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Abstract— This is a semi-tutorial paper that places Witsen-
hausen’s celebrated 1968 counterexample within a broad class
of dynamic decision problems with nonclassical information,
which includes stochastic linear-quadratic Gaussian (LQG)
teams as well as LQG zero-sum stochastic games. For a
fixed (nonclassical) information structure, there are instances
(depending on the structure of the objective function) when
linear policies are optimal and other instances (including
Witsenhausen’s counterexample) when the optimal policies
are nonlinear. The paper discusses these instances, optimality
as well as saddle-point property (in the case of zero-sum
games) of linear policies, and implications of these results for
general multi-stage decision problems with specific information
structures. It also discusses possible extensions to nonzero-sum
stochastic dynamic games where the solution concept is Nash
equilibrium.

I. INTRODUCTION

Since the work of Feldbaum [15] and his contemporaries,
it has been recognized that in stochastic optimum control
problems control generally has a dual role. One of these is
the “action” role, which is what one would have in determin-
istic optimum control, where the controller tries to move the
system state toward a desired target value while optimizing a
given performance index. The second role is the probing one,
where the controller, recognizing that use of “higher quality”
information will generally lead to better performance, will
attempt to shape the signals carried to future stages in
such a way that the information content of the measurement
received by the controller at future stages will be enhanced.
This probing role of control is in general conflicting with its
action role, and hence an optimal (stochastic) controller is
one that achieves an “optimal tradeoff” between these two
apparently conflicting objectives.

Stochastic optimum control problems which do not exhibit
a “dual” role for control are known as neutral problems,
where the conditional probability distribution of the state
vector given past and present measurements, past control
actions, and past control laws (or policies) is independent
of the control laws [23]. The main implication of this
property is that the “quality” of the information carried to
future stages cannot be affected by the choice of the control
policies in the past, thus allowing for a two step derivation
of the optimum controller: First determine the conditional
probability distribution (cpd) of the state, and express the
expected cost in terms of this quantity and the control
(yet to be determined), and subsequently minimize the new
expected cost function over all control laws as functions of
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the cpd, which provides sufficient statistics for the stochastic
control problem. This property of neutral stochastic control
problems is known as the separation of estimation and
control (or loosely referred to as the separation principle).
The standard Linear-Quadratic-Gaussian (LQG) problem is a
prime example of a neutral stochastic control problem where
in fact an even stronger version of the separation principle
applies, where the minimization-relevant part of the expected
cost as a function of the cdp depends only on the conditional
mean. Hence, in this case, the minimization problem faced
by the controller is identical to the one where all random
quantities are replaced by their mean values, which justifies
the coining of the word certainty equivalence.

If a stochastic control problem is not neutral, then the
dual role of control becomes dominant. Such problem for-
mulations arise in various contexts, such as when control
has limited or no memory, when system dynamics depend on
some parameters which are correlated across stages (a setting
that arises in, for instance, stochastic adaptive control), or
stochastic teams where different control stations have access
to different but correlated measurement channels. The well-
known counterexample of Witsenhausen [22] provides per-
haps the simplest model (two-stage, scalar, LQG, but memo-
ryless controller) that depicts eloquently the conflicting role
of the control at the first stage, between “action now” and
“maximum information transmission” to the next stage for
the benefit of “action then.” Even though explicit solutions to
some nonneutral stochastic control and team problems have
been obtained in the past (see, for instance, [17], [9]), a
general theory is still lacking on this 40th anniversary of the
appearance of Witsenhausen’s Counterexample.

This paper uses this occasion to review some existing
results on problems which can be viewed as belonging to
a neighborhood of the Witsenhausen counterexample, with
some of these problems being tractable while others not.

II. TWO-STAGE LQG PROBLEMS WITH NONCLASSICAL
INFORMATION

Consider the following two-stage stochastic control or
equivalently two-agent dynamic stochastic team problem,
where all quantities are scalar:

A Gaussian random variable, x, with mean zero and vari-
ance σ2

x is to be transformed into another random variable,
u0 = γ0(x), which is transmitted over a Gaussian channel,
y = u0 + w, with zero-mean additive Gaussian noise w
of variance σ2

w, the output, y, of which is to be further
transformed into another random variable, u1 = γ1(y). The
objective is to choose the transformations γ0 and γ1 in such
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a way that a performance index, Q(x, u0, u1), quadratic in
x, u0, and u1, is minimized in the average sense. That is,
we seek the pair γ∗ := (γ∗0 , γ

∗
1) such that

J(γ∗) = min
γ
J(γ) =: J∗ (1)

where
J(γ) = E [Q(x, γ0(x), γ1(y))] (2)

with expectation, E[·], taken over the statistics of x and
w, which are assumed to be independent. Furthermore, the
minimization is over the space of all Borel-measurable maps,
that is both policies (decision rules) γ0 and γ1 are taken to
be Borel-measurable maps of the real line onto itself.

This is a stochastic decision problem with nonclassical
information, because the information to be used by the
decision rule, γ1, of the second agent depends on the action,
u0, of the first agent (and thereby on the decision rule of
the first agent), but the second agent does not have access to
the information of the first agent (that is, x). If we view
it as a single-agent problem where the agent acts twice,
then it is one where the agent is memoryless, that is it
does not remember what it had observed at the earlier stage.
As such, these problems belong to the realm of inherently
difficult decision problems for which a systematic solution
process does not exist, one of the main reasons being that
due to loss in memory, a sequential decomposition is not
possible [23], [24]. We now consider different instances of
this class of problems, corresponding to different choices
of the performance index Q, some of which admit explicit,
relatively simpler solutions while some others do not. Hence
the message will be that it is not only the nonclassical nature
of the information structure but also the structure of the
performance index that contributes to the difficulty in solving
these problems.

A. Witsenhausen’s counterexample

Now let the quadratic performance index Q be picked as

QW (x, u0, u1) = k0(u0 − x)2 + (u1 − u0)2 , (3)

where k0 > 0 is a given parameter. Note that here the first
agent wants to stay as close to x as possible, while the
second agent wants to stay as close to the action of the first
agent, u0, as possible. This can also be viewed as a standard
discrete-time two-stage LQG optimal control problem, with
state equations

x1 = x0 + v0 , x2 = x1 − v1

measurement equations

y0 = x0 , y1 = x1 + w1 ,

and memoryless controls

v0 = µ0(y0) , v1 = µ1(y1) ,

where µ0 and µ1 are the instantaneous measurement output
control policies at stages 0 and 1, respectively. This becomes

equivalent to the earlier formulation in view of the correspon-
dences

u0 = x0 + v0 , u1 = v1 , x = x0 , w = w1 , y = y1 ,

if we pick the cost function as

Q̃(x2, v0) = (x2)2 + k0(v0)2 ≡ QW (x1 − v0, x1, x1 − x2) .

Witsenhausen has shown in a 1968 paper [22] that the
optimal solution to this problem exists, but the optimum
decision rules (µ0 and µ1, or equivalently γ0 and γ1) are not
linear. For the latter, he has shown that there exist nonlinear
policies which outperform the best linear ones.1 A class
of such nonlinear policies introduced by Witsenhausen, and
further improved upon by Bansal and Başar [1] is

u0 = γo(x) = ε sgn(x) + λx ,

u1 = γ1(y) = E[ε sgn(x) + λx|y]

where ε and λ are parameters to be optimized over (in [22]
the values are picked as λ = 0 and ε = σx, and some
asymptotics are studied). Clearly, if ε = 0, this class of
decision rules will be linear, since E[λx|y] will be linear
for each λ, however when ε 6= 0, the decision rules at both
stages will be nonlinear. To give some indication of how
much can be gained by taking ε 6= 0, let us consider the case
with parameter values k0 = 0.1, σ2

x = 10, σ2
w = 1; then the

best linear policy at stage zero has the gain λopt = −0.1127,
with the corresponding value of J being 0.900. If however
ε is picked to be 2, the corresponding value of J (for
the same choice of λ which is clearly not optimal and
can be further improved upon) is 0.5203, which registers
a substantial improvement over the best linear solution. For
another scenario, let us take k0 = 0.01, σ2

x = 80, σ2
w = 1;

in this case the best linear policy at stage zero has the gain
λopt = 0.01006, with the corresponding value of J being
0.7920, whereas for the same value of λ, picking ε = 5
leads to a value of J = 0.3309. Further numerical results
can be found in [1], which also shows that if λ = 0,
ε = σx

√
2/π and k0σ

2
x = 1, as k0 → 0 the bound on

asymptotic performance becomes (1− (2/π)) = 0.363.

B. Generalized Gaussian test channel

Now consider a different choice for Q:

QTC(x, u0, u1) = k0(u0)2 + (u1 − x)2 , (4)

where again k0 > 0. Note that here the second agent’s
objective is to estimate the random variable x in the mini-
mum mean square (MMS) sense, using a measurement that
is transmitted over a Gaussian channel where the input to
the channel is shaped by the first agent who has access to
x and has a soft constraint (k0E[(u0)2]) on its action. The
version of this problem where the soft constraint is replaced
by a hard power constraint, E[(u0)2] ≤ k, is known as the
Gaussian Test Channel (GTC), and in this context γ0 is the
encoder and γ1 the decoder, whose optimal choice is clearly

1As of today, closed-form expressions for the optimal nonlinear policies
are not available, and their characterization is not known.
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the conditional mean of x given y, that is E[x|y]. The best
encoder for the GTC can be shown to be linear (a scaled
version of the source output, x), which in turn leads to a
linear optimal decoder. The approach here (as we will discuss
further below for a more general, soft-constrained version),
which is in fact the only approach known to apply here, is to
obtain bounds on the performance using an inequality from
information theory involving channel capacity [25] and rate
distortion function [14], and then showing that the bound can
be achieved using linear policies.

Now, consider the more general version of (4):

QGTC(x, u0, u1) = k0(u0)2 + (u1 − x)2 + b0u0x , (5)

where b0 is a parameter. Let

E[(u0)2] =: α and E[(u1 − x)2] =: β .

Then, with J defined as before, by (2), and with γ0 and γ1

constrained as above, we have the inequalities

inf
γ
J(γ) ≥ k0α+ β + inf

γ0
b0E[γ0(x)x]

≥ k0α+ β − |b0|σx
√
α (6)

where the second one follows from the Cauchy-Schwarz
inequality.

Now, by the data processing theorem [25], in a linear
configuration the mutual information between two random
variables closer to each other is no smaller than the mutual
information between two random variables farther apart. In
our case, this translates to

I(x; y) ≥ I(x;u1) (7)

where I(·; ·) stands for mutual information. For each fixed
α > 0, I(x; y) is bounded from above by the capacity of the
channel, C(α), which is known for the Gaussian channel to
be [16]

C(α) =
1
2

log(1 + (α/σ2
w) ) .

Further, for each fixed β, the quantity I(x;u1) is bounded
from below by the rate distortion function, R(β), for which
the expression is [14]

R(β) =
1
2

log(σ2
x/β) .

In view of (7), we have

1
2

log(1 + (α/σ2
w) ) = C(α) ≥ R(β) =

1
2

log(σ2
x/β)

which leads to the following bound on β:

β ≥ σ2
wσ

2
x/(α+ σ2

w)

which is tight with

γ0(x) = −sgn(b0)
√
α

σx
x (8)

Substitution of this in (6) leads to

inf
γ
J(γ) ≥ k0α+ σ2

wσ
2
x/(α+ σ2

w)− |b0|σx
√
α (9)

Let α∗ be the positive value of α that minimizes the bound
in (9), which exists and is unique. It is a solution of the
polynomial equation

[2k0

√
α− |b0|σx] [α+ σ2

x]
2 = 2σ2

wσ
2
x

√
α . (10)

Then, when Q is in the structural form (5), the solution to
(2) exists, is linear, and is given by

γ∗0(x) = −sgn(b0)
√
α∗

σx
x , (11)

γ∗1(y) = E[x|y] = − sgn(b0)σx
√
α∗

α∗ + σ2
w

y . (12)

Remark: The main difference between the two problems of
Subsection II-A and Subsection II-B is that Q in the former
has a product term between the decision rules of the two
agents while in the latter it does not. Hence, it is not only the
nonclassical nature of the information structure but also the
structure of the performance index that determines whether
linear policies are optimal in LQG multi-stage decision
problems. �

III. CONFLICTING OBJECTIVES: A ZERO-SUM
STOCHASTIC GAME

To bring in a further perspective on the general problem
formulated in the previous section, we consider now a game
situation with the first term in (3) now negative:

QG(x, u0, u1) = −k0(u0 − x)2 + (u1 − u0)2 , (13)

where again k0 > 0, and the information structure is the
same as before. Here the two agents (players) have opposing
objectives: while the second agent still wants to minimize
the expected value of QG, the first agent wants to maximize
it. This is then a zero-sum stochastic game (with dynamic
information), and an appropriate solution concept in this case
is that of a saddle point [13]. That is, with J defined as
before, we are looking for a pair of decision rules (γ∗0 , γ

∗
1 ),

such that the following pair of saddle-point inequalities hold:
for all Borel measurable functions γ0 and γ1,

J(γ0, γ
∗
1) ≤ J(γ∗0 , γ

∗
1 ) ≤ J(γ∗0 , γ1) (14)

Now it turns out ([11], [12]) that the solution here can be
obtained explicitly and is linear, and hence this problem
where there is a conflict in objectives is in some sense easier
than the Witsenhausen counterexample where the objectives
were aligned. First note that if γ0 is linear in x, say γ0(x) =
αx for some parameter α,2 then the γ1 that minimizes J is
also linear (and unique), being the conditional mean of αx
given y. Hence,

γ0(x) = αx ⇒ γ1(y) =
α2σ2

x

α2σ2
x + σ2

w

y

Conversely, if γ1 is linear in y, say γ1(y) = λy for some
parameter λ, then provided that

k0 > (λ− 1)2 (15)

2This α is not related to the one in Subsection II-B.
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which makes QG strictly concave in u0,3 the γ0 that maxi-
mizes J is also linear (and unique). Hence,

γ1(y) = λy ⇒ γ0(x) = − k0

k0 − (λ− 1)2
x

For these policies to constitute a saddle point, we have to
find a pair (α, λ) which simultaneously solve

λ =
α2σ2

x

α2σ2
x + σ2

w

α = − k0

k0 − (λ− 1)2

while satisfying the constraint (15). Note that from the
first equation above, we have 0 < λ < 1, and hence
if k0 > 1 the constraint (15) is satisfied whenever the
simultaneous equations above admit a solution for λ in the
interval (0, 1). Exploring this further, substituting for α from
the second equation above into the first equation, and re-
arranging, we obtain the following equation involving a 5th-
order polynomial in λ one of whose roots is the value sought:

f(λ) := (σ2
w/σ

2
x)λ

[
k0 − (1− λ)2

]2 − k2
0(1− λ) = 0

Since f(0) < 0, f(1) > 0, and f is a strictly increasing
function on (0, 1), it has a unique root in the interval
of interest, which we denote by λ∗. Hence, provided that
k0 > 1, the stochastic game of this section admits a saddle-
point solution which is linear in the measurements of the two
players. Further, this saddle-point solution is unique, which
follows from the ordered interchangeability property [13] of
multiple saddle points, since the optimum response of each
player to an announced linear policy of the other player is
unique, as already shown above.

The development above holds even if k0 ≤ 1. Then, the
constraint (15) will have to be enforced, and we have to
look for a root of f(λ) in the interval (1−

√
k0, 1). One can

again see that f(1−
√
k0) < 0, f(1) > 0, and f is a strictly

increasing function in (1 −
√
k0, 1), and thus has a unique

root in the interval of interest. Hence, the game has a unique
saddle-point solution as long as k0 > 0, and the saddle-point
policies are linear:

γ∗0 (x) = − k0

k0 − (λ∗ − 1)2
x , γ∗1(y) = λ∗y

where λ∗ is the unique solution of the polynomial equation
f(λ) = 0 in the interval (max(0, 1−

√
k0), 1).

IV. EXTENSIONS TO THE BASIC MODEL

The basic model of Section II can be extended in different
directions, including:

(A) u0 having access to noise corrupted version of x, that
is u0 = γ0(x+v), where v is a zero mean Gaussian random
variable, independent of x and w.

(B) Vector-valued variables, where x, w, y, u0, u1, as well
as v introduced above, are no longer scalar valued, and could

3If the condition (15) is not satisfied, then for the given γ1, the player
who chooses u0 can make the value of J arbitrarily large.

have different dimensions, with for example, in the setting
of Section II,

y = Cu0 +Dw , u0 = γ0(z) , u1 = γ1(y) ,

where z := Fx + Gv, C,D, F,G are matrices of appro-
priate dimensions, and the independent Gaussian zero-mean
random vectors x, v, w have specified covariance matrices.
The performance index is still given by (2), and the criterion
is (1), with the appropriate interpretation for vector-valued
variables.

(C) Stochastic LQG teams where in the formulation above
different components of u0 and different components of
u1 are controlled by different agents who have access to
individual compoments of z and y, respectively. That is,
assuming that the dimensions of u0, z, u1 and y are the
same, say n,

[u0]i = γ0i(zi) , [u1]i = γ1i(yi) , i = 1, . . . , n . (16)

(D) Multiple agents with different objectives, where
in the setting above, there are n performance indices,
Qi(x, u0, u1) , i = 1, . . . , n, with corresponding expected
costs, Ji(γ). An appropriate solution concept here is that
of noncooperative Nash equilibrium: an n-tuple γ∗ =
(γ∗0i, γ

∗
1i) , i = 1, . . . , n, is in Nash equilibrium if for all

(γ0i, γ1i) and all i = 1, . . . , n,

Ji(γ∗) ≤ Ji((γ0i, γ1i); γ∗−i) , (17)

where γ∗−i stands for γ∗ with only the i-th one left out.
(E) Multiple (higher than two) stages, with information

carried from one stage to the next being limited.
We now discuss briefly the extent of the difficulties in

obtaining the solution to problems that fall in these five
different classes.

A. Noise corrupted initial state

When u0 has access to z = x+v, instead of x, the results
of Sections II and III hold structurally. If there is a cross
term between u0 and u1 in Q, the same difficulties as in the
Witsenhausen counterexample arise. When the cross term
is absent, however, the optimal solution again exists and
is linear. That is, for some positive α, which is again the
solution of a polynomial equation (as in (10)), we have [2]

u0 = γ∗0 (z) = αz , u1 = γ∗1 (y) =
ασ2

x

α2(σ2
x + σ2

v) + σ2
w

y

The proof again follows information-theoretic arguments [2],
and the same structural result holds even if w is correlated
with z.

Now, for the stochastic game problem of Section III, again
the same structural result holds: there exists a saddle-point
solution, which is linear for both players. Following the
analysis of Section III, the counterpart of the polynomial
function f in this case is

f(λ) :=
σ2
w

σ2
x

[
1 +

σ2
v

σ2
x

]
λ
[
k0 − (1− λ)2

]2 − k2
0(1− λ)
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which again has a unique root in the interval (1 −
√
k0, 1),

since f(1−
√
k0) < 0, f(1) > 0, and f is a strictly increasing

function over this interval. Letting this unique solution be λ∗,
the unique saddle-point solution, which is linear, is:

γ∗0 (z) = − k0

k0 − (λ∗ − 1)2
σ2
x

σ2
x + σ2

v

z , γ∗1 (y) = λ∗y .

Remark: Clearly in these problems certainty equivalence
does not hold, that is the solution is not of the type where
one first solves the deterministic version of the problem and
then replaces the random variables with their conditional
mean values at the solution point. On the other hand, one
would normally expect certainty equivalence to hold if the
information structure is of the classical type, that is (in this
case) the agent acting at the second stage has access to not
only his private information y but also z. This is indeed
the case with team problems (which then become standard
LQG stochastic control problems), but not necessarily for
stochastic zero-sum games which feature many pitfalls; for
details we refer to [8].

B. Vector-valued variables

For vector-valued variables, as introduced earlier in this
section, both problems of Section II, with and without
cross terms between u0 and u1, present difficulties due to
the nonclassical nature of the information structure, and
still remain unsolved today. Linear decision rules are not
generally optimal for the vector version of the Gaussian test
channel [18], unless u0 and u1 are still scalar, and so are x
and v, but y is vector-valued [2]. This can be viewed as the
transmission of a garbled version (z) of a Gaussian message
(x) over a number of noisy (Gaussian) channels under a
quadratic fidelity criterion. Optimum solution again consists
of linearly transforming z to a certain optimum power level
α∗ (by the first agent, γ∗0 (z)) and then optimally decoding
it at the receiving end by using a linear transformation (by
the second agent, γ∗1 (y)), with α∗ obtained as the unique
(relevant) solution of a fifth-order polynomial equation [2].

Now, regarding the vector version of the zero-sum stochas-
tic game of Section III, its saddle-point solution is still linear
(and unique), and the analysis of Section III readily applies
at the conceptual level, with some of the details, however,
being more involved; see [11].

C. Stochastic LQG teams

The stochastic LQG team problem formulated earlier in
this section (with decentralized information) features all the
complexities of the centralized vector-valued one (centralized
at each end, but still nonclassical from one stage to the next),
unless there is a forward channel that informs agents at the
front end on the garbled decentralized information received
at the other (back) end. This is known as quasi-classical
information, with (16) replaced by

[u0]i = γ0i(zi) , [u1]i = γ1i(yi, z) , i = 1, . . . , n , (18)

where z denotes the collection of measurements of the
agents at stage zero. The problem is still minimization of the

expected value of a general quadratic function Q(x, u0, u1).
The quasi-classical nature of the information allows for
a sequential decomposition, where at the front end and
subsequently at the back end static quadratic Gaussian teams
are solved. At each stage, one makes use of a result due to
Radner [20] to establish linearity of (team-)optimum deci-
sion rules. Hence, with quasi-classical information (enabled
through the feedforward transmission of measurements from
back stages, but no sharing of information among agents
occupying the same level), LQG teams, strictly convex in
the decision variables, admit linear optimum decision rules,
that is optimum choices for γ0i and γ1i in (18) are linear in
their arguments.

D. Stochastic Nash games

Consider now the same structure (with quasi-classical
information structure) as in Subsection IV-C above, but
with different agents having different performance indices,
in which case the noncooperative Nash equilibrium as de-
fined by (17) becomes relevant. These games, when the
performance index for each player is quadratic, again admit
unique linear solutions, but the sequential decomposition in
this case is more involved than in the case of stochastic
teams; see [7]. It is important to mention that for uniqueness
it is necessary that the actions are not feedforwarded but
only the measurements are, whereas in the stochastic team
problem the distinction between the two types of information
structures is not consequential. In other words, in game
situations there should not be any redundancy in information
received by the players, as that will lead to consequential
nonuniqueness. In the derivation of the unique linear Nash
equilibrium, a key result that is used at each stage is an
extension of Radner’s result on quadratic teams referred
to in the preceding subsection to quadratic Gaussian static
Nash games [4], which says that decision rules in Nash
equilibrium are linear in the measurements of individual
players, whenever an equilibrium exists; see also [5], [6].

E. Multi-stage LQG with nonclassical information

We have already introduced in the previous two sub-
sections some multi-stage formulations, where however the
nonclassical information was relaxed to a quasi-classical one
where an agent following another one in the decision tree
has access to the measurements used by the other agent,
but agents operating at the same level of the decision tree
need not share information. There are, however, multi-stage
decision/control problems that are tractable in spite of the
nonclassical nature of the information structure. One such
class of problems arise in joint controller-sensor design, as
discussed in [3]. Consider the scalar discrete-time plant

xn+1 = ρnxn + un + vn , n = 0, 1, . . .

along with the scalar measurement

yn = hn + wn , n = 0, 1, . . . ,

where {vn} and {wn} are i.i.d. Gaussian random variables,
with zero mean and independent of each other as well as of
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the Gaussian initial state x0. The variable un is the control,
allowed to depend on the present and past values of y, and
hn is another decision variable (the sensor structure), which
has to be designed as a function of the current value of the
state, xn, and possibly also of the past values of y, and this
design has to be picked optimally, along with the control,
so as to minimize the expected value of a stage-additive
quadratic cost function. This is a dynamic decision problem
that features nonclassical information because un and hn
can be seen as the actions of two agents with the decision of
one affecting the information of the other, who however do
not share information. Employing the Gaussian test channel
sequentially, as well as sequential rate distortion theory [14],
this nonclassical stochastic control problem can be shown
to admit a linear optimal solution (for both un and hn)
[3]. Its continuous-time version (again scalar) also admits
a linear optimal solution [10], where now the continuous-
time Gaussian test channel with feedback is employed [19].
None of these results admit easy extensions to multivariable
systems, when optimum solutions (if they exist) will in
general not be linear.

For another type of a joint controller/sensor design under
constraints on the observation alphabet and power, which
also employs sequential rate distortion theory, we refer to
[21]. Yet another class of tractable/solvable dynamic stochas-
tic optimization problems with nonclassical information (that
is of non-neutral type) can be found in [9], where the tool this
time is the powerful machinery of saddle-point equilibria.
The approach there is to relate a single-objective dynamic
optimization problem to a sequence of nested zero-sum
games. The problem arises as a macro-economic model of
credibility and monetary policy, and involves active learning.

V. CONCLUSIONS

Written on the 40th anniversary of the appearance of
the celebrated counterexample of Witsenhausen in stochastic
control, this paper has discussed a number of problems in
stochastic dynamic decision making which are variations on
the theme of the counterexample. These different problem
formulations have shown that it is not only the nonclassical
nature of the information structure, but also the structure of
the performance index and the coupling of different decision
variables that are responsible for intractability of some of
these decision problems. While some are intractable, yet
there are others with still nonclassical information which are
tractable, both as teams as well as games. The paper has
identified these tractable problems, and has also discussed
extensions to zero-sum as well as nonzero-sum games,
identifying also the challenges encountered.
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[9] T. Başar, “Solutions to a class of nonstandard stochastic control
problems with active learning,” IEEE Trans. Automat. Contr., AC-
33(12):1122-1129, December 1988.
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