∈ dom(g) too as
dom(g) = dom(g) + Sm

+ .
Also the converse is true. Obviously if g̃ is matrix non-

increasing so is g. Furthermore for any Y ∈ dom(g) and
Z � 0, X = Y + Z � Y thus g̃(X) ≤ g̃(Y ). Here
X ∈ dom(g), otherwise g̃(X) = +∞ but this would
imply g̃(Y ) = +∞ also and Y 6∈ dom(g). So dom(g) =
dom(g)+Sm

+ . In a similar way one can show that g̃ is matrix
non-decreasing iff g is and dom(g) = dom(g) − Sm

+ .
EXAMPLE 3: Both − log det X and tr(X−1) are matrix

non-increasing on their domain Sm
++. Also Sm

+++Sm
+ = Sm

++

so their extended-value extensions that are non-increasing.
The same holds for tr(AX−1) for every A � 0.

�

Given the functions g : dom(g) → R and h : X → Sm

the composite function f = g ◦ h whose domain is defined
as

dom(f) = {x ∈ X : h(x) ∈ dom(g)}

has the following properties:
• if g is convex, g̃ is matrix non-decreasing and h is

matrix convex =⇒ f is convex
• if g is convex, g̃ is matrix non-increasing and h is matrix

concave =⇒ f is convex
• if g is concave, g̃ is matrix non-decreasing and h is

matrix concave =⇒ f is concave

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB04.2

736



• if g is concave, g̃ is matrix non-increasing and h is
matrix convex =⇒ f is concave

A short proof will be given to the second rule, the one used
in Proposition 3.6. The first step is to prove that dom(f)
is convex, for doing so consider x, y ∈ dom(f) and θ ∈
[0, 1]. As x, y ∈ dom(h) and h(x), h(y) ∈ dom(g) then,
by convexity, θh(x)+(1−θ)h(y) ∈ dom(g). Also by matrix
concavity of h

h(θx + (1 − θ)y) � θh(x) + (1 − θ)h(y)

so, for some Z � 0

h(θx + (1 − θ)y) = θh(x) + (1 − θ)h(y) + Z

thus h(θx + (1 − θ)y) ∈ dom(g) and therefore dom(f) is
convex as stated.

Now, as g̃ is matrix non-increasing

g(h(θx + (1 − θ)y)) ≤ g(θh(x) + (1 − θ)h(y))

and by convexity of g

g(θh(x) + (1 − θ)h(y)) ≤ θg(h(x)) + (1 − θ)g(h(y)).

The last two inequalities combined show the convexity of
f = g ◦ h on its domain.

D. Overview of a Concave Minimization Algorithm
A concave minimization problem can be introduced in the

following way
inf
x∈D

f(x) (21)

where D ⊂ Rn is a closed, convex set with non-empty
interior and f(.) is a concave funcion over D. It will be
assumed that the origin belongs to the interior of D - i.e ∀i :
gi(O) < 0, this can always be guaranteed by an appropriate
translation. An overview of the algorithm presented in [7]
will now be presented.

At iteration k of the algorithm we assume to have at
our disposal Mk, a collection of convex polyhedral cones
vertexed at O and having n edges whose union is guaranteed
to contain an optimum. Each cone M ∈ Mk is generated
by n vectors sM

i ∈ Rn. In addition, we assume a lower
bound µ(M) = inf {f(x) : x ∈ D ∩ M} is known for each
cone. Finally we have xk the candidate optimal point and its
corresponding objective value γk = f(xk).

At iteration k = 0 the algorithm is initialized as follows.
Let M0 be any collection of cones whose union contains the
feasible set D. For each of these cones the lower bound is
calculated by a bounding rule to be specified. The candidate
point x0 and its corresponding value γ0 is choosen through
the following minimization

inf
{

f(x) : x = αsM
i ∈ D, α ≥ 0, M ∈ M0, i = 1, . . . n

}

.

At iteration k the algorithm proceeds as follows. Let

Rk = {M ∈ Mk : µ(M) < γk} (22)

If Rk = ∅ the algorithm ends as xk is an optimal solution.
Otherwise select by a selection rule to be specified a cone

M̄ ∈ Rk and split it by a splitting rule to be specified into

two cones M̄1, M̄2. Additionally compute the lower bounds,
µ(M̄1) and µ(M̄2) respectively, by the same bounding rule
as above. Finally select the new candidate xk+1 point and
its corresponding value by comparing the current to

x̄ = arg inf
{

f(x) : x = αs
M̄j

i ∈ D, α ≥ 0, j = 1, 2
}

(23)

Set γk+1 = f(xk+1), Mk+1 = (Rk \ {M̄}) ∪ {M̄1, M̄2}.
Compute next iteration k + 1.

The above described algorithm can either terminate after
finitely many steps or continue indefinitely. In the latter case,
convergence of the above algorithm depends on the choice
of the individual rules, for selecting, splitting and bounding
cones. In order to guarantee convergence we need to require
certain properties from these rules, namely

THEOREM D.1: Whenever the algorithm generates an
infinite number of steps and if the following conditions hold

• The selection rule is ultimately complete, i.e

inf







f(x) : x ∈ D
⋂





∞
⋃

p=1

∞
⋂

k=p

Rk











≥ γ∗ (24)

as γ∗ = limk→∞ γk.
• The splitting rule is exhaustive, i.e for any infinite de-

creasing sequence of cones generated by the algorithm,
its intersection is an half-line.

• The bounding rule is consistent, i.e

lim
h→∞

[µ(Mh) − γkh
] = 0. (25)

for any infinite decreasing sequence of cones Mh ∈
Rkh

whose intersection is a half-line non entirely
contained in D.

then as k → ∞

f(xk) = γk ↘ inf{f(x) : x ∈ D}. (26)

�

The proof of the theorem can be found in [7] along some
simple choices of rules that satisfy (D.1).
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